			(Co	gnoi	me)				_			(No	me)			,	ume		trice	ola)

	ABCDE
1	
2	0000
3	00000
4	00000
5	00000
6	00000
7	00000
8	00000
9	00000
10	00000
11	0000

1. La matrice $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

A: non è diagonalizzabile, perché la dimensione dell'autospazio dell'autovalore doppio è 1 B: è diagonalizzabile, perché ha tre autovalori distinti C: non è diagonalizzabile, perché non è autoaggiunta D: N.A. E: è diagonalizzabile, perché la dimensione dell'autospazio dell'autovalore doppio è 2

2. La (minima) distanza fra le rette parametriche sghembe $\gamma(s)=(2,2,3)+s(1,2,3)$ e $\sigma(t)=(1,2,0)+t(-1,-2,1)$ è:

A: $2/\sqrt{5}$ B: N.A. C: $2\sqrt{5}/3$ D: $\sqrt{5}$ E: $\sqrt{3}$, ma non sono sghembe

3. Il determinante $\begin{vmatrix} 1 & 3 & 1 & -1 \\ -3 & -1 & -1 & 1 \\ 1 & 1 & 3 & -1 \\ 1 & 1 & 1 & -3 \end{vmatrix} vale:$

A: -48 B: N.A. C: 26 D: -12 E: 17

- 4. La proiezione di (i-1,i,i) su $\langle (1,1,2i),(i,i,1)\rangle$ è: A: (2i/3,1-i/2,1-i) B: (i-1/2,i-1/2,i) C: (1,1-i/2,1) D: (1+i/2,1+i/2,1+i) E: N.A.
- 5. Dati $X = \langle (1,1,2), (1,0,1), (-1,2,1) \rangle$ e $Y = \langle (0,1,0), (1,1,1) \rangle$, la loro intersezione è: A: $\{0\}$ B: N.A. C: $\langle (0,1,1), (1,0,1) \rangle$ D: $\langle (1,0,1) \rangle$ E: $\langle (1,1,1) \rangle$
- 6. Le dimensioni di nucleo e immagine di $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^3$, definita da $\begin{pmatrix} 2 & 1 & 0 & -1 \\ 2 & 0 & 1 & -2 \\ 1 & 2 & 0 & 3 \end{pmatrix}$ sono:

A: 2, 2 B: 3, 1 C: 0, 4 D: 1, 3 E: N.A.

- 7. Il sistema di generatori $\{(-1,0,-1),(2,2,2)\}$ può essere completato ad una base di \mathbb{R}^3 A: aggiungendovi (1,0,0) oppure (0,0,1) B: N.A. C: aggiungendovi (0,1,0) oppure (0,0,1) D: aggiungendovi (1,0,0) oppure (0,1,0) E: no
- 8. Dato il piano $\langle (1,1,1,0), (1,-1,0,1) \rangle$, la retta parametrica $\gamma(t) = (-1,1,0,0) + t(1,-1,0,1)$ è:

A: N.A. B: incidente C: parallela senza punti comuni col piano D: sghemba E: giacente sul piano

- 9. La proiezione di (1,3,2) sul piano affine $(1,1,0)+\langle (1,0,-1),(1,1,2)\rangle$ è: A: $\frac{1}{13}(11,12,23)$ B: $\frac{1}{11}(15,21,26)$ C: N.A. D: $\frac{1}{11}(14,5,12)$ E: (1,1,3)
- 10. La matrice $\begin{pmatrix} 1 & -i & 1+i \\ i & -1 & 3-2i \\ 1-i & 3+2i & 0 \end{pmatrix}$

A: è diagonalizzabile su $\mathbb R$ perche' è autoaggiunta B: ha spettro vuoto C: N.A. D: non è diagonalizzabile E: è diagonalizzabile su $\mathbb C$, ma non su $\mathbb R$

11. La matrice $\begin{pmatrix} 2 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$

A: è diagonalizzabile su \mathbb{R} , perche' ha tre autovalori reali distinti \mathbb{R} : non è diagonalizzabile su \mathbb{R} , perche' non ha tre autovalori reali distinti \mathbb{R} : non è diagonalizzabile su \mathbb{R} , perche' ha due autovalori complessi coniugati \mathbb{R} : D: ha autovalore \mathbb{R} 0 e quindi è diagonalizzabile \mathbb{R} : N.A.

