Università di Pisa

DIPARTIMENTO DI MATEMATICA

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 24 febbraio 2015

Problema 1

Sia M = F(2,6). Indicare quale ampiezza può avere un intervallo ad estremi elementi consecutivi di M contenuti in [10, 33].

Problema 2

Sia:

$$A = \left[\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 2 & -1 & -1 \\ 1 & 5 & -1 & -2 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

Determinare una fattorizzazione LR di A ed utilizzarla per calcolare A^{-1} .

Problema 3

Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{-x} - 2 + x$.

- (a) Determinare il numero di zeri di f e separarli.
- (b) Per ciascuno zero di f, decidere se il metodo di Newton sia utilizzabile per l'approssimazione e, in caso affermativo, indicare un valore x_0 a partire dal quale la successione generata da tale metodo, operando in \mathbb{R} , risulta convergente allo zero.

Soluzione

Problema 1

Si ricordi che la distanza tra un elemento di F(2,6) di esponente b ed il suo successore è: 2^{b-6} . Poichè $10=2^4\cdot 0.101000$ e $33=2^6\cdot 0.100001$, i possibili valori dell'ampiezza di un intervallo ad estremi elementi consecutivi di F(2,6) sono: $2^{4-6}=\frac{1}{4}$, $2^{5-6}=\frac{1}{2}$ e $2^{6-6}=1$.

Problema 2

Usando la procedura EG (definita in A, essendo det A[1] = 1, det A[2] = 2 e det A[3] = 2) oppure il procedimento di Doolittle, si ottiene la fattorizzazione (unica):

$$A = SD = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La matrice A risulta invertibile poiché lo è D, dunque $A^{-1} = D^{-1}S^{-1}$. Indicando con e_1, \ldots, e_4 le colonne della base canonica di \mathbb{R}^4 , l'inversa dei fattori S e D si calcola facilmente risolvendo, rispettivemente, i sistemi $Sy_k = e_k$ e $Dz_k = e_k$, $k = 1, \ldots, 4$, e ponendo:

$$S^{-1} = (y_1, \dots, y_4)$$
 , $D^{-1} = (z_1, \dots, z_4)$

Si ottiene:

$$A^{-1} = D^{-1}S^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & -2 & 1 & 0 \\ 1 & 2 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ -1 & -2 & 1 & 0 \\ 1 & 2 & -1 & 1 \end{bmatrix}$$

Problema 3

- (a) La funzione f(x) è derivabile due volte e risulta: $f'(x) = 1 e^{-x}$ e $f''(x) = e^{-x}$. Quest'ultima funzione assume valori sempre diversi da zero, quindi f ha al più due zeri. Si constata che: f(-2) > 0, f(-1) < 0, f(1) < 0 e f(2) > 0. Allora: f ha due zeri: $\alpha_1 \in [-2, -1]$ e $\alpha_2 \in [1, 2]$.
- (b) Si constata che $f'(\alpha_1) \neq 0$ (infatti f'(x) < 0 per x < 0) e $f'(\alpha_2) > 0$ (infatti f'(x) > 0 per x > 0). Il metodo di Newton è quindi utilizzabile per approssimare entrambi gli zeri.

Infine, essendo f'(x) < 0 e f''(x) > 0 per ogni $x \in [-2, -1]$, il metodo di Newton genera certamente una successione convergente ad α_1 a partire da $x_0 = -2$ e, essendo f'(x) > 0 e f''(x) > 0 per ogni $x \in [1, 2]$, il metodo di Newton genera certamente una successione convergente ad α_2 a partire da $x_0 = 2$.