(Cognome)	(Nome)	(Numero di matricola)

	ABCDE
1	
2	00000
3	00000
4	00000
5	
6	00000
7	
8	
9	
10	
11	

1. Sia $\mathcal{A}(u) = u_{e_1}$ con $e_1 = (1, 0, 0, 0)$. Allora

A: \mathcal{A} ha autovalori 0 triplo e 1 semplice, ed è diagonalizzabile in \mathbb{R}^4 B: N.A. C: \mathcal{A} non è lineare D: \mathcal{A} ha autovalori 1 triplo e 0 semplice, ed è diagonalizzabile in \mathbb{R}^4 E: \mathcal{A} ha autovalori 0 triplo e 1 semplice, ma non è diagonalizzabile in \mathbb{R}^4

2. Le rette parametriche (0,1,0)+s(1,2,-1) e (1,0,1)+t(-1,0,1) sono A: incidenti B: N.A. C: coincidenti D: parallele E: sghembe

3. Il coseno dell'angolo di vertice nell'origine formato dai vettori (1, 1, 0, 1) e (-1, 0, 0, 1) è: A: $\sqrt{3}/2$ B: $5/\sqrt{6}$ C: N.A. D: 0 E: non è definito

4. L'operatore (endomorfismo) definito su \mathbb{R}^3 dalla matrice $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

A: non è diagonalizzabile su \mathbb{R} perche' non ha tre autovalori reali (semplici) distinti \mathbb{R} : non è diagonalizzabile su \mathbb{R} perche' l'autospazio dell'autovalore doppio ha dimensione uno \mathbb{C} : è diagonalizzabile su \mathbb{R} perche' ha tre autovalori reali, e l'autospazio di quello doppio ha dimensione due \mathbb{C} : è diagonalizzabile su \mathbb{C} ma non su \mathbb{R} , perche' ha tre autovalori complessi distinti, ma qualcuno non è reale

- 5. Il complemento ortogonale di $\langle (1,1,-1,0), (1,-1,-1,1) \rangle$ è: A: $\langle (1,-1,-1,0), (2,-1,-1,1) \rangle$ B: $\langle (1,0,1,0), (-1,1,0,2) \rangle$ C: $\langle (0,0,0,0) \rangle$ D: $\langle (2,-2,-1,0), (1,-2,-1,1) \rangle$ E: N.A.
- 6. L'applicazione definita dalla matrice $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \end{pmatrix}$ è

A: né suriettiva, né iniettiva B: N.A. C: iniettiva, ma non suriettiva D: suriettiva, ma non iniettiva E: suriettiva e iniettiva

7. La matrice associata ad $\mathcal{A}(u) = u' - 2u$, dall'insieme dei polinomi di grado massimo 2 in sé, rispetto alle basi $\{1, 1-t, t^2\}$ del dominio e $\{2, 3-t, t^2-1\}$ del codominio è

A: non è definita: una delle due non è una base B: N.A. C: $\begin{pmatrix} -1 & 3/2 & 2 \\ 0 & -2 & -2 \\ 0 & 0 & -2 \end{pmatrix}$ D:

$$\left(\begin{array}{ccc}
-1 & 1/2 & 2 \\
1 & -2 & -2 \\
0 & 2 & -2
\end{array}\right) \quad \text{E:} \left(\begin{array}{ccc}
-1 & 2 & 2 \\
0 & 1 & -2 \\
1 & 0 & -2
\end{array}\right)$$

8. La forma quadratica $H(x, y, z) = x^2 + 5y^2 + 4z^2 - 4xy + 4yz$ è:

9. La proiezione di (1, i, -i, i) su (1 - i, 1, 2, -i) è:

 $\text{A: } (1+i,i,2i,1) \quad \text{ B: N.A.} \quad \text{C: } (0,0,0,0) \quad \text{ D: } (2,1+i,2+2i,1-i) \quad \text{ E: } (1,i,1-2i,-i)$

10. La matrice di cambio di base in $\langle \sin t, \cos t \rangle_{\mathbb{C}}$ da $\{\sin t, \cos t\}$ a $\{e^{-it}, e^{it}\}$ è:

A: $\begin{pmatrix} 1-i & i \\ 1+i & 1 \end{pmatrix}$ B: non è definita: una delle due non è una base C: $\begin{pmatrix} -i & -i \\ 1 & i \end{pmatrix}$ D: N.A. E: $\begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix}$

11. Dati i due sottospazi di \mathbb{R}^3 $X = \langle (1, -1, 1), (1, 1, 1) \rangle$ e $Y = \langle (1, 2, 1) \rangle$, allora:

