Università di Pisa

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 14 gennaio 2016

Problema 1

Siano rd₂ la funzione arrotondamento in F(2,5), rd₁₀ la funzione arrotondamento in F(10,2) e $x \in \mathbb{R}$ tale che: rd₂ $(x) = \text{rd}_{10}(x) = 2$. Determinare il più piccolo intervallo che certamente contiene x.

Problema 2

Si consideri \mathbb{R}^2 con la norma infinito e siano:

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

e $b, \delta b \in \mathbb{R}^2$ tali che:

$$||b|| = 10$$
 , $\epsilon_b = \frac{||\delta b||}{||b||} = \frac{1}{10}$

(A) Disegnare in un piano cartesiano l'insieme di tutti i possibili vettori δb .

Dette x^* la soluzione del sistema Ax = b e $x^* + \delta x$ la soluzione del sistema $Ax = b + \delta b$:

(B) determinare il massimo valore possibile di:

$$\epsilon_d = \frac{\parallel \delta x \parallel}{\parallel x^* \parallel}$$

Problema 3

Determinare le soluzioni nel senso dei minimi quadrati del sistema:

$$\left[\begin{array}{cc} 1 & 1\\ 0 & 1\\ -1 & 0 \end{array}\right] x = \left[\begin{array}{c} 2\\ 1\\ 0 \end{array}\right]$$

Problema 1

Siano π_2 e σ_2 , rispettivamente, le funzioni predecessore e successore in F(2,5) e π_{10} e σ_{10} , rispettivamente, le funzioni predecessore e successore in F(10,2). Si ha:

$$\operatorname{rd}_2(x) = 2 \Leftrightarrow x \in \left[\frac{\pi_2(2) + 2}{2}; \frac{\sigma_2(2) + 2}{2}\right] = I_2$$

e

$$\operatorname{rd}_{10}(x) = 2 \Leftrightarrow x \in \left[\frac{\pi_{10}(2) + 2}{2}; \frac{\sigma_{10}(2) + 2}{2}\right] = I_{10}$$

dunque il più piccolo intervallo che certamente contiene $x \in I_2 \cap I_{10}$. Si ottiene:

$$I_2 = \left[2 - \frac{1}{32}; 2 + \frac{1}{16}\right]$$
 e $I_{10} = \left[2 - \frac{5}{100}; 2 + \frac{5}{100}\right]$

Considerato che $\frac{1}{32} < \frac{5}{100} < \frac{1}{16}$ si ha (aiutarsi con un disegno):

$$I_2 \cap I_{10} = \left[2 - \frac{1}{32}; 2 + \frac{5}{100}\right] = [1.96875; 2.05]$$

Problema 2

(A) Essendo ||b|| = 10 e $\epsilon_b = \frac{1}{10}$, i possibili vettori δb sono quelli *sul bordo* dell'intorno di centro 0 e raggio 1 rappresentato in Figura 1.

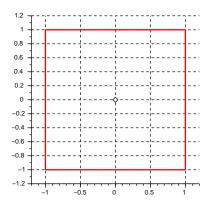


Figura 1: In rosso: il bordo dell'intorno di centro 0 e raggio 1. La losanga è il centro 0.

(B) Per il Teorema di condizionamento: assegnata una matrice A (1) per ogni b e δb si ha:

$$\epsilon_d \leqslant c(A)\epsilon_b$$

e (2) esistono b e δb tali che:

$$\epsilon_d = c(A)\epsilon_b$$

Nel caso in esame, dopo aver determinato:

$$A^{-1} = \left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array} \right]$$

si ottiene $c(A)=2\cdot 2=4$ e quindi il massimo valore di ϵ_d è $\frac{2}{5}$. Nota. Il massimo valore di ϵ_d si ottiene, ad esempio, per:

$$\delta b = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \mathbf{e} \quad b = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

Infatti:

$$\max_{\|\,\delta b\,\|=1\,,\,\|\,b\,\|=10} \epsilon_d = \frac{\max_{\|\,\delta b\,\|=1} \|\,\delta x\,\|}{\min_{\|\,b\,\|=10} \|\,x^*\,\|}$$

Problema 3

Le soluzioni nel senso dei minimi quadrati del sistema sono le soluzioni del sistema delle equazioni normali:

$$\left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right] x = \left[\begin{array}{c} 2 \\ 3 \end{array}\right]$$

Si ottiene un'unica soluzione (come atteso):

$$x = \frac{1}{3} \left[\begin{array}{c} 1\\4 \end{array} \right]$$

Università di Pisa

DIPARTIMENTO DI MATEMATICA

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 3 febbraio 2016

Problema 1

Sia M = F(2,53). Dimostrare che: se rd(x) > 2 allora x > 2.

