24 Febbraio 2011

			(Co	gno	me)						(N	ome)				ume	i ma	trice	

	A B C D E
1	
2	
3	
4	00000
5	00000
6	00000
7	00000
8	00000
9	00000

- 1. La funzione $f(x,y)=x^2y$ per x>0 e $f(x,y)=xy^2$ per $x\leq 0$ nel punto (0,0)A: ha gradiente, ma non è differenziabile B: è discontinua C: è continua, ma non ha gradiente D: N.A. E: è differenziabile
- 2. Il $\lim_{(x,y)\to\infty} x^3 y^4$

A: vale 0 B: non esiste C: vale ∞ D: N.A. E: vale $\sqrt{2}$

3. La direzione di massima pendenza del grafico di $f(x,y)=x^{xy}$ nel punto corrispondente a x=2,y=3 è parallelo al vettore

A: $(\lg 8 + 3, \lg 4)$ B: (0,1) C: N.A. D: $(2\sqrt{2},1)$ E: non è definita

4. L'integrale di $f(x,y)=1/\sqrt{x^2+y^2}$ esteso alla regione convessa delimitata dalle curve $x^2+y^2=2$ e $y=x^2$ vale

A: N.A. B: $+\infty$ C: $\pi^2/\sqrt{3}+2$ D: $\sqrt{2}(\frac{\pi}{2}+2)-2$ E: $\sqrt{\pi}/3$

5. L'equazione $x^4 + x^2 - y^2 = 0$ definisce implicitamente la y come funzione di x nell'intorno delle sue soluzioni

A: non appartenenti alla prima bisettrice B: non appartenenti all'asse x C: distinte dall'origine D: N.A. E: non appartenenti all'asse y

- 6. L'integrale di $f(x,y) = \sqrt{x^2 + y^2}$ sulla porzione di spirale $\rho = \theta$, $\theta \in [0,\pi]$ vale A: N.A. B: $\pi^2/3$ C: $+\infty$ D: 0 E: $-\pi^2/4$
- 7. L'insieme $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2, \ x^2 + y^2 x > 0\}$

A: è chiuso B: è semplicemente connesso C: è connesso, ma non semplicemente connesso D: N.A. E: è sconnesso

8. Determinare tutte le primitive del campo $(\lg(xy) + 1, \frac{x}{y})$ nel primo quadrante.

A: $\arctan(x^2y^2)+c,\ c\in\mathbb{R}$ B: N.A. C: non esistono D: $\lg(x^2y)+c,\ c\in\mathbb{R}$ E: $x\lg(xy)+c,\ c\in\mathbb{R}$

9. Il piano tangente al sostegno della superficie parametrica $\phi(u,v)=(uv,u^2+uv^2,v^3)$ nel punto corrispondente a u=1,v=1 è

A: x+z=0 B: N.A. C: 9x-3y-z=2 D: la superficie non ha piano tangente E: x+2y+z=6

24 Febbraio 2011

			(Co	gno	me)						(No	me)			(N	ume	ro di	ma	trico	ola)

	A B C D E
1	
2	
3	
4	00000
5	00000
6	00000
7	00000
8	00000
9	00000

- 1. L'integrale di $f(x,y)=\sqrt{x^2+y^2}$ sulla porzione di spirale $\rho=\theta$, $\theta\in[0,\pi]$ vale A: 0 B: $\pi^2/3$ C: $-\pi^2/4$ D: N.A. E: $+\infty$
- 2. L'integrale di $f(x,y)=1/\sqrt{x^2+y^2}$ esteso alla regione convessa delimitata dalle curve $x^2+y^2=2$ e $y=x^2$ vale

A: $\sqrt{2}(\frac{\pi}{2}+2)-2$ B: $+\infty$ C: $\pi^2/\sqrt{3}+2$ D: N.A. E: $\sqrt{\pi}/3$

3. La direzione di massima pendenza del grafico di $f(x,y)=x^{xy}$ nel punto corrispondente a x=2,y=3 è parallelo al vettore

A: non è definita B: N.A. C: $(2\sqrt{2}, 1)$ D: $(\lg 8 + 3, \lg 4)$ E: (0, 1)

4. La funzione $f(x,y)=x^2y$ per x>0 e $f(x,y)=xy^2$ per $x\leq 0$ nel punto (0,0)

A: è differenziabile B: è discontinua C: ha gradiente, ma non è differenziabile D: è continua, ma non ha gradiente E: N.A.