A: $Y \subset X$ B: N.A. C: $X \subset Y$ D: X + Y è diretta E: X = Y

(Cognome)	(Nome)	(Numero di matricola)

	ABCDE
1	
2	00000
3	00000
4	00000
5	0000
6	00000
7	00000
8	00000
9	
10	00000
11	

- 1. La forma quadratica $H(x,y,z)=x^2+5y^2+4z^2-4xy+4yz$ è:

 A: semidefinita negativa B: definita negativa C: indefinita D: definita positiva E: semidefinita positiva
- 2. La proiezione di (1, i, -i, i) su (1 i, 1, 2, -i) è: A: (1 + i, i, 2i, 1) B: (2, 1 + i, 2 + 2i, 1 - i) C: (1, i, 1 - 2i, -i) D: (0, 0, 0, 0) E: N.A.
- 3. Sia A(u) = u_{e1} con e₁ = (1,0,0,0). Allora
 A: A non è lineare B: A ha autovalori 0 triplo e 1 semplice, ma non è diagonalizzabile in R⁴ C: A ha autovalori 1 triplo e 0 semplice, ed è diagonalizzabile in R⁴ D: A ha autovalori 0 triplo e 1 semplice, ed è diagonalizzabile in R⁴ E: N.A.
- 4. La matrice di cambio di base in $\langle \sin t, \cos t \rangle_{\mathbb{C}}$ da $\{\sin t, \cos t\}$ a $\{e^{-it}, e^{it}\}$ è:

 A: $\begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix}$ B: $\begin{pmatrix} 1-i & i \\ 1+i & 1 \end{pmatrix}$ C: N.A. D: non è definita: una delle due non è una base E: $\begin{pmatrix} -i & -i \\ 1 & i \end{pmatrix}$
- 5. Il complemento ortogonale di $\langle (1,1,-1,0), (1,-1,-1,1) \rangle$ è: A: N.A. B: $\langle (0,0,0,0) \rangle$ C: $\langle (1,0,1,0), (-1,1,0,2) \rangle$ D: $\langle (1,-1,-1,0), (2,-1,-1,1) \rangle$ E: $\langle (2,-2,-1,0), (1,-2,-1,1) \rangle$
- 6. Il coseno dell'angolo di vertice nell'origine formato dai vettori (1,1,0,1) e (-1,0,0,1) è: A: non è definito B: 0 C: $\sqrt{3}/2$ D: $5/\sqrt{6}$ E: N.A.
- 7. Dati i due sottospazi di \mathbb{R}^3 $X=\langle\ (1,-1,1)\ ,\ (1,1,1)\ \rangle$ e $Y=\langle\ (1,2,1)\rangle$, allora: A: $Y\subset X$ B: N.A. C: X+Y è diretta D: $X\subset Y$ E: X=Y
- 8. L'operatore (endomorfismo) definito su \mathbb{R}^3 dalla matrice $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 - A: non è diagonalizzabile su \mathbb{R} perche' l'autospazio dell'autovalore doppio ha dimensione uno B: N.A. C: è diagonalizzabile su \mathbb{C} ma non su \mathbb{R} , perche' ha tre autovalori complessi distinti, ma qualcuno non è reale D: è diagonalizzabile su \mathbb{R} perche' ha tre autovalori reali, e l'autospazio di quello doppio ha dimensione due E: non è diagonalizzabile su \mathbb{R} perche' non ha tre autovalori reali (semplici) distinti
- 9. L'applicazione definita dalla matrice $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \end{pmatrix}$ è

 A: né suriettiva, né iniettiva B: iniettiva, ma non suriettiva C: N.A. D: suriettiva, ma non iniettiva E: suriettiva e iniettiva
- 10. Le rette parametriche (0,1,0) + s(1,2,-1) e (1,0,1) + t(-1,0,1) sono A: incidenti B: N.A. C: parallele D: coincidenti E: sghembe
- 11. La matrice associata ad $\mathcal{A}(u) = u' 2u$, dall'insieme dei polinomi di grado massimo 2 in sé, rispetto alle basi $\{1, 1-t, t^2\}$ del dominio e $\{2, 3-t, t^2-1\}$ del codominio è
 - A: non è definita: una delle due non è una base B: $\begin{pmatrix} -1 & 3/2 & 2 \\ 0 & -2 & -2 \\ 0 & 0 & -2 \end{pmatrix}$ C: N.A. De $\begin{pmatrix} -1 & 3/2 & 2 \\ 0 & 0 & -2 \end{pmatrix}$

$$\left(\begin{array}{ccc}
-1 & 2 & 2 \\
0 & 1 & -2 \\
1 & 0 & -2
\end{array}\right) \quad \text{E:} \left(\begin{array}{ccc}
-1 & 1/2 & 2 \\
1 & -2 & -2 \\
0 & 2 & -2
\end{array}\right)$$

