10 Febbraio 2011

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

	A B C D E
1	
1	0000
2	00000
3	
4	00000
5	00000
6	00000
7	00000
8	00000
9	00000
10	00000
11	00000
12	00000

1. La proiezione di (i, i, 1) nella direzione di (1, i, 1) è:

A: N.A. B: $\frac{i}{2}(1,i,1)$ C: (0,0,0) D: i,i/2,1 E: $\frac{i}{2}(1,i,1)$

2. L'inversa di $\begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$ è:

A: non esiste B: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ C: $\begin{pmatrix} 1/3 & -1 \\ 2 & -2 \end{pmatrix}$ D: $\begin{pmatrix} -1/2 & 1 \\ 1 & -1 \end{pmatrix}$ E: N.A.

3. Dato il piano 3x+y-z=1, determinare i punti a distanza 1, in direzione normale al piano, dal suo punto (0, 2, 1).

B: non esiste C: $(\pm 3/\sqrt{11}, 2\pm 1/\sqrt{11}, 1\mp 1/\sqrt{11})$ D: N.A. E: $(-1\pm 1, 2\pm 1/\sqrt{11}, 1\pm 1/\sqrt{11})$ A: (0,0,0) $3, 1/2 \pm 1)$

4. Dato $A(u) = \frac{d^2u}{dt^2}$, definito sullo spazio delle funzioni aventi tutte le derivate continue, determinare l'insieme degli autovalori reali e, per ognuno di essi, una base di autovettori.

A: $\lambda \in \mathbb{R}, \{\sin(\sqrt{\lambda}t), \cos(\sqrt{\lambda}t)\}\$ se $\lambda \neq 0$ e $\{1,t\}$ se $\lambda = 0$ B: N.A. C: \emptyset , non esistono autovettori D: $\lambda \in \mathbb{R}^-, 1 + \lambda t$ E: $\lambda \in \mathbb{R}^+, e^{\lambda t}$

5. La matrice $\begin{pmatrix} 1 & i & 1-3i \\ -i & 2 & 1 \\ 1+3i & 1 & 1 \end{pmatrix}$

A: Definisce un operatore da \mathbb{R}^n in sè. B: ha (0,1,0) come autovettore C: è simmetrica

D: ha autovalori tutti reali E: N.A.

6. Esiste un cambio di base per il quale la matrice $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}$ viene trasformata in forma diagonale? Tale forma è $\begin{pmatrix} 1 & 0 & 0 \\ 0 & (3+\sqrt{13})/2 & 0 \\ 0 & 0 & (3-\sqrt{13})/2 \end{pmatrix}$?

B: N.A. C: sì,no D: sì,sì E: no,s

7. La bisettrice dell'angolo formato dalle due semirette $(1,1,1)+t(1,1,0), t \in \mathbb{R}^+$ e (1,1,1)+t(1,1,0) $t(1,0,1), t \in \mathbb{R}^+$ è:

A: (1,1,1) + t(1,2,3) B: (1,1,1) + t(1,1/2,1/2) C: (1,0,1) + t(1,0,0) D: non esiste E: N.A.

8. Dati A = (1, 2, 1) e B = (1, 0, 1) calcolare AB^* e A^*B

A: Almeno uno dei due prodotti non è definito B: (3/2), $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ C: (2), $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}$

D: N.A. E: $\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$

9. Le dimensioni del nucleo e dell'immagine dell'operatore su \mathbb{R}^3 definito dalla matrice $\begin{pmatrix} 2 & 1 & 0 \\ 2 & 0 & 2 \\ 1 & 2 & -3 \end{pmatrix}$ sono:

B: 2, 2 C: 0, 2 D: N.A. A: 0, 3E: 1.2

10. La forma quadratica $2x^2 - 4xy + y^2 - 2yz + z^2$ è

A: indefinita E: definita negativa

11. Calcolare il determinante di $\left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{array}\right)$

A: -2 B: 0 C: -31 D: non è definito E: N.A.

12. L'intersezione dei sottospazi $\langle \ (1,1,1), (1,1,2) \ \rangle$ e $\langle \ (1,0,2), (2,1,1) \ \rangle$ è A: $\langle \ (1,1,1), (1,0,2) \ \rangle$ B: $\langle \ (0,0,0) \ \rangle$ C: $\langle \ (1,1,-1) \ \rangle$ D: vuota E: N.A.

10 Febbraio 2011

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

	A B C D E
1	
2	00000
3	00000
4	00000
5	00000
6	00000
7	
8	00000
9	00000
10	00000
11	00000
12	00000

1. Esiste un cambio di base per il quale la matrice $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}$ viene trasformata in forma diagonale? Tale forma è $\begin{pmatrix} 1 & 0 & 0 \\ 0 & (3+\sqrt{13})/2 & 0 \\ 0 & 0 & (3-\sqrt{13})/2 \end{pmatrix}$?

