1 Luglio 2013

																	L						
			(Co	gno	me)							(N	ome))			(N	$_{ m ume}$	10 (li m	atrio	cola)	1

	A B C D E
1	
1	
2	00000
3	
4	
5	
6	00000
7	00000
8	00000
9	$0\overline{0000}$

1. Nell'intorno di quali punti <u>NON</u> si può applicare il teorema di U.Dini per esplicitare l'equazione $x^2 - y^2 + y^3 = 0$ rispetto ad y (ossia esprimere y in funzione di x)

A: N.A. B: $(\alpha, 0)$ $\alpha \in \mathbb{R}$ C: si può sempre risolvere rispetto ad y D: $(0,0), (2/3\sqrt{3},2/3), (-2/3\sqrt{3},2/3)$ E: $(0,1)(2\sqrt{3},\sqrt[3]{2})$

- 2. L'integrale di $1/\sqrt{x^2+y^2}$ su $\{(x,y) \in \mathbb{R}^2 : y \ge 0, \ x^2+y^2 \le 1, \ x^2+y^2-2x \le 0\}$ è A: non esiste B: $\pi/3+2-\sqrt{3}$ C: $1+2\pi/5$ D: 0 E: N.A.
- 3. L'insieme $\mathbb{R}^2 \{(x,y) \in \mathbb{R}^2 : x \in [0,1], y = x^2\}$ è

A: N.A. B: semplicemente connesso C: connesso, ma non semplicemente D: limitato E: chiuso

4. (vale 2 punti) Il $\lim_{x,y\to 0} y \lg x$ è

A: $\lg 2$ B: N.A. C: 0 D: $-\infty$ E: non esiste

- 5. I punti critici ed i <u>valori</u> massimo e minimo globali di $f(x,y) = y \lg x$ in $[1,2] \times [-1,1]$ sono A: (2,1/e),3,-1 B: non ha massimo o minimo C: $(2,\sqrt{2})(3,0),2,0$ D: N.A. E: $(1,0),\lg 2,-\lg 2$
- 6. L'integrale di $f(x,y,z)=x^2+y^2$ esteso alla curva regolare $\gamma(t)=(t\cos t,t\sin t,t),\,t\in[0,\sqrt{2}]$ vale

A: N.A. B: non esiste C: la curva non è regolare D: $\frac{1}{8}\sinh(4\sinh^{-1}1) - \frac{1}{2}\sinh^{-1}1$ E: $\sqrt{\pi}/6 - \sinh^{-1}(\pi/2\sqrt{2})$

7. (vale due punti) L'area della porzione di cilindro $y^2 + z^2 = 1$, sovrastante il cerchio unitario del piano xy, è

A: 4 B: $2\pi/\sqrt{3}$ C: 2π D: $2\sqrt{2}$ E: N.A.

8. L'equazione implicita del piano tangente al sostegno della superficie $\Phi(u,v)=(u^2v,v^3,v^v)$, regolare nell'intorno di (1,1), in tale punto è

A: 3z-y=2 B: Φ non è regolare nell'intorno di (1,1) C: x+2y-z=2 D: x+y-z=2 E: N.A.

9. La direzione di massima pendenza di $f(x,y)=(xy)^x$ nel punto (1,1) è parallela a

A: (1, 1, 2) B: N.A. C: (1, 1) D: (0, 1) E: (2, 1)

1 Luglio 2013

																	L						
			(Co	gno	me)							(N	ome))			(N	$_{ m ume}$	10 (li m	atrio	cola)	1

	A B C D E
1	
2	00000
3	00000
4	
5	00000
6	00000
7	00000
8	00000
9	0000

- 1. I punti critici ed i **valori** massimo e minimo globali di $f(x,y) = y \lg x$ in $[1,2] \times [-1,1]$ sono A: non ha massimo o minimo B: $(2,\sqrt{2})(3,0), 2,0$ C: (2,1/e), 3, -1 D: $(1,0), \lg 2, -\lg 2$ E: N.A.
- 2. L'insieme $\mathbb{R}^2 \{(x,y) \in \mathbb{R}^2 : x \in [0,1], y = x^2\}$ è A: N.A. B: chiuso C: limitato D: semplicemente connesso E: connesso, ma non semplicemente
- 3. Nell'intorno di quali punti <u>NON</u> si può applicare il teorema di U.Dini per esplicitare l'equazione $x^2 y^2 + y^3 = 0$ rispetto ad y (ossia esprimere y in funzione di x)

A: N.A. B: $(0,1)(2\sqrt{3},\sqrt[3]{2})$ C: $(\alpha,0)$ $\alpha \in \mathbb{R}$ D: $(0,0),(2/3\sqrt{3},2/3),(-2/3\sqrt{3},2/3)$ E: si può sempre risolvere rispetto ad y

4. (vale 2 punti) Il $\lim_{x,y\to 0} y \lg x$ è

A: non esiste B: 0 C: $-\infty$ D: $\lg 2$ E: N.A.

