			(Co	gnoi	me)				_			(N	lome	e)			(N	ume	ro c	li m	atr	icola	.)

	ABCDE
1	
2	00000
3	00000
4	00000
5	00000
6	00000
7	00000
8	
9	

- 1. Il volume della porzione di sfera $x^2+y^2+z^2\leq 2$ compresa fra i piani z=1/2 e z=-1/2 A: $7\pi/6$ B: N.A. C: $27\pi/16$ D: $23\pi/12$ E: $17\pi/12$
- 2. L'insieme $\Omega = \{(x,y) \in \mathbbm{R}^2 : x^2 y^2 \leq 1\}$ è

- 3. L'area racchiusa dalla curva $\rho = \sin^2 \theta \quad \theta \in [0, \pi]$ è A: 0 B: $3\pi/16$ C: $3\pi/8$ D: $5\pi/16$ E: N.A.
- 4. L'area del grafico di f(x,y) = xy, ristretta al dominio $\{x^2 + y^2 \le 4\}$, è A: non esiste B: $2\pi(5\sqrt{5}-1)/3$ C: N.A. D: $\pi(3\sqrt{3}-1)/3$ E: $3\pi(5\sqrt{5}-1)/5$
- 5. Data $f(x,y) = (\sin x)^{\sin y}$, la sua direzione di massima pendenza ascendente in $(\pi/4, \pi/2)$ e il piano tangente al grafico nel punto corrispondente sono

A: (1,0), $z\sqrt{2}-x=1-\pi/4$ B: (-1,0), $z+x=\pi/4+1/\sqrt{2}$ C: non esiste, $z=1/\sqrt{2}$ D: non esistono: f non è differenziabile nel punto E: N.A.

6. La funzione La funzione $f(x,y)=\left\{\begin{array}{ll} \frac{x^2y}{x^2+y^2} & (x,y)\neq (0,0)\\ 0 & (0,0) \end{array}\right.$, nel punto (0,0), è:

A: derivabile in ogni direzione, ma non differenziabile B: discontinua C: differenziabile D: N.A. E: ha derivate parziali, ma non ha derivata in qualche direzione

7. Per quali $k \in \mathbb{R}$ all'equazione $x^3 + y^2 - y = k$ può essere applicato il teorema di Dini nell'intorno di ogni sua soluzione, per esplicitare almeno una delle due variabili in funzione dell'altra.

A: $k \neq -1/4$ B: N.A. C: $k \neq 1/2$ D: $k \neq -1/2$ e $k \neq \sqrt{3}$ E: per ogni $k \in \mathbb{R}$

8. Il piano tangente al sostegno della superficie parametrica $\Phi(u,v)=(u^3v-v^2,u^3+v^3,uv)$ in (0,1,0) è

A: N.A. B: non esiste C: x = z D: x + y = 1 E: y + z = 1

9. Determinare, se è possibile, $\alpha(x,y)$ in modo che la forma $\alpha(x,y)dx + \lg(x^2 + y^2)dy$ sia esatta nel suo dominio

A: $(x^2 + y^2)/2$ B: N.A. C: non è possibile D: $2\arctan(y/x)$ E: $2x/(x^2 + y^2)$

			gno	me)						(N	ome)				(N	lum		trice	ola)	

	ABCDE
1	
2	
3	
4	
5	
6	
7	
8	00000
9	

1. Data $f(x,y) = (\sin x)^{\sin y}$, la sua direzione di massima pendenza ascendente in $(\pi/4, \pi/2)$ e il piano tangente al grafico nel punto corrispondente sono

A: non esiste, $z=1/\sqrt{2}$ B: N.A. C: non esistono: f non è differenziabile nel punto D: $(-1,0), \quad z+x=\pi/4+1/\sqrt{2}$ E: $(1,0), \quad z\sqrt{2}-x=1-\pi/4$

