Università di Pisa

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 10 gennaio 2019

Problema 1

Sia:

$$A = \{\, \xi \in F(2,5) \text{ tali che } \xi \in (0,\frac{8}{13}) \,\}$$

Determinare $\inf A \in \sup A$.

Problema 2

Sia:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \in \mathbb{R}^{4 \times 3}$$

Indicare due diverse fattorizzazioni QR di A.

Problema 3

Determinare l'elemento di span $\{x^2\}$ che meglio approssima i dati:

$$(-1,1)$$
 , $(0,0)$, $(1,1)$, $(2,3)$

nel senso dei minimi quadrati.

Soluzione

Problema 1

Poiché zero è punto di accumulazione di F(2,5) — come di $F(\beta,m)$ per ogni base β e precisione m — si ha: inf A=0.

Invece, constatato che $\frac{8}{13} \notin F(2,5)$ e detti ξ_- e ξ_+ gli elementi di F(2,5) adiacenti a $\frac{8}{13}$ si ha: $\sup A = \max A = \xi_- = 2^0$ 0.10011 = $\frac{19}{32}$.

Problema 2

Le colonne di A sono linearmente indipendenti, dunque una fattorizzazione QR si determina utilizzando la procedura GS che fornisce:

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \quad , \quad T = \sqrt{2} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Una diversa fattorizzazione (U', T') si ottiene scegliendo numeri reali σ_1, σ_2 e σ_3 non tutti nulli e tali che:

$$\sigma_i \in \{0,1\}$$
 , $j = 1,2,3$

e ponendo:

$$S = \begin{bmatrix} (-1)^{\sigma_1} & 0 & 0 \\ 0 & (-1)^{\sigma_2} & 0 \\ 0 & 0 & (-1)^{\sigma_3} \end{bmatrix} , \quad U' = US , \quad T' = ST$$

Problema 3

L'elemento cercato è: a_1x^2 , dove a_1 è la soluzione nel senso dei minimi quadrati del sistema:

$$\begin{bmatrix} 1\\0\\1\\4 \end{bmatrix} z = \begin{bmatrix} 1\\0\\1\\3 \end{bmatrix}$$

che traduce le condizioni di interpolazione.

Le equazioni normali del sistema scritto sono: 18z = 14, da cui $a_1 = \frac{7}{9}$.