5. L'equazione implicita del piano tangente al sostegno della superficie $\Phi(u, v) = (u^2 v, v^3, v^v)$, regolare nell'intorno di (1, 1), in tale punto è

A: Φ non è regolare nell'intorno di (1,1) B: x+y-z=2 C: 3z-y=2 D: x+2y-z=2 E: N.A.

6. (vale due punti) L'<u>area</u> della porzione di cilindro $y^2 + z^2 = 1$, sovrastante il cerchio unitario del piano xy, è

A: $2\pi/\sqrt{3}$ B: $2\sqrt{2}$ C: 4 D: 2π E: N.A

- 7. L'integrale di $1/\sqrt{x^2+y^2}$ su $\{(x,y) \in \mathbb{R}^2 : y \ge 0, \ x^2+y^2 \le 1, \ x^2+y^2-2x \le 0\}$ è A: N.A. B: $\pi/3+2-\sqrt{3}$ C: 0 D: non esiste E: $1+2\pi/5$
- 8. La direzione di massima pendenza di $f(x,y)=(xy)^x$ nel punto (1,1) è parallela a A: (1,1,2) B: N.A. C: (1,1) D: (0,1) E: (2,1)
- 9. L'integrale di $f(x, y, z) = x^2 + y^2$ esteso alla curva regolare $\gamma(t) = (t \cos t, t \sin t, t), t \in [0, \sqrt{2}]$

A: N.A. B: $\frac{1}{8}\sinh(4\sinh^{-1}1) - \frac{1}{2}\sinh^{-1}1$ C: $\sqrt{\pi}/6 - \sinh^{-1}(\pi/2\sqrt{2})$ D: la curva non è regolare E: non esiste

1 Luglio 2013

																	L						
			(Co	gno	me)							(N	ome))			(N	$_{ m ume}$	10 (li m	atrio	cola)	1

	A B C D E
1	
2	00000
3	00000
4	
5	00000
6	00000
7	00000
8	00000
9	0000

1. (vale 2 punti) Il $\lim_{x,y\to 0} y \lg x$ è

A: $\lg 2$ B: non esiste C: 0 D: N.A. E: $-\infty$

2. L'insieme $\mathbbm{R}^2-\{(x,y)\in\mathbbm{R}^2:x\in[0,1],y=x^2\}$ è

A: limitato B: N.A. C: semplicemente connesso D: chiuso E: connesso, ma non semplicemente

3. L'equazione implicita del piano tangente al sostegno della superficie $\Phi(u,v)=(u^2v,v^3,v^v)$, regolare nell'intorno di (1,1), in tale punto è

A: 3z-y=2 B: x+2y-z=2 C: x+y-z=2 D: Φ non è regolare nell'intorno di (1,1) E: N.A.

4. L'integrale di $1/\sqrt{x^2+y^2}$ su $\{(x,y)\in\mathbb{R}^2:y\geq 0,\ x^2+y^2\leq 1,\ x^2+y^2-2x\leq 0\}$ è A: 0 B: $1+2\pi/5$ C: N.A. D: $\pi/3+2-\sqrt{3}$ E: non esiste

5. L'integrale di $f(x, y, z) = x^2 + y^2$ esteso alla curva regolare $\gamma(t) = (t \cos t, t \sin t, t), t \in [0, \sqrt{2}]$ vale

A: $\sqrt{\pi}/6 - \sinh^{-1}(\pi/2\sqrt{2})$ B: $\frac{1}{8}\sinh(4\sinh^{-1}1) - \frac{1}{2}\sinh^{-1}1$ C: N.A. D: la curva non è regolare E: non esiste

6. Nell'intorno di quali punti **NON** si può applicare il teorema di U.Dini per esplicitare l'equazione $x^2 - y^2 + y^3 = 0$ rispetto ad y (ossia esprimere y in funzione di x)

A: si può sempre risolvere rispetto ad y B: $(\alpha,0)$ $\alpha \in \mathbb{R}$ C: N.A. D: $(0,0), (2/3\sqrt{3},2/3), (-2/3\sqrt{3},2/3)$ E: $(0,1)(2\sqrt{3},\sqrt[3]{2})$

7. I punti critici ed i <u>valori</u> massimo e minimo globali di $f(x,y) = y \lg x$ in $[1,2] \times [-1,1]$ sono

A: N.A. B: non ha massimo o minimo C: (2, 1/e), 3, -1 D: $(2, \sqrt{2})(3, 0), 2, 0$ E: $(1, 0), \lg 2, -\lg 2$