										1										
			(Co	gnor	me)						(No	me)			(N	ume	ro di	i ma	trice	ola)

	ABCDE
1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	00000
11	

1. L'applicazione definita dalla matrice $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \end{pmatrix}$ è

A: né suriettiva, né iniettiva B: suriettiva, ma non iniettiva C: N.A. D: suriettiva e iniettiva E: iniettiva, ma non suriettiva

2. La matrice associata ad $\mathcal{A}(u) = u' - 2u$, dall'insieme dei polinomi di grado massimo 2 in sé, rispetto alle basi $\{1, 1-t, t^2\}$ del dominio e $\{2, 3-t, t^2-1\}$ del codominio è

3. La forma quadratica $H(x, y, z) = x^2 + 5y^2 + 4z^2 - 4xy + 4yz$ è:

4. Il complemento ortogonale di $\langle (1,1,-1,0), (1,-1,-1,1)\rangle$ è:

A: $\langle (2, -2, -1, 0), (1, -2, -1, 1) \rangle$ B: $\langle (1, -1, -1, 0), (2, -1, -1, 1) \rangle$ C: $\langle (0, 0, 0, 0) \rangle$ D: $\langle (1, 0, 1, 0), (-1, 1, 0, 2) \rangle$ E: N.A.

5. Il coseno dell'angolo di vertice nell'origine formato dai vettori (1,1,0,1) e (-1,0,0,1) è:

A: non è definito B: $5/\sqrt{6}$ C: $\sqrt{3}/2$ D: N.A. E: 0

6. L'operatore (endomorfismo) definito su \mathbb{R}^3 dalla matrice $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

A: è diagonalizzabile su $\mathbb R$ perche' ha tre autovalori reali, e l'autospazio di quello doppio ha dimensione due $\mathbb B$: N.A. $\mathbb C$: non è diagonalizzabile su $\mathbb R$ perche' non ha tre autovalori reali (semplici) distinti $\mathbb D$: è diagonalizzabile su $\mathbb C$ ma non su $\mathbb R$, perche' ha tre autovalori complessi distinti, ma qualcuno non è reale $\mathbb E$: non è diagonalizzabile su $\mathbb R$ perche' l'autospazio dell'autovalore doppio ha dimensione uno

7. La matrice di cambio di base in $\langle \sin t, \cos t \rangle_{\mathbb{C}}$ da $\{\sin t, \cos t\}$ a $\{e^{-it}, e^{it}\}$ è:

A: $\begin{pmatrix} 1-i & i\\ 1+i & 1 \end{pmatrix}$ B: N.A. C: non è definita: una delle due non è una base D: $\begin{pmatrix} -i & -i\\ 1 & i \end{pmatrix}$ E: $\begin{pmatrix} -i & i\\ 1 & 1 \end{pmatrix}$

8. Dati i due sottospazi di \mathbb{R}^3 $X=\langle\ (1,-1,1)\ ,\ (1,1,1)\ \rangle$ e $Y=\langle\ (1,2,1)\rangle,$ allora:

A: X = Y B: $Y \subset X$ C: N.A. D: X + Y è diretta E: $X \subset Y$

9. La proiezione di (1, i, -i, i) su (1 - i, 1, 2, -i) è:

A: (1, i, 1-2i, -i) B: (0, 0, 0, 0) C: N.A. D: (1+i, i, 2i, 1) E: (2, 1+i, 2+2i, 1-i)

10. Sia $\mathcal{A}(u) = u_{e_1}$ con $e_1 = (1, 0, 0, 0)$. Allora

A: \mathcal{A} ha autovalori 0 triplo e 1 semplice, ed è diagonalizzabile in \mathbb{R}^4 B: \mathcal{A} ha autovalori 0 triplo e 1 semplice, ma non è diagonalizzabile in \mathbb{R}^4 C: \mathcal{A} ha autovalori 1 triplo e 0 semplice, ed è diagonalizzabile in \mathbb{R}^4 D: N.A. E: \mathcal{A} non è lineare

11. Le rette parametriche (0,1,0) + s(1,2,-1) e (1,0,1) + t(-1,0,1) sono

A: parallele B: incidenti C: coincidenti D: sghembe E: N.A.