Problema 2

Applicando la procedura EGPP ad $A \in \mathbb{R}^{3\times 3}$ si ottiene:

$$EGPP(A) = \left(\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)$$

Calcolare det A, A^{-1} e $c_{\infty}(A)$.

Problema 3

Sia
$$f(x) = x - e^{-x} - 2$$
.

- (a) Determinare il numero di zeri di f e separarli.
- (b) Per ciascuno zero di f, decidere se il metodo di Newton sia utilizzabile per l'approssimazione e, in caso affermativo, indicare un valore x_0 a partire dal quale la successione generata da tale metodo, operando in \mathbb{R} , risulta convergente allo zero.
- (c) Sia x_k la successione generata dal metodo di Newton a partire da $x_0 = 1$, operando in \mathbb{R} . Determinare

$$\lim_{k \to \infty} x_k$$

Problema 1

Si ha: $\operatorname{rd}(x) > 2 \Leftrightarrow x > \frac{2+\sigma(2)}{2}$. Inoltre: $\sigma(2) > 2 \Rightarrow \frac{2+\sigma(2)}{2} > 2$. Dunque: $x > \frac{2+\sigma(2)}{2} > 2$.

Problema 2

Dette, nell'ordine S, D e P le tre matrici ottenute da EGPP, si constata che P = I e quindi A = SD. Ne segue subito che det $A = \det S \det D = -2$ e quindi A è invertibile.

L'inversa vale $A^{-1}=D^{-1}S^{-1}$ ed utilizzando, ad esempio, le procedure SA ed SI si ottiene:

$$S^{-1} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right]$$

 \mathbf{e}

$$D^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Allora:

$$A^{-1} = \left[\begin{array}{rrr} 1 & 0 & -\frac{1}{2} \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{array} \right]$$

Il numero di condizionamento di A in norma infinito vale $c_{\infty}(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$. Dopo aver calcolato:

$$A = SD = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 2 & 2 & 1 \\ 2 & 2 & 0 \end{array} \right]$$

si ottiene $||A||_{\infty} = 5$, $||A^{-1}||_{\infty} = 2$ e quindi $c_{\infty}(A) = 10$.

Problema 3

(a) Poiché la derivata prima $f'(x) = 1 + e^{-x}$ è non zero per ogni x reale, la funzione f ha al più uno zero. Inoltre:

$$f(2) = -e^{-2} < 0$$
 e $f(3) = 1 - \frac{1}{e^3} > 0$

e quindi f ha uno zero: $\alpha \in [2,3]$.

- (b) La funzione f ha derivata seconda continua e la derivata prima è non zero per ogni x reale, quindi $f'(\alpha) \neq 0$ ed il metodo di Newton è utilizzabile per approssimare lo zero. Inoltre $f''(x) = -e^{-x} \neq 0$ per ogni x reale e quindi è utilizzabile anche il criterio di scelta del punto iniziale specifico per il metodo di Newton e si ha: $con x_0 = 2$ la successione risulta convergente ad α e monotona crescente.
- (c) Poichè l'intervallo [1,3] verifica le ipotesi che rendono utilizzabile il criterio di scelta del punto iniziale specifico per il metodo di Newton e f(1) f''(1) > 0 si deduce che la successione è convergente ad α :

$$\lim_{k \to \infty} x_k = \alpha$$

Università di Pisa Dipartimento di matematica

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 22 febbraio 2016

Problema 1

Siano M = F(2,4) ed $x = \frac{17}{16}$. Determinare rd(x) e verificare che l'errore relativo commesso approssimando x con rd(x) non supera, in valore assoluto, la precisione di macchina u.

Problema 2

Sia:

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{array} \right]$$

Calcolare EGPP(A).

Problema 3

Determinare la migliore approssimazione dei dati:

in span $\{x\}$ nel senso dei minimi quadrati.

Problema 1

In base due si ha: $x = 2^1 \cdot 0.10001$ e quindi rd(x) = 1. Allora, tenuto conto che $u = \frac{1}{2} 2^{1-4} = \frac{1}{16}$:

$$\left| \frac{\operatorname{rd}(x) - x}{x} \right| = \frac{16}{17} \left| 1 - \frac{17}{16} \right| = \frac{1}{17} < u$$

Problema 2

Poiché le prime due colonne di A sono linearmente indipendenti, la procedura terminerà correttamente con due passi di eliminazione.

