Università di Pisa

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 19 gennaio 2015

Problema 1

Siano M = F(2,3) e $x = \frac{1}{6}$. Determinare rd(x) e verificare che l'errore relativo commesso approssimando x con rd(x) non supera, in valore assoluto, la precisione di macchina.

Problema 2

Siano:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad , \quad b = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Determinare una fattorizzazione QR di A ed utilizzarla per calcolare le soluzioni nel senso dei minimi quadrati del sistema Ax = b.

Problema 3

Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione definita da: $f(x) = e^{2x} - 1 - \frac{x}{2}$.

- (a) Determinare il numero di zeri di f e separarli.
- (b) Per ciascun α zero di f, decidere se il metodo di Newton sia utilizzabile per l'approssimazione e, eventualmente, determinare x_0 tale che la successione generata dal metodo a partire da x_0 , ed operando in \mathbb{R} , risulti convergente ad α .

Soluzione

Problema 1

Poiché $\frac{1}{8} < \frac{1}{6} \leqslant \frac{1}{4}$, l'esponente di x in base due è -2 e la frazione $\frac{2}{3}$.

Dette c_1, c_2, \dots le cifre della scrittura posizionale in base due della frazione, si ha: $\frac{2}{3} = 0.c_1c_2\cdots$ e quindi $\frac{4}{3} = 1 + \frac{1}{3} = c_1.c_2c_3\cdots$, dunque: $c_1 = 1$ e $\frac{1}{3} = 0.c_2c_3\cdots$ Procedendo analogamente: $\frac{2}{3} = c_2.c_3c_4\cdots$ Confrontando questa scrittura di $\frac{2}{3}$ con quella iniziale si ottiene il valore di tutte le cifre:

$$\frac{2}{3} = 0.\overline{10}$$

da cui:

$$\frac{1}{6} = 2^{-2} \cdot 0.\overline{10}$$

e si constata che x non \grave{e} un numero di macchina. Gli elementi di M adiacenti ad x sono: $\xi_s = 2^{-2} \cdot 0.101$ e $\xi_d = \sigma(\xi_s) = 2^{-2} \cdot 0.110$. Il punto medio tra i due, $2^{-2} \cdot 0.1011$, risulta maggiore di x e quindi:

$$rd(x) = \xi_s = 2^{-2} \cdot 0.101$$

Essendo $rd(x) = \frac{5}{32}$, l'errore relativo commesso approssimando x con rd(x) è $-\frac{1}{16}$. Risulta infine:

|errore relativo| =
$$\frac{1}{16} < \frac{1}{2} \, 2^{1-3} = \frac{1}{8}$$
 = precisione di macchina

Problema 2

Per determinare una fattorizzazione QR di A si procede cercando inizialmente due matrici $\Omega = (\omega_1, \omega_2) \in \mathbb{R}^{4 \times 2}$ a colonne ortogonali e $\Theta \in \mathbb{R}^{2 \times 2}$ triangolare superiore con $\theta_{11} = \theta_{22} = 1$, tali che $\Omega \Theta = A$. Se matrici siffatte esistono, quest'ultima uguaglianza, letta per colonne, richiede che, dette a_1, a_2 le colonne di A:

$$\omega_1 = a_1$$
 , $\omega_1 \theta_{12} + \omega_2 = a_2$

La colonna ω_1 è determinata dalla prima uguaglianza. Dalla seconda, moltiplicando scalarmente per ω_1 e ricordando che le colonne ω_1 e ω_2 sono ortogonali, si ottiene $\theta_{12} = \frac{1}{2}$ e poi $\omega_2 = a_2 - \omega_1 \theta_{12}$. Dalle due matrici trovate si ricava una coppia U, T fattorizzazione QR di A introducendo la matrice $\Delta = \text{diag}(\|\omega_1\|, \|\omega_2\|)$ e ponendo:

$$U = \Omega \Delta^{-1} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ 0 & \frac{\sqrt{2}}{\sqrt{2}} \end{bmatrix} , \quad T = \Delta \Theta = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} \\ 0 & \frac{\sqrt{3}}{\sqrt{2}} \end{bmatrix}$$

La soluzione del sistema Ax = b nel senso dei minimi quadrati (l'unicità si deduce dall'essere le colonne di A linearmente indipendenti) si ottiene risolvendo il sistema delle equazioni normali:

$$A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$$

che, utilizzando la fattorizzazione QR di A, si riduce alla forma equivalente:

$$Tx = U^{\mathsf{T}}b$$

La soluzione di quest'ultimo sistema (e quindi la soluzione del sistema Ax = b nel senso dei minimi quadrati) è: x = 0.

Problema 3

- (a) La funzione f(x) è derivabile due volte e risulta: $f'(x) = 2e^{2x} \frac{1}{2}$ e $f''(x) = 4e^{2x}$. Quest'ultima funzione assume valori sempre diversi da zero, quindi f ha al più due zeri. Si constata che: f(-2) > 0, f(-1) < 0, f(0) = 0 e f(1) > 0. Allora: f ha due zeri: $\alpha_1 \in [-2, -1]$ e $\alpha_2 = 0 \in [-1, 1]$.
- (b) Si constata che $f'(\alpha_1) \neq 0$ (infatti f' è crescente perchè f'' è sempre positiva –, f'(-1) < 0 e $\alpha_1 < -1$) e $f'(\alpha_2) = f'(0) > 0$. Il metodo di Newton è quindi utilizzabile per approssimare entrambi gli zeri.

Essendo f'(x) < 0 e f''(x) > 0 per ogni $x \in [-2, -1]$, il metodo di Newton genera certamente una successione convergente ad α_1 a partire da $x_0 = -2$. Infine, essendo f'(x) > 0 e f''(x) > 0 per ogni $x \in [-\frac{1}{2}, 1]$, il metodo di Newton genera certamente una successione convergente ad α_2 a partire da $x_0 = 1$.