			(Co	gnoi	me)				_			(No	me)			,	ume		trice	ola)

	ABCDE
1	
2	0000
3	00000
4	00000
5	00000
6	00000
7	00000
8	00000
9	
10	
11	0000

- 1. La forma quadratica $H(x,y,z)=x^2+5y^2+4z^2-4xy+4yz$ è:

 A: semidefinita negativa B: semidefinita positiva C: definita negativa D: definita positiva E: indefinita
- 2. Le rette parametriche (0,1,0) + s(1,2,-1) e (1,0,1) + t(-1,0,1) sono A: incidenti B: parallele C: N.A. D: sghembe E: coincidenti
- 3. Il coseno dell'angolo di vertice nell'origine formato dai vettori (1,1,0,1) e (-1,0,0,1) è: A: non è definito B: N.A. C: $5/\sqrt{6}$ D: 0 E: $\sqrt{3}/2$
- 4. La matrice di cambio di base in $\langle \sin t, \cos t \rangle_{\mathbb{C}}$ da $\{\sin t, \cos t\}$ a $\{e^{-it}, e^{it}\}$ è:

 A: N.A. B: $\begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix}$ C: $\begin{pmatrix} 1-i & i \\ 1+i & 1 \end{pmatrix}$ D: $\begin{pmatrix} -i & -i \\ 1 & i \end{pmatrix}$ E: non è definita: una
- 5. Sia $\mathcal{A}(u) = u_{e_1}$ con $e_1 = (1, 0, 0, 0)$. Allora A: \mathcal{A} ha autovalori 0 triplo e 1 semplice, ed è diagonalizzabile in \mathbb{R}^4 B: \mathcal{A} ha autovalori 0 triplo e 1 semplice, ma non è diagonalizzabile in \mathbb{R}^4 C: N.A. D: \mathcal{A} ha autovalori 1 triplo
- 6. L'operatore (endomorfismo) definito su \mathbb{R}^3 dalla matrice $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

e 0 semplice, ed è diagonalizzabile in \mathbb{R}^4 E: \mathcal{A} non è lineare

- A: N.A. B: è diagonalizzabile su \mathbb{R} perche' ha tre autovalori reali, e l'autospazio di quello doppio ha dimensione due \mathbb{C} : non è diagonalizzabile su \mathbb{R} perche' l'autospazio dell'autovalore doppio ha dimensione uno \mathbb{D} : è diagonalizzabile su \mathbb{C} ma non su \mathbb{R} , perche' ha tre autovalori complessi distinti, ma qualcuno non è reale \mathbb{E} : non è diagonalizzabile su \mathbb{R} perche' non ha tre autovalori reali (semplici) distinti
- 7. Il complemento ortogonale di $\langle (1,1,-1,0), (1,-1,-1,1) \rangle$ è: A: $\langle (2,-2,-1,0), (1,-2,-1,1) \rangle$ B: $\langle (1,-1,-1,0), (2,-1,-1,1) \rangle$ C: N.A. D: $\langle (0,0,0,0) \rangle$ E: $\langle (1,0,1,0), (-1,1,0,2) \rangle$
- 8. L'applicazione definita dalla matrice $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & -1 \end{pmatrix}$ è

 A: injettiva ma non surjettiva. Ri surjettiva e injettiva. Ci surjettiva ma
 - A: iniettiva, ma non suriettiva B: suriettiva e iniettiva C: suriettiva, ma non iniettiva D: N.A. E: né suriettiva, né iniettiva
- 9. Dati i due sottospazi di \mathbb{R}^3 $X=\langle\ (1,-1,1)\ ,\ (1,1,1)\ \rangle$ e $Y=\langle\ (1,2,1)\rangle$, allora: A: $X\subset Y$ B: $Y\subset X$ C: N.A. D: X=Y E: X+Y è diretta
- 10. La matrice associata ad A(u) = u' 2u, dall'insieme dei polinomi di grado massimo 2 in sé, rispetto alle basi $\{1, 1-t, t^2\}$ del dominio e $\{2, 3-t, t^2-1\}$ del codominio è
 - A: $\begin{pmatrix} -1 & 3/2 & 2 \\ 0 & -2 & -2 \\ 0 & 0 & -2 \end{pmatrix}$ B: non è definita: una delle due non è una base C: N.A. D $\begin{pmatrix} -1 & 1/2 & 2 \\ 1 & -2 & -2 \\ 0 & 2 & -2 \end{pmatrix}$ E: $\begin{pmatrix} -1 & 2 & 2 \\ 0 & 1 & -2 \\ 1 & 0 & -2 \end{pmatrix}$
- 11. La proiezione di (1, i, -i, i) su (1 i, 1, 2, -i) è:
 - A: (1+i, i, 2i, 1) B: (0,0,0,0) C: (1,i,1-2i,-i) D: N.A. E: (2,1+i,2+2i,1-i)