8. La direzione di massima pendenza di $f(x,y)=(xy)^x$ nel punto (1,1) è parallela a

A: (1,1) B: N.A. C: (2,1) D: (1,1,2) E: (0,1)

9. (vale due punti) L'area della porzione di cilindro $y^2 + z^2 = 1$, sovrastante il cerchio unitario del piano xy, è

A: $2\pi/\sqrt{3}$ B: $2\sqrt{2}$ C: 2π D: N.A. E: 4

1 Luglio 2013

			(Co	gno	me)				_			(No	ome)			•	(N	ume	ro d	i ma	trico	ola)

	A B C D E
1	00000
2	00000
3	00000
4	00000
5	
6	
7	
8	00000
9	00000

1. Nell'intorno di quali punti <u>NON</u> si può applicare il teorema di U.Dini per esplicitare l'equazione $x^2 - y^2 + y^3 = 0$ rispetto ad y (ossia esprimere y in funzione di x)

A: si può sempre risolvere rispetto ad y B: $(\alpha,0)$ $\alpha \in \mathbb{R}$ C: $(0,1)(2\sqrt{3},\sqrt[3]{2})$ D: $(0,0),(2/3\sqrt{3},2/3),(-2/3\sqrt{3},2/3)$ E: N.A.

2. L'insieme $\mathbb{R}^2 - \{(x,y) \in \mathbb{R}^2 : x \in [0,1], y = x^2\}$ è

A: semplicemente connesso B: chiuso C: N.A. D: connesso, ma non semplicemente E: limitato

- 3. L'integrale di $1/\sqrt{x^2+y^2}$ su $\{(x,y) \in \mathbb{R}^2 : y \ge 0, \ x^2+y^2 \le 1, \ x^2+y^2-2x \le 0\}$ è A: N.A. B: $1+2\pi/5$ C: $\pi/3+2-\sqrt{3}$ D: non esiste E: 0
- 4. (vale due punti) L'area della porzione di cilindro $y^2 + z^2 = 1$, sovrastante il cerchio unitario del piano xy, è

A: N.A. B: $2\sqrt{2}$ C: 4 D: $2\pi/\sqrt{3}$ E: 2π

- 5. I punti critici ed i <u>valori</u> massimo e minimo globali di $f(x,y) = y \lg x$ in $[1,2] \times [-1,1]$ sono A: $(2,\sqrt{2})(3,0),2,0$ B: non ha massimo o minimo C: (2,1/e),3,-1 D: N.A. E: $(1,0),\lg 2,-\lg 2$
- 6. La direzione di massima pendenza di $f(x,y)=(xy)^x$ nel punto (1,1) è parallela a A: (0,1) B: (2,1) C: N.A. D: (1,1,2) E: (1,1)
- 7. (vale 2 punti) Il $\lim_{x,y\to 0} y \lg x$ è

A: N.A. B: $\lg 2$ C: 0 D: $-\infty$ E: non esiste

8. L'integrale di $f(x, y, z) = x^2 + y^2$ esteso alla curva regolare $\gamma(t) = (t \cos t, t \sin t, t), t \in [0, \sqrt{2}]$ vale

A: $\frac{1}{8}\sinh(4\sinh^{-1}1) - \frac{1}{2}\sinh^{-1}1$ B: N.A. C: non esiste D: la curva non è regolare E: $\sqrt{\pi}/6 - \sinh^{-1}(\pi/2\sqrt{2})$

9. L'equazione implicita del piano tangente al sostegno della superficie $\Phi(u, v) = (u^2 v, v^3, v^v)$, regolare nell'intorno di (1, 1), in tale punto è

1 Luglio 2013

			(Co	gno	me)						((No	me)			_	(N	ume	ro d	i ma	trice	ola)

 $\mathrm{CODICE} = 869375$

	A B C D E
1	
2	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
3	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
4	
5	
6	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
7	lacktriangle
8	$\bullet \circ \circ \circ \circ$
9	

1 Luglio 2013

			(Co	gno	me)							(No	me)			(N	ume	li m	atric	ola)	_

 $\mathrm{CODICE} = 730531$

	A B C D E
1	
2	
3	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
4	$lackbox{0}$
5	\bigcirc
6	
7	
8	
9	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

1 Luglio 2013

			(Co	gno	me)						()	Nor	ne)			(N	ume	ro d	i ma	trice	ola)

	A B C D E
1	
2	
3	•0000
4	
5	
6	
7	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
8	$\bullet \circ \circ \circ \circ$
9	

1 Luglio 2013

			(Co	gno	me)							(No	me)			(N	ume	li m	atric	ola)	_

 $\mathrm{CODICE} = 937110$

	A B C D E
1	
2	
3	0000
4	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
5	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
6	
7	
8	
9	