19 Luglio 2012

																	L						
			(Co	ogno	me)				_			(N	ome)		_	(11	ume	io u	1 1110	atrice	Uia j	

	A B C D E
1	
2	00000
3	00000
4	
5	00000
6	
7	00000
8	00000
9	0000

- 1. L'insieme dei punti di accumulazione di $A = \{(x,y) \in \mathbb{R}^2 : x \neq 0, y = \sin(1/x)\}$ è A: N.A. B: $A \cup \{(x,y) \in \mathbb{R}^2 : x = 0, y \in [-1,1]\}$ C: $A \cup \{(x,y) \in \mathbb{R}^2 : x = 0, y \in [-1,1], y \neq 0\}$ D: $\{(x,y) \in \mathbb{R}^2 : x = 0\}$ E: $\{(x,y) \in \mathbb{R}^2 : x \neq 0\}$
- 2. L'area racchiusa fra l'asse x e la curva $\rho = \theta$, $\theta \in [\pi, 2\pi]$ è A: $\pi^2 1$ B: N.A. C: 3π D: $3\pi^2/2$ E: $7\pi/4$
- 3. La forma ydx xdy è

A: chiusa su un semplicemente connesso e quindi esatta B: né chiusa né esatta C: chiusa su un dominio non semplicemente connesso, ma comunque esatta D: chiusa ma non esatta E: N.A.

4. Il polinomio di Taylor di grado 1 di $x^{\arctan y}$ in (2,1) è

A: non esiste B: 1 - x - y C: N.A. D: $2^{\pi/4} \left(\frac{\pi}{8} x + y \lg \sqrt{2} + 1 - \frac{\pi}{4} - \lg \sqrt{2} \right)$ E: $2^{\pi/4} \left(1 - \pi x - (2/3) \lg 2 - 2\sqrt{2} \right)$

5. La funzione $f(x,y) = \frac{x^2 - 3xy + 2y^2}{x^2 + 2y^2}$ in (0,0) è

A: oscillante B: convergente C: N.A. D: divergente a $+\infty$ E: continua

6. L'area del grafico del parabolo
ide iperbolico f(x,y)=xy sovrastante il settore $\{x\geq 0,\,y\geq 0,\,x^2+y^2\leq 1\}$ è

A: N.A. B: $\pi(3\sqrt{3} - 2\sqrt{2})/2$ C: $\pi(3\sqrt{3} - 1)/3$ D: $2\pi/2$ E: $\pi(2\sqrt{2} - 1)/6$

- 7. Gli estremi assoluti di $x^2-3xy+x-y$ nel triangolo $x\geq 0,\ y\geq 0,\ x+y\leq 1$ sono A: 0, 2 B: N.A. C: -17/16, 2 D: -2, 3/2 E: -1/7, 2/3
- 8. L'integrale di f(x,y) = y esteso alla porzione del grafico di $y = \frac{1}{3}x^3$, $x \in [0,1]$ è A: $(2\sqrt{2}-1)/18$ B: $(3\sqrt{3}-1)/2$ C: N.A. D: 0 E: non esiste
- 9. L'integrale di $1/\sqrt{x^2+y^2}$, esteso al quadrato unitario $[0,1]\times[0,1]$ è A: $\sinh^{-1}2$ B: non esiste C: $2\lg\frac{1+\tan(\pi/8)}{1-\tan(\pi/8)}$ D: N.A. E: $\lg \pi/16$

19 Luglio 2012

			(Co	gno	me)				_			(N	ome)			_	(N	ume	ro di	i ma	trice	ola)

	A B C D E
1	
2	00000
3	
4	
5	00000
6	
7	00000
8	00000
9	0000

1. La forma ydx - xdy è

A: chiusa ma non esatta B: N.A. C: né chiusa né esatta D: chiusa su un dominio non semplicemente connesso, ma comunque esatta E: chiusa su un semplicemente connesso e quindi esatta

2. L'area racchiusa fra l'asse x e la curva $\rho = \theta, \ \theta \in [\pi, 2\pi]$ è

A: $7\pi/4$ B: 3π C: $\pi^2 - 1$ D: $3\pi^2/2$ E: N.A.

3. Gli estremi assoluti di $x^2-3xy+x-y$ nel triangolo $x\geq 0,\,y\geq 0,\,x+y\leq 1$ sono

A: 0, 2 B: -17/16, 2 C: N.A. D: -2, 3/2 E: -1/7, 2/3

4. Il polinomio di Taylor di grado 1 di $x^{\arctan y}$ in (2,1) è

A: $2^{\pi/4}(1 - \pi x - (2/3)\lg 2 - 2\sqrt{2})$ B: $2^{\pi/4}(\frac{\pi}{8}x + y\lg\sqrt{2} + 1 - \frac{\pi}{4} - \lg\sqrt{2})$ C: non esiste D: 1 - x - y E: N.A.