5. L'insieme $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2, \ x^2 + y^2 - x > 0\}$

A: è sconnesso B: è semplicemente connesso C: N.A. D: è connesso, ma non semplicemente connesso E: è chiuso

6. L'equazione $x^4+x^2-y^2=0$ definisce implicitamente la y come funzione di x nell'intorno delle sue soluzioni

A: non appartenenti alla prima bisettrice B: non appartenenti all'asse x C: distinte dall'origine D: N.A. E: non appartenenti all'asse y

7. Il $\lim_{(x,y)\to\infty} x^3y^4$

A: non esiste B: vale ∞ C: vale $\sqrt{2}$ D: vale 0 E: N.A.

8. Il piano tangente al sostegno della superficie parametrica $\phi(u,v)=(uv,u^2+uv^2,v^3)$ nel punto corrispondente a u=1,v=1 è

A: N.A. B: x+z=0 C: x+2y+z=6 D: la superficie non ha piano tangente E: 9x-3y-z=2

9. Determinare tutte le primitive del campo ($\lg(xy) + 1, \frac{x}{y}$) nel primo quadrante.

A: N.A. B: $\lg(x^2y)+c,\ c\in\mathbb{R}$ C: $\arctan(x^2y^2)+c,\ c\in\mathbb{R}$ D: non esistono E: $x\lg(xy)+c,\ c\in\mathbb{R}$

24 Febbraio 2011

			(Co	gno	me)						(No	me)			-	(N	ume	ro di	ma	trico	la)

	A B C D E
1	
2	00000
3	00000
4	00000
5	00000
6	
7	
8	
9	00000

1. L'equazione $x^4+x^2-y^2=0$ definisce implicitamente la y come funzione di x nell'intorno delle sue soluzioni

A: non appartenenti all'asse x B: non appartenenti alla prima bisettrice C: distinte dall'origine D: N.A. E: non appartenenti all'asse y

2. Determinare tutte le primitive del campo ($\lg(xy) + 1, \frac{x}{y}$) nel primo quadrante.

A: $\lg(x^2y)+c,\ c\in\mathbb{R}$ B: non esistono C: N.A. D: $x\lg(xy)+c,\ c\in\mathbb{R}$ E: $\arctan(x^2y^2)+c,\ c\in\mathbb{R}$

3. Il $\lim_{(x,y)\to\infty} x^3 y^4$

A: non esiste B: vale $\sqrt{2}$ C: N.A. D: vale 0 E: vale ∞

4. La direzione di massima pendenza del grafico di $f(x,y) = x^{xy}$ nel punto corrispondente a x = 2, y = 3 è parallelo al vettore

A: non è definita B: N.A. C: $(\lg 8 + 3, \lg 4)$ D: $(2\sqrt{2}, 1)$ E: (0, 1)

5. La funzione $f(x,y)=x^2y$ per x>0 e $f(x,y)=xy^2$ per $x\leq 0$ nel punto (0,0)

A: è discontinua B: N.A. C: ha gradiente, ma non è differenziabile D: è continua, ma non ha gradiente E: è differenziabile

6. L'integrale di $f(x,y)=1/\sqrt{x^2+y^2}$ esteso alla regione convessa delimitata dalle curve $x^2+y^2=2$ e $y=x^2$ vale

A: $+\infty$ B: N.A. C: $\pi^2/\sqrt{3} + 2$ D: $\sqrt{\pi}/3$ E: $\sqrt{2}(\frac{\pi}{2} + 2) - 2$

7. L'integrale di $f(x,y)=\sqrt{x^2+y^2}$ sulla porzione di spirale $\rho=\theta$, $\theta\in[0,\pi]$ vale

A: $-\pi^2/4$ B: N.A. C: $+\infty$ D: 0 E: $\pi^2/3$

8. L'insieme $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2, \ x^2 + y^2 - x > 0\}$

A: è chiuso B: è sconnesso C: è connesso, ma non semplicemente connesso D: è semplicemente connesso E: N.A.

