Università di Pisa

DIPARTIMENTO DI MATEMATICA

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 3 febbraio 2016

Problema 1

Sia M = F(2,53). Dimostrare che: se rd(x) > 2 allora x > 2.

Problema 2

Applicando la procedura EGPP ad $A \in \mathbb{R}^{3\times3}$ si ottiene:

$$EGPP(A) = \left(\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)$$

Calcolare det A, A^{-1} e $c_{\infty}(A)$.

Problema 3

Sia
$$f(x) = x - e^{-x} - 2$$
.

- (a) Determinare il numero di zeri di f e separarli.
- (b) Per ciascuno zero di f, decidere se il metodo di Newton sia utilizzabile per l'approssimazione e, in caso affermativo, indicare un valore x_0 a partire dal quale la successione generata da tale metodo, operando in \mathbb{R} , risulta convergente allo zero.
- (c) Sia x_k la successione generata dal metodo di Newton a partire da $x_0 = 1$, operando in \mathbb{R} . Determinare

$$\lim_{k \to \infty} x_k$$

Soluzione

Problema 1

Si ha: $\operatorname{rd}(x) > 2 \Leftrightarrow x > \frac{2+\sigma(2)}{2}$. Inoltre: $\sigma(2) > 2 \Rightarrow \frac{2+\sigma(2)}{2} > 2$. Dunque: $x > \frac{2+\sigma(2)}{2} > 2$.

Problema 2

Dette, nell'ordine S, D e P le tre matrici ottenute da EGPP, si constata che P = I e quindi A = SD. Ne segue subito che det $A = \det S \det D = -2$ e quindi A è invertibile.

L'inversa vale $A^{-1} = D^{-1}S^{-1}$ ed utilizzando, ad esempio, le procedure SA ed SI si ottiene:

$$S^{-1} = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{array} \right]$$

 \mathbf{e}

$$D^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Allora:

$$A^{-1} = \left[\begin{array}{rrr} 1 & 0 & -\frac{1}{2} \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{array} \right]$$

Il numero di condizionamento di A in norma infinito vale $c_{\infty}(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$. Dopo aver calcolato:

$$A = SD = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 2 & 2 & 1 \\ 2 & 2 & 0 \end{array} \right]$$

si ottiene $||A||_{\infty} = 5$, $||A^{-1}||_{\infty} = 2$ e quindi $c_{\infty}(A) = 10$.

Problema 3

(a) Poiché la derivata prima $f'(x) = 1 + e^{-x}$ è non zero per ogni x reale, la funzione f ha al più uno zero. Inoltre:

$$f(2) = -e^{-2} < 0$$
 e $f(3) = 1 - \frac{1}{e^3} > 0$

e quindi f ha uno zero: $\alpha \in [2,3]$.

- (b) La funzione f ha derivata seconda continua e la derivata prima è non zero per ogni x reale, quindi $f'(\alpha) \neq 0$ ed il metodo di Newton è utilizzabile per approssimare lo zero. Inoltre $f''(x) = -e^{-x} \neq 0$ per ogni x reale e quindi è utilizzabile anche il criterio di scelta del punto iniziale specifico per il metodo di Newton e si ha: $con x_0 = 2$ la successione risulta convergente ad α e monotona crescente.
- (c) Poichè l'intervallo [1, 3] verifica le ipotesi che rendono utilizzabile il criterio di scelta del punto iniziale specifico per il metodo di Newton e f(1) f''(1) > 0 si deduce che la successione è convergente ad α :

$$\lim_{k \to \infty} x_k = \alpha$$