5. La funzione $f(x,y)=\frac{x^2-3xy+2y^2}{x^2+2y^2}$ in (0,0) è

A: continua B: convergente C: oscillante D: N.A. E: divergente a $+\infty$

6. L'integrale di f(x,y)=y esteso alla porzione del grafico di $y=\frac{1}{3}x^3, \quad x\in[0,1]$ è

A: non esiste B: 0 C: N.A. D: $(3\sqrt{3}-1)/2$ E: $(2\sqrt{2}-1)/18$

7. L'insieme dei punti di accumulazione di $A = \{(x,y) \in \mathbb{R}^2 : x \neq 0, y = \sin(1/x)\}$ è

A: $A \cup \{(x,y) \in \mathbb{R}^2 : x = 0, y \in [-1,1], y \neq 0\}$ B: $\{(x,y) \in \mathbb{R}^2 : x = 0\}$ C: $A \cup \{(x,y) \in \mathbb{R}^2 : x = 0, y \in [-1,1]\}$ D: N.A. E: $\{(x,y) \in \mathbb{R}^2 : x \neq 0\}$

8. L'integrale di $1/\sqrt{x^2+y^2}$, esteso al quadrato unitario $[0,1]\times[0,1]$ è

A: $\lg \pi/16$ B: $2 \lg \frac{1 + \tan(\pi/8)}{1 - \tan(\pi/8)}$ C: N.A. D: $\sinh^{-1} 2$ E: non esiste

9. L'area del grafico del parabolo
ide iperbolico f(x,y)=xy sovrastante il settore $\{x\geq 0,\,y\geq 0,\,x^2+y^2\leq 1\}$ è

A: $2\pi/2$ B: $\pi(3\sqrt{3}-1)/3$ C: $\pi(2\sqrt{2}-1)/6$ D: $\pi(3\sqrt{3}-2\sqrt{2})/2$ E: N.A.

19 Luglio 2012

		•	(Co	ogno	me)			•	_		•	(No	me)			(N	ume	ro d	i ma	trice	ola)

	A B C D E
1	
2	00000
3	
4	
5	00000
6	
7	00000
8	00000
9	0000

- 1. Il polinomio di Taylor di grado 1 di $x^{\arctan y}$ in (2,1) è A: N.A. B: non esiste C: $2^{\pi/4} \left(\frac{\pi}{8} x + y \lg \sqrt{2} + 1 - \frac{\pi}{4} - \lg \sqrt{2} \right)$ D: 1 - x - y E: $2^{\pi/4} (1 - \pi x - (2/3) \lg 2 - 2\sqrt{2})$
- 2. L'insieme dei punti di accumulazione di $A = \{(x,y) \in \mathbb{R}^2 : x \neq 0, y = \sin(1/x)\}$ è A: $A \cup \{(x,y) \in \mathbb{R}^2 : x = 0, y \in [-1,1], y \neq 0\}$ B: N.A. C: $A \cup \{(x,y) \in \mathbb{R}^2 : x = 0, y \in [-1,1]\}$ D: $\{(x,y) \in \mathbb{R}^2 : x = 0\}$ E: $\{(x,y) \in \mathbb{R}^2 : x \neq 0\}$
- 3. L'integrale di f(x,y)=y esteso alla porzione del grafico di $y=\frac{1}{3}x^3, \quad x\in[0,1]$ è A: N.A. B: non esiste C: $(2\sqrt{2}-1)/18$ D: 0 E: $(3\sqrt{3}-1)/2$
- 4. La forma ydx xdy è

A: chiusa su un dominio non semplicemente connesso, ma comunque esatta B: N.A. C: chiusa ma non esatta D: né chiusa né esatta E: chiusa su un semplicemente connesso e quindi esatta

- 5. L'integrale di $1/\sqrt{x^2+y^2}$, esteso al quadrato unitario $[0,1]\times[0,1]$ è A: $\sinh^{-1}2$ B: non esiste C: $2\lg\frac{1+\tan(\pi/8)}{1-\tan(\pi/8)}$ D: $\lg\pi/16$ E: N.A.
- 6. Gli estremi assoluti di $x^2 3xy + x y$ nel triangolo $x \ge 0, y \ge 0, x + y \le 1$ sono A: -2, 3/2 B: -17/16, 2 C: 0, 2 D: -1/7, 2/3 E: N.A.
- 7. La funzione $f(x,y) = \frac{x^2 3xy + 2y^2}{x^2 + 2y^2}$ in (0,0) è