- B: no,sì C: sì,sì D: sì,no E: no
- 2. La proiezione di (i, i, 1) nella direzione di (1, i, 1) è:

A: (0,0,0) B: $\frac{i}{3}(1,i,1)$ C: $\frac{i}{2}(1,i,1)$ D: i,i/2,1

3. L'inversa di $\begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$ è:

A: $\begin{pmatrix} 1/3 & -1 \\ 2 & -2 \end{pmatrix}$ B: non esiste C: $\begin{pmatrix} -1/2 & 1 \\ 1 & -1 \end{pmatrix}$ D: N.A. E: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

4. La forma quadratica $2x^2 - 4xy + y^2 - 2yz + z^2$ è

A: definita positiva B: indefinita C: semidefinita negativa D: semidefinita positiva E: definita negativa

5. La bisettrice dell'angolo formato dalle due semirette $(1,1,1)+t(1,1,0), t \in \mathbb{R}^+$ e (1,1,1)+t(1,1,0) $t(1,0,1), t \in \mathbb{R}^+$ è:

B: (1,1,1) + t(1,2,3) C: N.A. D: (1,0,1) + t(1,0,0) E: (1,1,1) + t(1,0,0)A: non esiste t(1,1/2,1/2)

6. Dato il piano 3x + y - z = 1, determinare i punti a distanza 1, in direzione normale al piano, dal suo punto (0, 2, 1).

A: $(\pm 3/\sqrt{11}, 2 \pm 1/\sqrt{11}, 1 \mp 1/\sqrt{11})$ B: non esiste C: N.A. D: $(-1 \pm 1, 2 \pm 3, 1/2 \pm 1)$ E: (0,0,0)

7. La matrice $\begin{pmatrix} 1 & i & 1-3i \\ -i & 2 & 1 \\ 1+3i & 1 & 1 \end{pmatrix}$

A: N.A. B: Definisce un operatore da \mathbb{R}^n in sè. C: ha autovalori tutti reali simmetrica E: ha(0,1,0) come autovettore

8. Calcolare il determinante di $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$

C: non è definito D: N.A. E: -31

9. Le dimensioni del nucleo e dell'immagine dell'operatore su \mathbb{R}^3 definito dalla matrice $\begin{pmatrix} 2 & 1 & 0 \\ 2 & 0 & 2 \\ 1 & 2 & -3 \end{pmatrix}$ sono: sono:

B: 1, 2 C: N.A. D: 0, 2 E: 2, 2A: 0, 3

10. Dato $A(u) = \frac{d^2u}{dt^2}$, definito sullo spazio delle funzioni aventi tutte le derivate continue, determinare l'insieme degli autovalori reali e, per ognuno di essi, una base di autovettori.

A: \emptyset , non esistono autovettori B: $\lambda \in \mathbb{R}^-, 1+\lambda t$ C: N.A. D: $\lambda \in \mathbb{R}, \{sin(\sqrt{\lambda}t), cos(\sqrt{\lambda}t)\}$ se $\lambda \neq 0$ e {1,t} se $\lambda = 0$ E: $\lambda \in \mathbb{R}^+, e^{\lambda t}$

- 11. Dati A=(1,2,1)e B=(1,0,1) calcolare AB^{\ast} e $A^{\ast}B$
 - A: Almeno uno dei due prodotti non è definito B: (3/2), $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ C: N.A. D:

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & -1 \end{array}\right), \left(\begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array}\right) \quad \text{E: (2)}, \left(\begin{array}{cc} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{array}\right)$$

12. L'intersezione dei sottospazi $\langle\ (1,1,1),(1,1,2)\ \rangle$ e $\langle\ (1,0,2),(2,1,1)\ \rangle$ è

A:
$$\langle$$
 $(1,1,1),(1,0,2)$ \rangle B: N.A. C: \langle $(1,1,-1)$ \rangle D: vuota E: \langle $(0,0,0)$ \rangle

10 Febbraio 2011

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

	A B C D E
1	
2	00000
3	00000
4	00000
5	00000
6	00000
7	00000
8	
9	00000
10	
11	
12	$\boxed{\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc}$

- 1. L'intersezione dei sottospazi $\langle (1,1,1), (1,1,2) \rangle$ e $\langle (1,0,2), (2,1,1) \rangle$ è B: N.A. C: $\langle (1,1,1), (1,0,2) \rangle$ D: vuota E: $\langle (1,1,-1) \rangle$ A: $\langle (0,0,0) \rangle$
- 2. La bisettrice dell'angolo formato dalle due semirette $(1,1,1)+t(1,1,0), t \in \mathbb{R}^+$ e (1,1,1)+t(1,1,0) $t(1,0,1), t \in \mathbb{R}^+$ è:

B: (1,1,1) + t(1,2,3) C: (1,0,1) + t(1,0,0) D: N.A. A: non esiste E: (1,1,1) + t(1,1/2,1/2)

3. Dato $A(u)=\frac{d^2u}{dt^2}$, definito sullo spazio delle funzioni aventi tutte le derivate continue, determinare l'insieme degli autovalori reali e, per ognuno di essi, una base di autovettori.

A: $\lambda \in \mathbb{R}^-, 1 + \lambda t$ B: N.A. C: $\lambda \in \mathbb{R}^+, e^{\lambda t}$ D: $\lambda \in \mathbb{R}, \{sin(\sqrt{\lambda}t), cos(\sqrt{\lambda}t)\}$ se $\lambda \neq 0$ e $\{1,t\}$ se $\lambda = 0$ E: \emptyset , non esistono autovettori

4. Dati A = (1, 2, 1) e B = (1, 0, 1) calcolare AB^* e A^*B

A: Almeno uno dei due prodotti non è definito B: $\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$ C: N.A.

 $(3/2), \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ E: $(2), \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}$

5. L'inversa di $\begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$ è:

A: N.A. B: $\begin{pmatrix} -1/2 & 1 \\ 1 & -1 \end{pmatrix}$ C: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ D: non esiste E: $\begin{pmatrix} 1/3 & -1 \\ 2 & -2 \end{pmatrix}$

6. La forma quadratica $2x^2-4xy+y^2-2yz+z^2$ è

A: semidefinita negativa B: definita negativa C: definita positiva D: indefinita semidefinita positiva

7. La matrice $\begin{pmatrix} 1 & i & 1-3i \\ -i & 2 & 1 \\ 1+3i & 1 & 1 \end{pmatrix}$

A: N.A. B: Definisce un operatore da \mathbb{R}^n in sè. C: è simmetrica D: ha (0,1,0) come autovettore E: ha autovalori tutti reali

8. Calcolare il determinante di $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$

B: non è definito C: 0 D: N.A. E: -2

9. Le dimensioni del nucleo e dell'immagine dell'operatore su \mathbb{R}^3 definito dalla matrice $\begin{pmatrix} 2 & 1 & 0 \\ 2 & 0 & 2 \\ 1 & 2 & -3 \end{pmatrix}$ sono:

B: N.A. C: 0, 2 D: 2, 2 A: 0, 3E: 1, 2

10. Esiste un cambio di base per il quale la matrice $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}$ viene trasformata in forma diagonale? Tale forma è $\begin{pmatrix} 1 & 0 & 0 \\ 0 & (3+\sqrt{13})/2 & 0 \\ 0 & 0 & (3-\sqrt{13})/2 \end{pmatrix}$?

B: N.A. C: no,sì D: sì,sì E: no,no

- 11. La proiezione di (i, i, 1) nella direzione di (1, i, 1) è: A: i, i/2, 1 B: $\frac{i}{2}(1, i, 1)$ C: N.A. D: (0, 0, 0) E: $\frac{i}{3}(1, i, 1)$
- 12. Dato il piano 3x + y z = 1, determinare i punti a distanza 1, in direzione normale al piano, dal suo punto (0, 2, 1).
 - A: N.A. B: non esiste C: (0,0,0) D: $(-1\pm1,2\pm3,1/2\pm1)$ E: $(\pm3/\sqrt{11},2\pm1/\sqrt{11},1\mp1/\sqrt{11})$

10 Febbraio 2011

			(Co	gno	me)						(N	ome)				ume	i ma	trice	

	A B C D E
1	00000
2	00000
3	00000
4	00000
5	00000
6	00000
7	00000
8	00000
9	00000
10	00000
11	00000
12	00000

1. La forma quadratica $2x^2 - 4xy + y^2 - 2yz + z^2$ è

A: definita negativa B: semidefinita negativa C: semidefinita positiva D: definita positiva E: indefinita

2. La matrice $\left(\begin{array}{ccc} 1 & i & 1-3i \\ -i & 2 & 1 \\ 1+3i & 1 & 1 \end{array}\right)$

A: N.A. B: ha autovalori tutti reali C: ha (0,1,0) come autovettore D: Definisce un operatore da \mathbb{R}^n in sè. E: è simmetrica

3. Esiste un cambio di base per il quale la matrice $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}$ viene trasformata in forma diagonale? Tale forma è $\begin{pmatrix} 1 & 0 & 0 \\ 0 & (3+\sqrt{13})/2 & 0 \\ 0 & 0 & (3-\sqrt{13})/2 \end{pmatrix}$?