2. L'area racchiusa dalla curva $\rho = \sin^2 \theta \quad \theta \in [0,\pi]$ è

A: $3\pi/8$ B: 0 C: $5\pi/16$ D: N.A. E: $3\pi/16$

3. Il piano tangente al sostegno della superficie parametrica $\Phi(u,v)=(u^3v-v^2,u^3+v^3,uv)$ in (0,1,0) è

A: N.A. B: non esiste C: x = z D: y + z = 1 E: x + y = 1

- 4. L'area del grafico di f(x,y) = xy, ristretta al dominio $\{x^2 + y^2 \le 4\}$, è A: $3\pi(5\sqrt{5}-1)/5$ B: N.A. C: non esiste D: $2\pi(5\sqrt{5}-1)/3$ E: $\pi(3\sqrt{3}-1)/3$
- 5. Determinare, se è possibile, $\alpha(x,y)$ in modo che la forma $\alpha(x,y)dx + \lg(x^2 + y^2)dy$ sia esatta nel suo dominio

A: $2\arctan(y/x)$ B: N.A. C: non è possibile D: $2x/(x^2+y^2)$ E: $(x^2+y^2)/2$

- 6. Il volume della porzione di sfera $x^2 + y^2 + z^2 \le 2$ compresa fra i piani z = 1/2 e z = -1/2 A: $7\pi/6$ B: $23\pi/12$ C: $17\pi/12$ D: $27\pi/16$ E: N.A.
- 7. La funzione La funzione $f(x,y)=\left\{\begin{array}{ll} \frac{x^2y}{x^2+y^2} & (x,y)\neq (0,0)\\ 0 & (0,0) \end{array}\right.$, nel punto (0,0), è:

A: discontinua B: ha derivate parziali, ma non ha derivata in qualche direzione C: differenziabile D: derivabile in ogni direzione, ma non differenziabile E: N.A.

8. Per quali $k \in \mathbb{R}$ all'equazione $x^3 + y^2 - y = k$ può essere applicato il teorema di Dini nell'intorno di ogni sua soluzione, per esplicitare almeno una delle due variabili in funzione dell'altra.

A: $k \neq 1/2$ B: N.A. C: per ogni $k \in \mathbb{R}$ D: $k \neq -1/4$ E: $k \neq -1/2$ e $k \neq \sqrt{3}$

9. L'insieme $\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 - y^2 \le 1\}$ è

A: connesso, ma non stella B: sconnesso C: N.A. D: stella, ma non convesso E: convesso

ı	ı	1	ı	ı	ı	ı	ı	1	ı	I	I	ı	ı	ı	ı	1	ı	1	ı	1	1	ı	1	1	ı		ı	ı	ı	ı	1	ı	ı
						(Co	gnoi	me)							_					(N	lome	e)					(N	ume	ro d	li ma	atric	cola)	

	ABCDE
1	00000
2	
3	
4	
5	
6	
7	
8	00000
9	

- 1. L'area del grafico di f(x,y)=xy, ristretta al dominio $\{x^2+y^2\leq 4\}$, è A: N.A. B: $2\pi(5\sqrt{5}-1)/3$ C: $\pi(3\sqrt{3}-1)/3$ D: $3\pi(5\sqrt{5}-1)/5$ E: non esiste
- 2. L'area racchiusa dalla curva $\rho = \sin^2 \theta \quad \theta \in [0, \pi]$ è

A: $3\pi/8$ B: $3\pi/16$ C: N.A. D: 0 E: $5\pi/16$

3. Il piano tangente al sostegno della superficie parametrica $\Phi(u,v)=(u^3v-v^2,u^3+v^3,uv)$ in (0,1,0) è

A: y + z = 1 B: x = z C: x + y = 1 D: non esiste E: N.A.

4. L'insieme $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 - y^2 \le 1\}$ è

5. Per quali $k \in \mathbb{R}$ all'equazione $x^3 + y^2 - y = k$ può essere applicato il teorema di Dini nell'intorno di ogni sua soluzione, per esplicitare almeno una delle due variabili in funzione dell'altra.