 A: divergente $a + \infty$ B: continua C: convergente D: N.A. E: oscillante
- 8. L'area racchiusa fra l'asse x e la curva $\rho=\theta,\ \theta\in[\pi,2\pi]$ è A: N.A. B: $3\pi^2/2$ C: 3π D: $7\pi/4$ E: π^2-1
- 9. L'area del grafico del paraboloide iperbolico f(x,y)=xy sovrastante il settore $\{x\geq 0,\,y\geq 0,\,x^2+y^2\leq 1\}$ è A: $2\pi/2$ B: $\pi(3\sqrt{3}-2\sqrt{2})/2$ C: $\pi(2\sqrt{2}-1)/6$ D: N.A. E: $\pi(3\sqrt{3}-1)/3$

19 Luglio 2012

			(Co	gno	me)				_			(N	ome))		_	ume	ro d	i ma	trice	ola)

 $\mathrm{CODICE} = 759677$

	A B C D E
1	
2	00000
3	
4	
5	00000
6	
7	00000
8	00000
9	0000

- 1. L'integrale di f(x,y)=y esteso alla porzione del grafico di $y=\frac{1}{3}x^3, \quad x\in[0,1]$ è A: non esiste B: $(2\sqrt{2}-1)/18$ C: N.A. D: $(3\sqrt{3}-1)/2$ E: 0
- 2. La funzione $f(x,y)=\frac{x^2-3xy+2y^2}{x^2+2y^2}$ in (0,0) è A: continua B: convergente C: N.A. D: divergente a $+\infty$ E: oscillante
- 3. L'area del grafico del paraboloide iperbolico f(x,y) = xy sovrastante il settore $\{x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$ è

 A: N.A. B: $2\pi/2$ C: $\pi(3\sqrt{3} 1)/3$ D: $\pi(3\sqrt{3} 2\sqrt{2})/2$ E: $\pi(2\sqrt{2} 1)/6$
- 4. L'integrale di $1/\sqrt{x^2+y^2}$, esteso al quadrato unitario $[0,1]\times[0,1]$ è A: N.A. B: non esiste C: $\sinh^{-1}2$ D: $2\lg\frac{1+\tan(\pi/8)}{1-\tan(\pi/8)}$ E: $\lg\pi/16$
- 5. L'area racchiusa fra l'asse x e la curva $\rho=\theta,\ \theta\in[\pi,2\pi]$ è A: π^2-1 B: $7\pi/4$ C: N.A. D: 3π E: $3\pi^2/2$

esatta

E: N.A.

- 6. L'insieme dei punti di accumulazione di $A = \{(x,y) \in \mathbb{R}^2 : x \neq 0, y = \sin(1/x)\}$ è A: $\{(x,y) \in \mathbb{R}^2 : x \neq 0\}$ B: $\{(x,y) \in \mathbb{R}^2 : x = 0\}$ C: $A \cup \{(x,y) \in \mathbb{R}^2 : x = 0, y \in [-1,1]\}$ D: N.A. E: $A \cup \{(x,y) \in \mathbb{R}^2 : x = 0, y \in [-1,1], y \neq 0\}$
- 7. La forma ydx xdy è A: chiusa su un semplicemente connesso e quindi esatta B: chiusa ma non esatta C: chiusa su un dominio non semplicemente connesso, ma comunque esatta D: né chiusa né
- 8. Gli estremi assoluti di $x^2-3xy+x-y$ nel triangolo $x\geq 0,\ y\geq 0,\ x+y\leq 1$ sono A: $-1/7,\ 2/3$ B: N.A. C: $-17/16,\ 2$ D: 0, 2 E: $-2,\ 3/2$
- 9. Il polinomio di Taylor di grado 1 di $x^{\arctan y}$ in (2,1) è A: non esiste B: N.A. C: $2^{\pi/4} \left(\frac{\pi}{8} x + y \lg \sqrt{2} + 1 \frac{\pi}{4} \lg \sqrt{2} \right)$ D: $2^{\pi/4} (1 \pi x (2/3) \lg 2 2\sqrt{2})$ E: 1 x y

19 Luglio 2012

			(Co	gno	me)						(No	ome)				ume	i ma	trice	ola)

	A B C D E
1	
2	
3	
4	
5	$\bullet \circ \circ \circ \circ$
6	
7	
8	
9	

19 Luglio 2012

(Cognome)	(Nome)	(Numero di matricola)

	A B C D E
1	
1	
2	
3	
4	
5	
6	
7	
8	
9	

19 Luglio 2012

(Cognome)											(No	ome)			(Numero di matricola)					ola)						

	A B C D E
1	
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
6	
7	
8	$\bullet \circ \circ \circ \circ$
9	

19 Luglio 2012

(Cognome)											(No	ome)			(Numero di matricola)					ola)						

 $\mathrm{CODICE} = 759677$

	A B C D E
1	
2	
3	
4	
5	
6	
7	
8	
9	