# Università di Pisa





### Calcolo Numerico

## Corso di Laurea in Ingegneria Elettronica

Appello del 17 settembre 2019

#### Problema 1

Siano  $\alpha$  un numero reale, g una funzione elementare da  $\mathbb R$  in  $\mathbb R$  e  $\phi$  l'algoritmo definito, per ogni  $x \in \mathbb R$  da:

$$\phi(x) = \mathrm{rd}(\alpha) \otimes \mathrm{rd}(g(\mathrm{rd}(x)))$$

Discutere la stabilità di  $\phi$  quando utilizzato per approssimare i valori della funzione  $f(x) = \alpha g(x)$ .

#### Problema 2

Descrivere una procedura, di intestazione:

$$x = \text{SolDiag}(D, c)$$

che restituisce, per ogni matrice diagonale invertibile  $D \in \mathbb{R}^{n \times n}$  ed ogni colonna  $c \in \mathbb{R}^n$ , la soluzione del sistema Dx = c.

Indicare il costo della procedura in funzione di n.

### Problema 3

Sia  $h: \mathbb{R} \to \mathbb{R}$  la funzione definita da:

$$h(x) = \frac{2}{\pi} \arctan x$$

- (a) Determinare il numero di punti uniti di h e separarli.
- (b) Per ciascun  $\alpha$  punto unito di h, decidere se il metodo iterativo definito da h sia utilizzabile per approssimare  $\alpha$ . In caso affermativo, indicare inoltre un numero reale  $x_0$  a partire dal quale la successione generata dal metodo risulta convergente ad  $\alpha$  e l'ordine di convergenza del metodo quando utilizzato per approssimare  $\alpha$ .