A: $k \neq 1/2$ B: $k \neq -1/2$ e $k \neq \sqrt{3}$ C: $k \neq -1/4$ D: N.A. E: per ogni $k \in \mathbb{R}$

6. Determinare, se è possibile, $\alpha(x,y)$ in modo che la forma $\alpha(x,y)dx + \lg(x^2 + y^2)dy$ sia esatta nel suo dominio

A: N.A. B: $2x/(x^2+y^2)$ C: non è possibile D: $(x^2+y^2)/2$ E: $2\arctan(y/x)$

- 7. Il volume della porzione di sfera $x^2+y^2+z^2\leq 2$ compresa fra i piani z=1/2 e z=-1/2 A: $27\pi/16$ B: $23\pi/12$ C: $17\pi/12$ D: N.A. E: $7\pi/6$
- 8. Data $f(x,y) = (\sin x)^{\sin y}$, la sua direzione di massima pendenza ascendente in $(\pi/4, \pi/2)$ e il piano tangente al grafico nel punto corrispondente sono

A: non esiste, $z=1/\sqrt{2}$ B: (1,0), $z\sqrt{2}-x=1-\pi/4$ C: N.A. D: (-1,0), $z+x=\pi/4+1/\sqrt{2}$ E: non esistono: f non è differenziabile nel punto

9. La funzione La funzione $f(x,y)=\left\{ egin{array}{ll} \frac{x^2y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (0,0) \end{array} \right.$, nel punto (0,0), è:

A: discontinua B: N.A. C: differenziabile D: ha derivate parziali, ma non ha derivata in qualche direzione E: derivabile in ogni direzione, ma non differenziabile

_		_	_	(Co	gno	me)				_			(N	ome)			(N	ume	ro c	li m	atri	icola))

	ABCDE
1	
1	
2	00000
3	00000
4	
5	
6	
7	
8	
9	

- 1. L'area del grafico di f(x,y)=xy, ristretta al dominio $\{x^2+y^2\leq 4\}$, è A: non esiste B: $\pi(3\sqrt{3}-1)/3$ C: $2\pi(5\sqrt{5}-1)/3$ D: $3\pi(5\sqrt{5}-1)/5$ E: N.A.
- 2. Per quali $k \in \mathbb{R}$ all'equazione $x^3 + y^2 y = k$ può essere applicato il teorema di Dini nell'intorno di ogni sua soluzione, per esplicitare almeno una delle due variabili in funzione dell'altra.

A: per ogni $k \in \mathbb{R}$ B: $k \neq -1/4$ C: $k \neq 1/2$ D: N.A. E: $k \neq -1/2$ e $k \neq \sqrt{3}$

3. La funzione La funzione $f(x,y)=\left\{ egin{array}{ll} \frac{x^2y}{x^2+y^2} & (x,y)
eq (0,0) \\ 0 & (0,0) \end{array} \right.$, nel punto (0,0), è:

A: ha derivate parziali, ma non ha derivata in qualche direzione B: derivabile in ogni direzione, ma non differenziabile C: differenziabile D: N.A. E: discontinua

- 4. L'area racchiusa dalla curva $\rho = \sin^2 \theta \quad \theta \in [0, \pi]$ è A: $3\pi/16$ B: 0 C: $5\pi/16$ D: N.A. E: $3\pi/8$
- 5. L'insieme $\Omega=\{(x,y)\in\mathbb{R}^2:x^2-y^2\leq 1\}$ è A: stella, ma non convesso B: convesso C: sconnesso D: N.A. E: connesso, ma non stella
- 6. Data $f(x,y)=(\sin x)^{siny}$, la sua direzione di massima pendenza ascendente in $(\pi/4,\pi/2)$ e il piano tangente al grafico nel punto corrispondente sono A: non esiste, $z=1/\sqrt{2}$ B: (1,0), $z\sqrt{2}-x=1-\pi/4$ C: (-1,0), $z+x=\pi/4+1/\sqrt{2}$ D: non esistono: f non è differenziabile nel punto E: N.A.
- 7. Il volume della porzione di sfera $x^2+y^2+z^2\leq 2$ compresa fra i piani z=1/2 e z=-1/2 A: $27\pi/16$ B: $23\pi/12$ C: N.A. D: $17\pi/12$ E: $7\pi/6$
- 8. Determinare, se è possibile, $\alpha(x,y)$ in modo che la forma $\alpha(x,y)dx + \lg(x^2 + y^2)dy$ sia esatta nel suo dominio

A: $(x^2 + y^2)/2$ B: $2\arctan(y/x)$ C: N.A. D: $2x/(x^2 + y^2)$ E: non è possibile

9. Il piano tangente al sostegno della superficie parametrica $\Phi(u,v)=(u^3v-v^2,u^3+v^3,uv)$ in (0,1,0) è

A: x + y = 1 B: y + z = 1 C: N.A. D: x = z E: non esiste