			(Co	gnoi	me)				_			(N	om	e)			_	(N	lum	erc	o di	ma	trico	ola)

	ABCDE
1	00000
2	
3	
4	
5	
6	
7	
8	00000
9	

1. La lunghezza dell'arco di curva parametrica $\gamma(t)=(t^2,t^3),\;t\in[0,1]$ è:

A: $3\pi/17$ B: N.A. C: $(17\sqrt{17} - 8)/3$ D: 0 E: $(13^{3/2} - 8)/27$

2. L'integrale della forma $-ydx/(x^2+y^2)+xdy/(x^2+y^2)$ su $\gamma(t)=(\exp(\cos^4t),\exp(\sin^6t)),$ $t\in[0,\pi]$

A: vale $\pi/2$ B: non esiste C: N.A. D: vale 0

E: vale π

3. Il versore **normale** alla curva parametrica $(\cos t, \sin^2 t)$ $t \in [0, \pi]$, nel punto (0, 1) del suo sostegno, è:

A: $(1/\sqrt{2},1/\sqrt{2})$ B: non è definito perché il vettore tangente è nullo C: (0,1) D: N.A E: (1,0)

4. L'insieme $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 + x \le 0\}$ è

A: convesso B: connesso, ma non semplicemente C: stella, ma non convesso

D: N.A. E: semplicemente connesso, ma non stella

5. Il $\lim_{x,y\to 0} \frac{xy - \sin(xy)}{3x^2 + 2y^2}$

A: vale $+\infty$ B: vale $\pi/2$ C: N.A. D: non esiste E: vale 0

6. Gli estremi globali di $xy - x^2 - y^2$ in $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ sono

7. Alla curva implicita $x^3 + x^2 + y^2 = 0$, in un suo punto (x_0, y_0) , può essere applicato il teorema di U.Dini per rappresentarla come grafico di una funzione opportuna se:

A: $(x_0, y_0) \neq (1, \pm \sqrt{2})$ B: $(x_0, y_0) \neq (0, 0), (0, -1)$ C: per ogni suo punto D: $(x_0, y_0) \neq (0, 0)$ E: N.A.

8. L'**area** della calotta sferica $\{x^2+y^2+z^2=1\}\cap\{\frac{1}{2}\leq z\leq 1\}$ è:

A: π B: N.A C: $3\pi/7$ D: 2/3 E: $4\pi/5$

9. L'area della regione piana delimitata dall'asse x e dalla curva parametrica $\rho=\theta^2\quad \theta\in[0,\pi]$ è:

A: N.A B: $\pi/3$ C: $\pi^4/8$ D: $\pi^5/10$ E: $\pi^3/12$

(Cognome)	(Nome)	(Numero di matricola)

	ABCDE
1	00000
2	
3	
4	
5	
6	
7	
8	00000
9	

1. Il versore **normale** alla curva parametrica $(\cos t\,,\,\sin^2 t)$ $t\in[0,\pi]$, nel punto (0,1) del suo sostegno, è:

A: (0,1) B: $(1/\sqrt{2},1/\sqrt{2})$ C: N.A D: non è definito perché il vettore tangente è nullo E: (1,0)

2. Gli estremi globali di $xy - x^2 - y^2$ in $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ sono

A: N.A. B: 0, -3/2 C: 0, -1 D: 1, -2/3 E: non esistono (entrambi): la funzione non è limitata

3. L'area della calotta sferica $\{x^2+y^2+z^2=1\}\cap\{\frac{1}{2}\leq z\leq 1\}$ è:

A: $4\pi/5$ B: π C: 2/3 D: N.A E: $3\pi/7$

4. Alla curva implicita $x^3 + x^2 + y^2 = 0$, in un suo punto (x_0, y_0) , può essere applicato il teorema di U.Dini per rappresentarla come grafico di una funzione opportuna se:

A: N.A. B: $(x_0, y_0) \neq (1, \pm \sqrt{2})$ C: $(x_0, y_0) \neq (0, 0), (0, -1)$ D: per ogni suo punto E: $(x_0, y_0) \neq (0, 0)$

5. La lunghezza dell'arco di curva parametrica $\gamma(t)=(t^2,t^3),\ t\in[0,1]$ è:

A: $3\pi/17$ B: $(13^{3/2} - 8)/27$ C: $(17\sqrt{17} - 8)/3$ D: N.A. E: 0

6. Il $\lim_{x,y\to 0} \frac{xy - \sin(xy)}{3x^2 + 2y^2}$

A: vale $\pi/2$ B: vale $+\infty$ C: vale 0

D: non esiste E: N.A.

7. L'area della regione piana delimitata dall'asse x e dalla curva parametrica $\rho = \theta^2 \quad \theta \in [0, \pi]$ è:

A: $\pi^4/8$ B: $\pi/3$ C: N.A D: $\pi^3/12$ E: $\pi^5/10$

8. L'integrale della forma $-ydx/(x^2+y^2)+xdy/(x^2+y^2)$ su $\gamma(t)=(\exp(\cos^4t),\exp(\sin^6t)),$ $t\in[0,\pi]$

A: vale $\pi/2$ B: non esiste C: vale π D: N.A. E: vale 0

9. L'insieme $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 + x \le 0\}$ è

A: semplicemente connesso, ma non stella B: N.A. C: convesso D: stella, ma non convesso

E: connesso, ma non semplicemente

								1																
			(C	ogno	ome)							(N	ome	:)				(N	ume	ero	di n	nati	rico	la)

