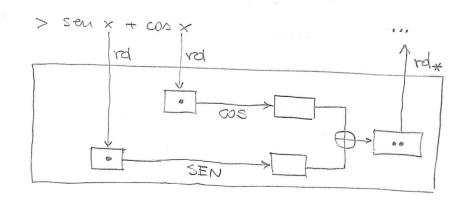
Es: m F(10,2)...

- 1) @ e simmetrica
- 2) \oplus non \dot{z} associative: $\dot{\xi}_1 = 10^2 \text{ 0,10}$; $\ddot{\xi}_2 = \ddot{\xi}_3 = 10^\circ \text{ 0,38}$ $(\dot{\xi}_1 \oplus \dot{\xi}_2) \oplus \ddot{\xi}_3 \neq \ddot{\xi}_1 \oplus (\ddot{\xi}_2 \oplus \ddot{\xi}_2)$
- 3) $\forall \xi_1, \xi_2, \alpha \in F(10,2), \quad \xi_1 > \xi_2 \Rightarrow \xi_1 \oplus \alpha > \xi_2 \oplus \alpha$ (monotonia: reque dalle corrisp proper di rd)
- 4) $\forall \xi \in F(10,2)$: $\xi \oplus 0 = \xi$ ma "lo zero mor i um'co"... $10^2 0,67 \oplus 10^{-2} 0,11 = 10^2 0,67$

(ber casa): dimostrare, utilizzando le proforieta: della funcione rol: IR + F(-10,2), che

- · + \$ = F (w, 2), \$ + (-\$) = 0
- · + \$ = F(10,2), =! & = +(10,2): \$ = x = 0.

 E_x : f(x) = sex + cox x



0 = rd(x) = g 0 = rd(x) = g 0 = rd(x) = g 0 = rd(x) = g

si afforossime f(x) on $\phi(\xi)$...

$$\varepsilon_{t} = \frac{\phi(\varepsilon) - f(x)}{f(x)}$$
, $f(x) \neq 0$ errore relative

TOTALE commesses

Po: studiare et (solo esemp. mo bio templic.!)

 $\frac{\det :}{\xi_a} = \frac{\phi(\underline{s}) - f(\underline{s})}{f(\underline{s})}, \quad f(\underline{s}) \neq 0 \quad \text{errore rel ALGOR'TM ico}$ $\varepsilon_d = \frac{f(\underline{s}) - f(x)}{f(x)}, \quad f(x) \neq 0 \quad \text{errore rel TRAIMESTO}$ (da' dat')

Oss: $\varepsilon_t = \varepsilon_a + \varepsilon_d + \varepsilon_a \varepsilon_d$ (dim...)

I) Studio d' Ed: CONDIZIONAMENTO del colcolo d' + (x)

olef (f di condizionemento) $f: \mathbb{R}^m \to \mathbb{R}$; $\times_{1,..., \times_m} \in \mathbb{R}$, $\varepsilon_{1,..., \varepsilon_m} \in \mathbb{R}$ $C(\times_{1,..., \times_m}; \varepsilon_{1,..., \varepsilon_m}) = \frac{f((1+\varepsilon_1)\times_1,...,(1+\varepsilon_n)\times_m) - f(\times_{1,..., \times_m})}{f(\times_{1,..., \times_m})}$

FUNZIONE d' CONDIZIONAMENTO

del colcolo d'. f (*1,..., *m)

 $000: m=1; se = rd(x), \exists \epsilon t.c. = (1+\epsilon)x =$ $\epsilon_{d} = \frac{f(\Xi) - f(x)}{f(x)} = \frac{f((1+\epsilon)x) - f(x)}{f(x)} = C(x;\epsilon)$ overs: $\epsilon_{d} = \frac{f(\Xi) - f(x)}{f(x)} = \frac{f(x)}{f(x)} = \frac{f(x$

Es (f di condiz fer op anitm):

- 1) $f(x_1,x_2) = x_1 + x_2$ $C(x_1,x_2; \varepsilon_1, \varepsilon_2) = \frac{x_1}{x_1 + x_2} \varepsilon_1 + \frac{x_2}{x_1 + x_2} \varepsilon_2$
 - SE addendi della steno Segua: $|C(x_1, x_2; \varepsilon_1, \varepsilon_2)| \le |\varepsilon_1 + \varepsilon_2|$ e "CALCOLO BEN CONDÍZ'IONATO";
 - SE $\times_1 + \times_2 \approx 0$, prus essere $|C(\times_1, \times_2; \epsilon_1, \epsilon_2) \gg |\epsilon_1|, |\epsilon_2|$ • "CALCOLO NON BEN CONDIZIONATO".
- 2) $f(x_1, x_2) = x_1 x_2$ $C(x_1, x_2; \varepsilon_1, \varepsilon_2) = \varepsilon_1 + \varepsilon_2 + \varepsilon_1 \varepsilon_2 \approx \varepsilon_1 + \varepsilon_2$
 - · $\forall \times_1, \times_2$ t.c. $\times_1 \times_2 \neq 0$, il calcolo e ben condiz.
- 3) $f(x_1, x_2) = \frac{x_1/x_2}{C(x_1, x_2; \varepsilon_1, \varepsilon_2)} = \frac{\varepsilon_1 \varepsilon_2}{1 + \varepsilon_2} \approx \varepsilon_1 \varepsilon_2$
 - . ∀x1, x2 t.c. x2 ≠0, il alcolo è ben comdizioneto.