(Cognome)	(Nome)	(Numero di matricola)

	ABCDE
1	
2	
3	
4	0000
5	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
6	
7	00000
8	
9	
10	
11	0000

1. La matrice $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

A: è diagonalizzabile, perché la dimensione dell'autospazio dell'autovalore doppio è 2 B: è diagonalizzabile, perché ha tre autovalori distinti C: non è diagonalizzabile, perché non è autoaggiunta D: non è diagonalizzabile, perché la dimensione dell'autospazio dell'autovalore doppio è 1 E: N.A.

2. La matrice $\begin{pmatrix} 2 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$

A: N.A. B: non è diagonalizzabile su \mathbb{R} , perche' non ha tre autovalori reali distinti \mathbb{C} : ha autovalore 0 e quindi è diagonalizzabile \mathbb{D} : non è diagonalizzabile su \mathbb{R} , perche' ha due autovalori complessi coniugati \mathbb{E} : è diagonalizzabile su \mathbb{R} , perche' ha tre autovalori reali distinti

3. La (minima) distanza fra le rette parametriche sghembe $\gamma(s)=(2,2,3)+s(1,2,3)$ e $\sigma(t)=(1,2,0)+t(-1,-2,1)$ è:

A: $\sqrt{3}$, ma non sono sghembe B: N.A. C: $2\sqrt{5}/3$ D: $2/\sqrt{5}$ E: $\sqrt{5}$

- 4. Il sistema di generatori $\{(-1,0,-1),(2,2,2)\}$ può essere completato ad una base di \mathbb{R}^3 A: aggiungendovi (1,0,0) oppure (0,0,1) B: no C: aggiungendovi (1,0,0) oppure (0,1,0) D: N.A. E: aggiungendovi (0,1,0) oppure (0,0,1)
- 5. La proiezione di (1,3,2) sul piano affine $(1,1,0)+\langle (1,0,-1),(1,1,2)\rangle$ è: A: $\frac{1}{13}(11,12,23)$ B: N.A. C: $\frac{1}{11}(14,5,12)$ D: $\frac{1}{11}(15,21,26)$ E: (1,1,3)
- 6. Le dimensioni di nucleo e immagine di $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^3$, definita da $\begin{pmatrix} 2 & 1 & 0 & -1 \\ 2 & 0 & 1 & -2 \\ 1 & 2 & 0 & 3 \end{pmatrix}$ sono:

A: 2, 2 B: 1, 3 C: 0, 4 D: 3, 1 E: N.A.

- 7. La proiezione di (i-1,i,i) su $\langle (1,1,2i),(i,i,1)\rangle$ è: A: (1+i/2,1+i/2,1+i) B: (2i/3,1-i/2,1-i) C: (1,1-i/2,1) D: (i-1/2,i-1/2,i) E: N.A.
- 8. La matrice $\begin{pmatrix} 1 & -i & 1+i \\ i & -1 & 3-2i \\ 1-i & 3+2i & 0 \end{pmatrix}$

A: è diagonalizzabile su $\mathbb C$, ma non su $\mathbb R$ B: ha spettro vuoto $\mathbb C$: è diagonalizzabile su $\mathbb R$ perche' è autoaggiunta $\mathbb D$: non è diagonalizzabile $\mathbb E$: N.A.

9. Il determinante $\begin{vmatrix} 1 & 3 & 1 & -1 \\ -3 & -1 & -1 & 1 \\ 1 & 1 & 3 & -1 \\ 1 & 1 & 1 & -3 \end{vmatrix} vale:$

A: N.A. B: -12 C: -48 D: 26 E: 17

- 10. Dati $X = \langle (1,1,2), (1,0,1), (-1,2,1) \rangle$ e $Y = \langle (0,1,0), (1,1,1) \rangle$, la loro intersezione è: A: $\{0\}$ B: $\langle (1,0,1) \rangle$ C: $\langle (1,1,1) \rangle$ D: $\langle (0,1,1), (1,0,1) \rangle$ E: N.A.
- 11. Dato il piano $\langle (1,1,1,0), (1,-1,0,1) \rangle$, la retta parametrica $\gamma(t) = (-1,1,0,0) + t(1,-1,0,1)$ è:

A: N.A. B: giacente sul piano C: incidente D: parallela senza punti comuni col piano E: sghemba

			(Co	gnoi	me)				_			(No	me)			,	ume		trice	ola)

	ABCDE
1	0000
2	
3	
4	0000
5	00000
6	
7	
8	
9	
10	0000
11	0000

- 1. La proiezione di (i-1,i,i) su $\langle (1,1,2i),(i,i,1)\rangle$ è: A: (2i/3,1-i/2,1-i) B: (1+i/2,1+i/2,1+i) C: (i-1/2,i-1/2,i) D: N.A. E: (1,1-i/2,1)
- 2. La (minima) distanza fra le rette parametriche sghembe $\gamma(s)=(2,2,3)+s(1,2,3)$ e $\sigma(t)=(1,2,0)+t(-1,-2,1)$ è:

A: $\sqrt{5}$ B: N.A. C: $2/\sqrt{5}$ D: $2\sqrt{5}/3$ E: $\sqrt{3}$, ma non sono sghembe

- 3. Dati $X = \langle (1,1,2), (1,0,1), (-1,2,1) \rangle$ e $Y = \langle (0,1,0), (1,1,1) \rangle$, la loro intersezione è: A: $\langle (1,1,1) \rangle$ B: N.A. C: $\{0\}$ D: $\langle (0,1,1), (1,0,1) \rangle$ E: $\langle (1,0,1) \rangle$

A: N.A. B: 17 C: -48 D: -12 E: 26

5. La matrice $\begin{pmatrix} 1 & -i & 1+i \\ i & -1 & 3-2i \\ 1-i & 3+2i & 0 \end{pmatrix}$

A: N.A. B: non è diagonalizzabile C: è diagonalizzabile su $\mathbb R$ perche' è autoaggiunta D: è diagonalizzabile su $\mathbb C$, ma non su $\mathbb R$ E: ha spettro vuoto

6. Le dimensioni di nucleo e immagine di $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^3$, definita da $\begin{pmatrix} 2 & 1 & 0 & -1 \\ 2 & 0 & 1 & -2 \\ 1 & 2 & 0 & 3 \end{pmatrix}$ sono:

A: N.A. B: 3, 1 C: 1, 3 D: 2, 2 E: 0, 4

- 7. Il sistema di generatori $\{(-1,0,-1),(2,2,2)\}$ può essere completato ad una base di \mathbb{R}^3 A: aggiungendovi (1,0,0) oppure (0,0,1) B: aggiungendovi (0,1,0) oppure (0,0,1) C: no D: N.A. E: aggiungendovi (1,0,0) oppure (0,1,0)
- 8. La matrice $\left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right)$

A: non è diagonalizzabile, perché non è autoaggiunta B: non è diagonalizzabile, perché la dimensione dell'autospazio dell'autovalore doppio è 1 C: N.A. D: è diagonalizzabile, perché ha tre autovalori distinti E: è diagonalizzabile, perché la dimensione dell'autospazio dell'autovalore doppio è 2

9. La matrice $\begin{pmatrix} 2 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$

A: non è diagonalizzabile su \mathbb{R} , perche' ha due autovalori complessi coniugati \mathbb{R} . N.A. C: non è diagonalizzabile su \mathbb{R} , perche' non ha tre autovalori reali distinti \mathbb{R} : è diagonalizzabile su \mathbb{R} , perche' ha tre autovalori reali distinti

10. Dato il piano $\langle (1,1,1,0), (1,-1,0,1) \rangle$, la retta parametrica $\gamma(t) = (-1,1,0,0) + t(1,-1,0,1)$

A: sghemba B: incidente C: parallela senza punti comuni col piano D: N.A. E: giacente sul piano

11. La proiezione di (1,3,2) sul piano affine $(1,1,0)+\langle (1,0,-1),(1,1,2)\rangle$ è:

A: $\frac{1}{11}(15, 21, 26)$ B: $\frac{1}{13}(11, 12, 23)$ C: (1, 1, 3) D: N.A. E: $\frac{1}{11}(14, 5, 12)$

			(Co	gnoi	me)				_			(No	me)			,	ume		trice	ola)