	ABCDE
1	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
2	
3	
4	
5	
6	
7	
8	00000
9	0000

1. L'area della calotta sferica $\{x^2+y^2+z^2=1\}\cap \{\frac{1}{2}\leq z\leq 1\}$ è:

A: π B: 2/3 C: $3\pi/7$ D: $4\pi/5$ E: N.A

2. L'integrale della forma $-ydx/(x^2+y^2)+xdy/(x^2+y^2)$ su $\gamma(t)=(\exp(\cos^4t),\exp(\sin^6t)),$ $t\in[0,\pi]$

A: vale $\pi/2$ B: vale π C: vale 0

D: N.A. E: non esiste

3. La lunghezza dell'arco di curva parametrica $\gamma(t)=(t^2,t^3),\ t\in[0,1]$ è:

A: $3\pi/17$ B: 0 C: N.A. D: $(13^{3/2} - 8)/27$ E: $(17\sqrt{17} - 8)/3$

4. Alla curva implicita $x^3 + x^2 + y^2 = 0$, in un suo punto (x_0, y_0) , può essere applicato il teorema di U.Dini per rappresentarla come grafico di una funzione opportuna se:

A: $(x_0, y_0) \neq (0, 0), (0, -1)$ B: $(x_0, y_0) \neq (0, 0)$ C: N.A. D: per ogni suo punto E: $(x_0, y_0) \neq (1, \pm \sqrt{2})$

5. L'area della regione piana delimitata dall'asse x e dalla curva parametrica $\rho=\theta^2\quad \theta\in[0,\pi]$ è:

A: $\pi/3$ B: N.A C: $\pi^5/10$ D: $\pi^3/12$ E: $\pi^4/8$

6. Il $\lim_{x,y\to 0} \frac{xy - \sin(xy)}{3x^2 + 2y^2}$

A: vale $+\infty$ B: vale $\pi/2$ C: non esiste D: vale 0 E: N.A.

7. L'insieme $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 + x \le 0\}$ è

A: convesso B: semplicemente connesso, ma non stella C: N.A. D: stella, ma non convesso

E: connesso, ma non semplicemente

8. Gli estremi globali di $xy-x^2-y^2$ in $\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ sono

A: 0, -1 B: non esistono (entrambi): la funzione non è limitata C: N.A. D: 1, -2/3 E: 0, -3/2

9. Il versore **normale** alla curva parametrica $(\cos t, \sin^2 t)$ $t \in [0, \pi]$, nel punto (0, 1) del suo sostegno, è:

A: non è definito perché il vettore tangente è nullo B: N.A C: $(1/\sqrt{2},1/\sqrt{2})$ D: (1,0) E: (0,1)

(Cognome)	(Nome)	(Numero di matricola)

	ABCDE
1	00000
2	
3	
4	
5	
6	
7	
8	00000
9	0000

1. La lunghezza dell'arco di curva parametrica $\gamma(t)=(t^2,t^3),\ t\in[0,1]$ è:

A: 0 B:
$$3\pi/17$$
 C: $(13^{3/2} - 8)/27$ D: $(17\sqrt{17} - 8)/3$ E: N.A.

2. Alla curva implicita $x^3 + x^2 + y^2 = 0$, in un suo punto (x_0, y_0) , può essere applicato il teorema di U.Dini per rappresentarla come grafico di una funzione opportuna se:

A:
$$(x_0, y_0) \neq (0, 0)$$
 B: $(x_0, y_0) \neq (0, 0), (0, -1)$ C: N.A. D: per ogni suo punto E: $(x_0, y_0) \neq (1, \pm \sqrt{2})$

3. Il $\lim_{x,y\to 0} \frac{xy - \sin(xy)}{3x^2 + 2y^2}$

A: N.A. B: vale
$$\pi/2$$
 C: vale $+\infty$ D: non esiste E: vale 0

4. L'area della calotta sferica $\{x^2 + y^2 + z^2 = 1\} \cap \{\frac{1}{2} \le z \le 1\}$ è:

A:
$$\pi$$
 B: N.A C: $3\pi/7$ D: $4\pi/5$ E: $2/3$

5. L'insieme $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 + x \le 0\}$ è

A: convesso B: semplicemente connesso, ma non stella C: N.A. D: connesso, ma non semplicemente E: stella, ma non convesso

6. L'area della regione piana delimitata dall'asse x e dalla curva parametrica $\rho=\theta^2\quad \theta\in[0,\pi]$ è:

A:
$$\pi^3/12$$
 B: $\pi/3$ C: $\pi^5/10$ D: $\pi^4/8$ E: N.A

7. L'integrale della forma $-ydx/(x^2+y^2)+xdy/(x^2+y^2)$ su $\gamma(t)=(\exp(\cos^4t),\exp(\sin^6t)),$ $t\in[0,\pi]$

A: N.A. B: vale
$$\pi/2$$
 C: vale 0

D: non esiste E: vale π

8. Gli estremi globali di $xy-x^2-y^2$ in $\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ sono

A: 0, -3/2 B: non esistono (entrambi): la funzione non è limitata C: 1, -2/3 D: 0, -1 E: N.A.

9. Il versore **normale** alla curva parametrica $(\cos t\,,\,\sin^2 t)$ $t\in[0,\pi]$, nel punto (0,1) del suo sostegno, è:

A: (0,1) B: non è definito perché il vettore tangente è nullo C: N.A D: $(1/\sqrt{2},1/\sqrt{2})$ E: (1,0)