A: sì.sì B: N A = C: so $= \frac{1}{2}$ B $= \frac{1}{2}$

A: sì,sì B: N.A. C: no,sì D: sì,no E: no,no

4. Le dimensioni del nucleo e dell'immagine dell'operatore su \mathbb{R}^3 definito dalla matrice $\begin{pmatrix} 2 & 1 & 0 \\ 2 & 0 & 2 \\ 1 & 2 & -3 \end{pmatrix}$ sono:

B: 1, 2 C: 0, 3 D: N.A. A: 0, 2E: 2, 2

5. Dato il piano 3x + y - z = 1, determinare i punti a distanza 1, in direzione normale al piano, dal suo punto (0, 2, 1).

A: $(-1 \pm 1, 2 \pm 3, 1/2 \pm 1)$ B: $(\pm 3/\sqrt{11}, 2 \pm 1/\sqrt{11}, 1 \mp 1/\sqrt{11})$ C: (0,0,0)E: non esiste

6. La bisettrice dell'angolo formato dalle due semirette $(1,1,1)+t(1,1,0), t \in \mathbb{R}^+$ e (1,1,1)+ $t(1,0,1), t \in \mathbb{R}^+$ è:

A: (1,1,1) + t(1,1/2,1/2) B: non esiste C: (1,1,1) + t(1,2,3) D: (1,0,1) + t(1,0,0)E: N.A.

- 7. L'intersezione dei sottospazi $\langle (1,1,1), (1,1,2) \rangle$ e $\langle (1,0,2), (2,1,1) \rangle$ è A: $\langle (1,1,-1) \rangle$ B: vuota C: N.A. D: $\langle (0,0,0) \rangle$ E: $\langle (1,1,1), (1,0,2) \rangle$
- 8. Dato $A(u) = \frac{d^2u}{dt^2}$, definito sullo spazio delle funzioni aventi tutte le derivate continue, determinare l'insieme degli autovalori reali e, per ognuno di essi, una base di autovettori.

A: N.A. B: \emptyset , non esistono autovettori C: $\lambda \in \mathbb{R}^+, e^{\lambda t}$ D: $\lambda \in \mathbb{R}, \{sin(\sqrt{\lambda}t), cos(\sqrt{\lambda}t)\}$ se $\lambda \neq 0$ e $\{1,t\}$ se $\lambda = 0$ E: $\lambda \in \mathbb{R}^-, 1 + \lambda t$

9. Calcolare il determinante di $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$

C: non è definito D: -2 E: -31

10. La proiezione di (i, i, 1) nella direzione di (1, i, 1) è:

A: (0,0,0) B: N.A. C: $\frac{i}{2}(1,i,1)$ D: i,i/2,1 E: $\frac{i}{3}(1,i,1)$

11. Dati A=(1,2,1) e B=(1,0,1) calcolare AB^* e A^*B

A: N.A. B: $\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$ C: Almeno uno dei due prodotti non è definito D: (2), $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ E: (3/2), $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}$

12. L'inversa di $\left(\begin{array}{cc} 2 & 2 \\ 2 & 1 \end{array}\right)$ è:

A: non esiste B: N.A. C: $\begin{pmatrix} -1/2 & 1 \\ 1 & -1 \end{pmatrix}$ D: $\begin{pmatrix} 1/3 & -1 \\ 2 & -2 \end{pmatrix}$ E: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

10 Febbraio 2011

			(Co	gno	me)				_			(No	ome)			_	(N	ume	ero d	i ma	tric	ola)

	A B C D E
1	
2	
3	
4	0000
5	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
6	
7	
8	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
9	
10	$\bullet \circ \circ \circ \circ$
11	
12	

10 Febbraio 2011

			(Co	gno	me)				_			(No	ome)			_	ume	i ma	trice	ola)

	A B C D E
1	
2	
3	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
4	
5	
6	
7	
8	
9	
10	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
11	
12	

10 Febbraio 2011

			gnoi	me)						(No	me)				ume	i ma	trico	ola)

	A B C D E
1	
2	
3	0000
4	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
5	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
6	
7	
8	
9	
10	
11	
12	

10 Febbraio 2011

		(Co	ogno	me)				_			(No	ome)			_	(N	$\mathrm{um}\epsilon$	ero d	i ma	tric	ola)

	A B C D E
1	
2	0000
3	lacktriangle
4	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
5	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
6	lacktriangle
7	
8	
9	
10	
11	
12	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$