UNIVERSITÀ DI PISA DIPARTIMENTO DI MATEMATICA

Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Appello del 23 settembre 2014

Problema 1

Sia M = F(2,4). Decidere se:

$$(1 \oslash 3) \oplus (2 \oslash 3) = 1$$

Problema 2

Determinare l'elemento di $P_0(\mathbb{R})$ che meglio approssima i dati:

$$(0,1)$$
 , $(0,-1)$, $(0,2)$, $(0,2)$, $(0,-3)$

nel senso dei minimi quadrati.

Problema 3

Sia $h(x) = \log(x+2)$.

- (1) Determinare il numero di punti uniti di h e separarli;
- (2) Per ciascuno dei punti uniti di h, decidere se il metodo iterativo definito da h sia utilizzabile per l'approssimazione e, in caso affermativo, determinare x_0 a partire dal quale la successione generata dal metodo risulta convergente al punto unito.

Soluzione

Problema 1

Operando in F(2,4) si ha:

$$1 \otimes 3 = \operatorname{rd}(\frac{1}{3}) = 2^{-1} \cdot 0.1011$$
 e $2 \otimes 3 = \operatorname{rd}(\frac{2}{3}) = 2^{0} \cdot 0.1011$

Infine:

$$(1 \oslash 3) \oplus (2 \oslash 3) = rd(2^{-1} \cdot 0.1011 + 2^{0} \cdot 0.1011) = rd(2^{1} \cdot 0.100001) = 1$$

Problema 2

Tra tutte le funzioni p(t) della forma $p(t) = a_0, a_0 \in \mathbb{R}$, si cercano quelle che rendono minima la quantità:

$$(p(0) - 1)^2 + (p(0) + 1)^2 + (p(0) - 2)^2 + (p(0) - 2)^2 + (p(0) + 3)^2$$

Gli elementi cercati si trovano determinando le soluzioni nel senso dei minimi quadrati del sistema:

$$\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} a_0 = \begin{bmatrix} 1\\-1\\2\\2\\-3 \end{bmatrix}$$

ovvero le soluzioni del sistema:

$$5 a_0 = 1$$

L'unico elemento che meglio approssima i dati nel senso dei minimi quadrati risulta:

$$p(t) = \frac{1}{5}$$

Problema 3

- (1) Sia $F(x) = \log(x+2) x$, funzione definita per x > -2. Gli zeri di F sono tutti e soli i punti uniti di h. Inoltre: $F''(x) \neq 0$ per ogni x > -2 [perciò F ha al più due zeri] e: $\lim_{x\to -2} F(x) = -\infty$, F(-1) > 0, F(0) > 0, F(2) < 0. Dunque F ha due zeri: $\alpha_1 \in [-2, -1]$ e $\alpha_2 \in [0, 2]$.
- (2) Si ha: $h'(\alpha_1) > 1$ e $0 < h'(\alpha_2) < 1$, dunque il metodo non è utilizzabile per approssimare α_1 mentre è utilizzabile per approssimare α_2 . Inoltre, essendo 0 < h'(x) < 1 per ogni $x \in [0,2]$, per ogni $x_0 \in [0,2]$ la successione generata dal metodo risulta monotona e convergente a α_2 .