(1) Essendo $a_{11}^{(1)} = 0$, occorre permutare le righe. Poniamo $P_1 = P_{12}$ ed eseguiamo il passo di eliminazione su P_1A utilizzando:

$$H_1 = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{array} \right]$$

Si ottiene:

$$A^{(2)} = H_1 P_1 A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

(2) Essendo $a_{22}^{(2)} = 0$, occorre permutare le righe. Poniamo $P_2 = P_{23}$ ed eseguiamo il passo di eliminazione su $P_2A^{(2)}$ utilizzando: $H_2 = I$. Si ottiene:

$$A^{(3)} = H_2 P_2 A^{(2)} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = D$$

La matrice di permutazione finale è:

$$P = P_2 P_1 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

Per determinare il fattore sinistro si riscrive:

$$D = P_2 H_2 A^{(2)} = P_{23} H_1 P_{12} A \quad \Rightarrow \quad A = P_{12}^\mathsf{T} H_1^{-1} P_{23}^\mathsf{T} D$$

Si ottiene infine:

$$S = P(P_{12}^{\mathsf{T}} H_1^{-1} P_{23}^{\mathsf{T}}) = P_{23} H_1^{-1} P_{23}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Complessivamente:

$$EGPP(A) = \left(\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \right)$$

Problema 3

Si cerca $a_1 \in \mathbb{R}$ tale che, posto $p(x) = a_1 x$, la quantità

$$F(a_1) = (p(0) - 1)^2 + (p(1) - 3)^2 + (p(2) - 4)^2 + (p(3) - 5)^2 + (p(4) - 9)^2 + (p(5) - 9)^2$$

risulti minima.

I valori cercati sono le soluzioni nel senso dei minimi quadrati del sistema:

$$\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} a_1 = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 5 \\ 9 \\ 9 \end{bmatrix}$$

— ottenuto, ad esempio, imponendo le condizioni di interpolazione $p(x_j) = y_j, j = 0, ..., 5$ — ovvero le soluzioni del sistema delle equazioni normali: $55 \, a_1 = 107$. Si ottiene un'unica soluzione: $a_1 = \frac{107}{55}$ e quindi un unico elemento che meglio approssima i dati:

$$p(x) = \frac{107}{55} x$$

rappresentato, insieme ai dati, in Figura 1.

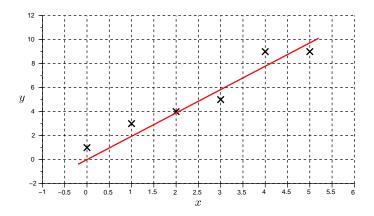


Figura 1: In rosso: la migliore approssimazione dei dati nel senso dei minimi quadrati.

Università di Pisa Dipartimento di matematica

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 9 giugno 2016

Problema 1

Sia M = F(2, 12). Calcolare $2 \oslash 5$.

Problema 2

Sia:

$$A = \left[\begin{array}{rrrr} 1 & 1 & -1 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & -2 & 1 \\ 1 & 1 & 2 & -1 \end{array} \right]$$

Determiare EGP(A) ed utilizzare il risultato per calcolare det A.

Problema 3

Determinare, in span $\{1, x^2\}$, la migliore approssimazione dei dati

$$(-1,1)$$
 , $(0,1)$, $(1,1)$, $(2,2)$

nel senso dei minimi quadrati.

Problema 1

Sia $x = \frac{2}{5}$. Per l'esponente b e la frazione g in base due di x si ha:

$$\frac{2}{5} \in \left(\frac{1}{4}, \frac{1}{2}\right) \quad \Rightarrow \quad b = -1 \quad , \quad g = \frac{4}{5}$$

Dette c_1, c_2, \ldots le cifre della scrittura posizionale di g in base due si ha:

$$\frac{4}{5} = 0.c_1c_2\cdots \quad \Rightarrow \quad \frac{8}{5} = c_1.c_2c_3\cdots$$

perció:

$$\frac{8}{5} = 1 + \frac{3}{5} = c_1 + 0.c_2c_3 \cdots \Rightarrow c_1 = 1 \text{ e } \frac{3}{5} = 0.c_2c_3 \cdots$$