	ABCDE
1	
2	00000
3	00000
4	00000
5	00000
6	00000
7	00000
8	
9	
10	
11	00000

1. La (minima) distanza fra le rette parametriche sghembe $\gamma(s)=(2,2,3)+s(1,2,3)$ e $\sigma(t)=(1,2,0)+t(-1,-2,1)$ è:

A: $2\sqrt{5}/3$ B: $\sqrt{3}$, ma non sono sghembe C: $2/\sqrt{5}$ D: N.A. E: $\sqrt{5}$

- 2. Il sistema di generatori $\{(-1,0,-1),(2,2,2)\}$ può essere completato ad una base di \mathbb{R}^3 A: aggiungendovi (0,1,0) oppure (0,0,1) B: aggiungendovi (1,0,0) oppure (0,1,0) C: aggiungendovi (1,0,0) oppure (0,0,1) D: no E: N.A.
- 3. La proiezione di (1,3,2) sul piano affine $(1,1,0)+\langle (1,0,-1),(1,1,2)\rangle$ è: A: $\frac{1}{11}(14,5,12)$ B: $\frac{1}{11}(15,21,26)$ C: (1,1,3) D: $\frac{1}{13}(11,12,23)$ E: N.A.
- 4. La proiezione di (i-1,i,i) su $\langle (1,1,2i),(i,i,1)\rangle$ è: A: (2i/3,1-i/2,1-i) B: (1,1-i/2,1) C: (1+i/2,1+i/2,1+i) D: N.A. E: (i-1/2,i-1/2,i)
- 5. La matrice $\left(\begin{array}{ccc} 2 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 0 & 1 \end{array} \right)$

A: N.A. B: non è diagonalizzabile su \mathbb{R} , perche' non ha tre autovalori reali distinti \mathbb{C} : è diagonalizzabile su \mathbb{R} , perche' ha tre autovalori reali distinti \mathbb{D} : non è diagonalizzabile su \mathbb{R} , perche' ha due autovalori complessi coniugati \mathbb{E} : ha autovalore \mathbb{O} e quindi è diagonalizzabile

6. Dato il piano $\langle (1,1,1,0), (1,-1,0,1) \rangle$, la retta parametrica $\gamma(t) = (-1,1,0,0) + t(1,-1,0,1)$ è:

A: parallela senza punti comuni col piano B: N.A. C: incidente D: sghemba E: giacente sul piano

- 7. Dati $X = \langle (1,1,2), (1,0,1), (-1,2,1) \rangle$ e $Y = \langle (0,1,0), (1,1,1) \rangle$, la loro intersezione è: A: N.A. B: $\langle (1,1,1) \rangle$ C: $\{0\}$ D: $\langle (1,0,1) \rangle$ E: $\langle (0,1,1), (1,0,1) \rangle$
- 8. La matrice $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

A: è diagonalizzabile, perché ha tre autovalori distinti B: è diagonalizzabile, perché la dimensione dell'autospazio dell'autovalore doppio è 2 C: N.A. D: non è diagonalizzabile, perché non è autoaggiunta E: non è diagonalizzabile, perché la dimensione dell'autospazio dell'autovalore doppio è 1

9. Le dimensioni di nucleo e immagine di $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^3$, definita da $\begin{pmatrix} 2 & 1 & 0 & -1 \\ 2 & 0 & 1 & -2 \\ 1 & 2 & 0 & 3 \end{pmatrix}$ sono:

A: 0, 4 B: 3, 1 C: 1, 3 D: 2, 2 E: N.A.

 $10. \ \ \text{Il determinante} \ \left| \begin{array}{ccccc} 1 & 3 & 1 & -1 \\ -3 & -1 & -1 & 1 \\ 1 & 1 & 3 & -1 \\ 1 & 1 & 1 & -3 \end{array} \right| \ \text{vale:}$

A: 17 B: -48 C: N.A. D: 26 E: -12

11. La matrice $\begin{pmatrix} 1 & -i & 1+i \\ i & -1 & 3-2i \\ 1-i & 3+2i & 0 \end{pmatrix}$

A: ha spettro vuoto B: non è diagonalizzabile C: è diagonalizzabile su $\mathbb C$, ma non su $\mathbb R$ D: N.A. E: è diagonalizzabile su $\mathbb R$ perche' è autoaggiunta