Università di Pisa

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 14 gennaio 2020

Problema 1

Dimostrare che:

$$\sqrt{2} > \frac{14}{10}$$

Siano M = F(2,53) e rd la funzione arrotondamento in M. Decidere se:

$$rd(\sqrt{2})\geqslant rd(\tfrac{14}{10})$$

Problema 2

Sia:

$$A = \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right]$$

Determinare una fattorizzazione QR di A ed utilizzarla per calcolare A^{-1} .

Problema 3

Indicare, giustificando la risposta, un metodo iterativo ad un punto che sia utilizzabile per approssimare il numero reale $\alpha = \sqrt{7}$.

Soluzione

Problema 1

Si supponga falso l'asserto, ovvero:

$$\sqrt{2} \leqslant \frac{14}{10}$$

Se ne deduce che:

$$10\sqrt{2} \leqslant 14$$

e quindi:

$$100 \cdot 2 = 200 \leqslant 14^2 = 196$$

assurdo. Dunque l'aaserto è vero.

La funzione arrotondamento rd : $\mathbb{R} \to F(2,53)$ è non decrescente, ovvero:

$$x > y \implies \operatorname{rd}(x) \geqslant \operatorname{rd}(y)$$

Allora:

$$\sqrt{2} > \frac{14}{10} \implies \operatorname{rd}(\sqrt{2}) \geqslant \operatorname{rd}(\frac{14}{10})$$

Problema 2

Le colonne di A sono linearmente indipendenti, dunque una fattorizzazione QR si determina utilizzando la procedura GS che fornisce:

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
 , $T = \sqrt{2} I$

Poiché A = UT, si ha $A^{-1} = (UT)^{-1} = T^{-1}U^{\mathsf{T}}$. Dunque:

$$A^{-1} = \frac{1}{\sqrt{2}} I \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Problema 3

Un metodo certamente utilizzabile è il metodo di Newton applicato alla funzione:

$$f(x) = x^2 - 7$$

tale che $f(\sqrt{7}) = 0$.

Il metodo è utilizzabile e risulta avere ordine di convergenza due perché, ad esempio nell'intervallo $[1,3] \ni \sqrt{7}$, la derivata prima f'(x) = 2x è continua e non nulla, e la derivata seconda f''(x) = 2 è continua. Un punto iniziale che garantisce la convergenza della successione generata si può ottenere con l'apposito criterio di scelta per il metodo di Newton: $x_0 = 3$.