Ripetendo il ragionamento:

$$\frac{6}{5} = 1 + \frac{1}{5} = c_2 + 0.c_3c_4 \cdots \Rightarrow c_2 = 1 \text{ e } \frac{1}{5} = 0.c_3c_4 \cdots$$

poi:

$$\frac{2}{5} = 0 + \frac{2}{5} = c_3 + 0.c_4c_5 \cdots \Rightarrow c_3 = 0 \text{ e } \frac{2}{5} = 0.c_4c_5 \cdots$$

Infine:

$$\frac{4}{5} = 0 + \frac{4}{5} = c_4 + 0.c_5c_6 \cdots \Rightarrow c_4 = 0 \text{ e } \frac{4}{5} = 0.c_5c_6 \cdots$$

Confrontando questa espressione con quella iniziale si ottiene:

$$\frac{4}{5} = 0.\overline{1100}$$
 e $x = \frac{2}{5} = 2^{-1} \cdot 0.\overline{1100}$

Gli elementi di M adiacenti ad x sono:

$$\xi_s = 2^{-1} \cdot 0.110011001100$$
 e $\xi_d = 2^{-1} \cdot 0.110011001101$

ed il punto medio μ del segmento di estremi ξ_s, ξ_d è:

$$\mu = 2^{-1} \cdot 0.1100110011001$$

Poichè $\mu < x$:

$$2 \oslash 5 = \operatorname{rd}(x) = \xi_d = 2^{-1} \cdot 0.110011001101 = \frac{3277}{8192}$$

Problema 2

Passo 1: Essendo $a_{11}^{(1)} \neq 0$ si ha $P_1 = I$. Eseguiamo il passo di eliminazione su $P_1A = A$ utilizzando:

$$H_1 = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{array} \right]$$

Si ottiene:

$$A^{(2)} = H_1 P_1 A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 3 & -2 \end{bmatrix}$$

Passo~2: Essendo $a_{22}^{(2)}\neq 0$ si ha $P_2=I$. Eseguiamo il passo di eliminazione su $P_2A^{(2)}=A^{(2)}$ utilizzando: $H_2=I$. Si ottiene: $A^{(3)}=H_2P_2A^{(2)}=A^{(2)}$. Passo~3: Essendo $a_{33}^{(3)}\neq 0$ si ha $P_3=I$. Eseguiamo il passo di eliminazione su $P_3A^{(3)}=A^{(3)}$

utilizzando:

$$H_3 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 \end{array} \right]$$

Si ottiene:

$$A^{(4)} = H_3 P_3 A^{(3)} = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} = D$$

La matrice di permutazione finale è:

$$P = P_3 P_2 P_1 = I$$

Per determinare il fattore sinistro si riscrive, tenuto conto che $P_1 = P_2 = P_3 = I$:

$$D = H_3 H_2 H_1 A \quad \Rightarrow \quad A = H_1^{-1} H_2^{-1} H_3^{-1} D$$

Si ottiene infine:

$$S = P H_1^{-1} H_2^{-1} H_3^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & -3 & 1 \end{bmatrix}$$

Complessivamente:

$$EGPP(A) = \left(I, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & -3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} \right)$$

Problema 3

Si cercano $a_1, a_2 \in \mathbb{R}$ tali che, posto $g(x) = a_1 + a_2 x^2$, la quantità

$$F(a_1, a_2) = (g(-1) - 1)^2 + (g(0) - 1)^2 + (g(1) - 1)^2 + (g(2) - 2)^2$$

risulti minima.

I valori cercati sono le soluzioni nel senso dei minimi quadrati del sistema:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix}$$

ovvero le soluzioni del sistema delle equazioni normali:

$$\left[\begin{array}{cc} 4 & 6 \\ 6 & 18 \end{array}\right] \left[\begin{array}{c} a_1 \\ a_2 \end{array}\right] = \left[\begin{array}{c} 5 \\ 10 \end{array}\right]$$

Si ottiene un'unica soluzione: $a_1=\frac{15}{18}, a_2=\frac{5}{18}$ e quindi un unico elemento che meglio approssima i dati:

$$g(x) = \frac{15}{18} + \frac{5}{18} x^2$$

rappresentato, insieme ai dati, in Figura 1.

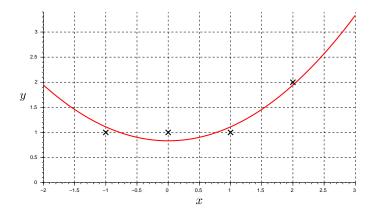


Figura 1: In rosso: la migliore approssimazione dei dati nel senso dei minimi quadrati.