9. Il piano tangente al sostegno della superficie parametrica $\phi(u,v)=(uv,u^2+uv^2,v^3)$ nel punto corrispondente a u=1,v=1 è

A: x+z=0 B: 9x-3y-z=2 C: la superficie non ha piano tangente D: x+2y+z=6 E: N.A.

24 Febbraio 2011

			(Co	gno	me)				_			(No	me)			(N	ume	ro di	ma	trico	ola)

	A B C D E
1	
1	
2	00000
3	00000
4	00000
5	00000
6	00000
7	
8	
9	00000

1. La direzione di massima pendenza del grafico di $f(x,y)=x^{xy}$ nel punto corrispondente a x=2,y=3 è parallelo al vettore

A: non è definita B: N.A. C: (0,1) D: $(\lg 8 + 3, \lg 4)$ E: $(2\sqrt{2}, 1)$

2. Il piano tangente al sostegno della superficie parametrica $\phi(u,v)=(uv,u^2+uv^2,v^3)$ nel punto corrispondente a u=1,v=1 è

A: 9x - 3y - z = 2 B: N.A. C: la superficie non ha piano tangente D: x + z = 0 E: x + 2y + z = 6

3. Determinare tutte le primitive del campo $(\lg(xy) + 1, \frac{x}{y})$ nel primo quadrante.

A: $\lg(x^2y) + c$, $c \in \mathbb{R}$ B: non esistono C: $x \lg(xy) + c$, $c \in \mathbb{R}$ D: $\arctan(x^2y^2) + c$, $c \in \mathbb{R}$ E: N.A.

4. Il $\lim_{(x,y)\to\infty} x^3y^4$

A: vale $\sqrt{2}$ B: vale 0 C: vale ∞ D: non esiste E: N.A.

5. La funzione $f(x,y) = x^2y$ per x > 0 e $f(x,y) = xy^2$ per $x \le 0$ nel punto (0,0)

A: è discontinua B: N.A. C: è continua, ma non ha gradiente D: è differenziabile E: ha gradiente, ma non è differenziabile

6. L'insieme $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2, \ x^2 + y^2 - x > 0\}$

A: N.A. B: è chiuso C: è semplicemente connesso D: è sconnesso E: è connesso, ma non semplicemente connesso

7. L'integrale di $f(x,y)=1/\sqrt{x^2+y^2}$ esteso alla regione convessa delimitata dalle curve $x^2+y^2=2$ e $y=x^2$ vale

A: $\sqrt{\pi}/3$ B: $\pi^2/\sqrt{3}+2$ C: N.A. D: $+\infty$ E: $\sqrt{2}(\frac{\pi}{2}+2)-2$

8. L'integrale di $f(x,y)=\sqrt{x^2+y^2}$ sulla porzione di spirale $\rho=\theta$, $\theta\in[0,\pi]$ vale

A: 0 B: $-\pi^2/4$ C: $\pi^2/3$ D: N.A. E: $+\infty$

9. L'equazione $x^4+x^2-y^2=0$ definisce implicitamente la y come funzione di x nell'intorno delle sue soluzioni

A: non appartenenti alla prima bisettrice B: non appartenenti all'asse y C: distinte dall'origine D: N.A. E: non appartenenti all'asse x

24 Febbraio 2011

			gno	me)						(No	me)				ume	ma	trico	ola)

	A B C D E
1	
2	
3	
4	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
5	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
6	$\bullet \circ \circ \circ \circ$
7	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
8	
9	

24 Febbraio 2011

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

	A B C D E
1	
2	
3	
4	$\bullet \circ \circ \circ \circ$
5	
6	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
7	$\bullet \circ \circ \circ \circ$
8	
9	

24 Febbraio 2011

(Cognome)												(No	me)			_	ume	i ma	trice	ola)					

	A B C D E
1	
2	
3	$lackbox{0}$
4	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
5	
6	
7	
8	
9	

24 Febbraio 2011

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

	A B C D E
1	
2	
3	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
4	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
5	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
6	
7	
8	
9	