Università di Pisa Dipartimento di matematica

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 30 giugno 2016

Problema 1

Discutere la stabilità dell'algoritmo $\phi(x_1, x_2, x_3) = \operatorname{rd}(x_1) \oplus (\operatorname{rd}(x_2) \otimes \operatorname{rd}(x_3))$ quando utilizzato per approssimare la funzione $f(x_1, x_2, x_3) = x_1 + x_2 x_3$.

Problema 2

Sia: $h(x) = \arctan(x) + 1$.

- (1) Determinare il numero di punti uniti di h e separarli.
- (2) Per ciascuno dei punti uniti, decidere se il metodo definito da h sia utilizzabile per l'approssimazione e, in caso affermativo, determinare x_0 a partire dal quale la successione generata dal metodo risulta, operando in \mathbb{R} , convergente.

Problema 3

Determinare gli elementi di $g \in P_2(\mathbb{R})$ che verificano le condizioni: g(-1) = g(1) = 0 e g'(0) = 1.

Problema 1

Per definizione di funzione arrotondamento e di pseudo-operazione aritmetica, detta u la precisione di macchina, per ogni x_2, x_2, x_3 si ha:

(1) esistono ϵ_1, ϵ_2 e ϵ_3 tali che:

$$\phi(x_1, x_2, x_3) = x_1(1 + \epsilon_1) \oplus (x_2(1 + \epsilon_2) \otimes x_3(1 + \epsilon_3))$$

e
$$|\epsilon_k| < u, k = 1, 2, 3.$$

(2) esistono ϵ_4 e ϵ_5 tali che:

$$\phi(x_1, x_2, x_3) = \left(x_1(1+\epsilon_1) + x_2(1+\epsilon_2)x_3(1+\epsilon_3)(1+\epsilon_5)\right)(1+\epsilon_4)$$

$$e |\epsilon_4| < u, |\epsilon_5| < u.$$

Posto: $(1 + \epsilon_1)(1 + \epsilon_4) = (1 + \theta_{14}), (1 + \epsilon_2)(1 + \epsilon_4) = (1 + \theta_{24}) e (1 + \epsilon_3)(1 + \epsilon_5) = (1 + \theta_{35})$ si ottiene infine:

$$\phi(x_1, x_2, x_3) = x_1(1 + \theta_{14}) + x_2(1 + \theta_{24})x_3(1 + \theta_{35}) = f\left(x_1(1 + \theta_{14}), x_2(1 + \theta_{24}), x_3(1 + \theta_{35})\right)$$

e, per ogni i, j: $|\theta_{ij}| < 2u + u^2 \approx 2u$.

Dunque, per ogni x_1, x_2, x_3 , l'algoritmo $\phi(x_1, x_2, x_3)$ è stabile quando utilizzato per approssimare $f(x_1, x_2, x_3)$.

Problema 2

- (1) Si consideri la funzione $F(x) = x h(x) = x \arctan(x) 1$. Si ha:
 - Gli zeri di F coincidono con i punti uniti di h;
 - \bullet F è derivabile e:

$$F'(x) = \frac{x^2}{1+x^2}$$

- Poiché F(0) = -1 e per ogni x < 0 si ha F'(x) > 0, allora F(x) non ha zeri nell'intervallo x < 0;
- Poiché $F(3) = 2 \arctan(3) > 0$ e per ogni x > 0 si ha F'(x) > 0, allora F(x) ha un unico zero, α , nell'intervallo x > 0. Precisamente: $\alpha \in (0,3)$.
- (2) Si ha:

$$h'(x) = \frac{1}{1+x^2}$$

Dunque: $\alpha \in (0,3) \Rightarrow 0 < |h'(\alpha)| < 1$ ed il metodo definito da h è utilizzabile per approssimare α , e risulta di ordine uno.

Per determinare un punto di partenza che garantisca la convergenza della successione, cerchiamo un intervallo che soddisfi le prime due ipotesi del Teorema di convergenza.

L'intervallo [0,3] verifica la prima ipotesi ma non la seconda. Un intervallo che le verifica entrambe è [1,3], che contiene α e:

per ogni
$$x \in [1,3]$$
 si ha: $0 < h'(x) \leqslant \frac{1}{2}$

Allora, ogni $x_0 \in [1,3]$ genera una successione convergente ad α e monotona.

Problema 3

Scelta $1, x, x^2$ come base di $P_2(\mathbb{R})$, si cercano coefficienti a_0, a_1 e a_2 tali che, posto $g(x) = a_0 + a_1 x + a_2 x^2$ si abbia:

$$g(-1) = 0$$
 , $g(1) = 0$, $g'(0) = 1$

Si ottiene il sistema di equazioni lineari:

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Il sistema risulta incompatibile, dunque non esistono elementi di $P_2(\mathbb{R})$ che soddisfano le richieste.

Università di Pisa

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 21 luglio 2016

Problema 1

Discutere il condizionamento del calcolo della funzione $f(x) = (x+2)^2$ in x > 0.

Problema 2

Si consideri \mathbb{R}^4 con la norma infinito e siano:

$$A = \left[\begin{array}{cccc} 1 & 2 & 0 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

 $b \in \mathbb{R}^4$ tale che ||b|| = 2 e

$$f = 10^{-3} \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Dette x^* la soluzione del sistema Ax=b e $x^*+\delta x$ la soluzione del sistema Ax=b+f, determinare una limitazione superiore per:

$$\epsilon_d = \frac{\parallel \delta x \parallel}{\parallel x^* \parallel}$$

Problema 3

Determinare la migliore approssimazione dei dati:

$$(0,1)$$
 , $(1,4)$, $(2,6)$, $(3,10)$

in span $\{2^x\}$ nel senso dei minimi quadrati.

Problema 1

Per x > 0 il numero di condizionamento (definito perchè f è non nulla ed ha derivata prima continua) vale:

$$c(f,x) = x \frac{f'(x)}{f(x)} = \frac{2x}{x+2}$$

Poiché:

$$x > 0$$
 \Rightarrow $0 < \frac{x}{x+2} < 1$

per ogni x > 0 si ha |c(f, x)| < 2. Dunque: il calcolo di f in x è ben condizionato per ogni x > 0.

Problema 2

Per il Teorema di condizionamento: assegnata una matrice A, per ogni b ed f si ha:

$$\epsilon_d \leqslant c(A) \frac{\parallel f \parallel}{\parallel b \parallel}$$

Nel caso in esame, dopo aver determinato:

$$\frac{\parallel f \parallel}{\parallel b \parallel} = 10^{-3}$$

e:

$$A^{-1} = \begin{bmatrix} 1 & -2 & 4 & -10 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

si ottiene $c(A) = 5 \cdot 17 = 85$ e quindi una limitazione superiore per ϵ_d è $8.5 \cdot 10^{-2}$.

Nota. Una limitazione più precisa si ottiene considerando che:

$$\delta x = A^{-1} f = 10^{-3} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

e che essendo $Ax^* = b$ si ha $||b|| = ||Ax^*|| \le ||A|| ||x^*||$ e quindi $||x^*|| \ge \frac{||b||}{||A||}$. Allora:

$$\epsilon_d = \frac{\|\delta x\|}{\|x^*\|} = \frac{\|A^{-1}f\|}{\|x^*\|} \le \|A\| \frac{\|A^{-1}f\|}{\|b\|} = 5 \frac{10^{-3}}{2} = 2.5 \cdot 10^{-3}$$

Problema 3

Si cerca $a \in \mathbb{R}$ tale che, posto $g(x) = a 2^x$, risulti minimo lo scarto quadratico:

$$(g(0) - 1)^2 + (g(1) - 4)^2 + (g(2) - 6)^2 + (g(3) - 10)^2$$

I valori cercati sono le soluzioni nel senso dei minimi quadrati del sistema:

$$\begin{bmatrix} 1\\2\\4\\8 \end{bmatrix} a = \begin{bmatrix} 1\\4\\6\\10 \end{bmatrix}$$

ovvero le soluzioni del sistema delle equazioni normali: 85 a=113. Si ottiene un'unica soluzione: $a=\frac{113}{85}$ e quindi un unico elemento che meglio approssima i dati:

$$g(x) = \frac{113}{85} \, 2^x$$

rappresentato, insieme ai dati, in Figura 1.

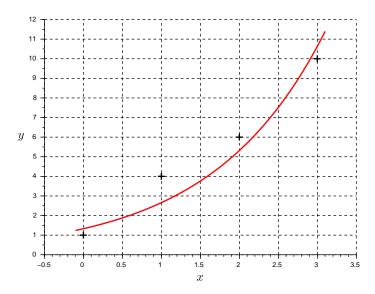


Figura 1: In rosso: la migliore approssimazione dei dati nel senso dei minimi quadrati.