																L					
			(Co	gnoi	me)						(No	me)			_	(N:	ume	ro d	i ma	trico	ola)

	ABCDE
1	
2	
3	0000
4	00000
5	00000
6	00000
7	00000
8	00000
9	00000
10	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
11	

- 1. La forma quadratica $x^2 + 2xy + 2y^2 2yz + 2z^2$ è: A: definita positiva B: indefinita C: definita negativa D: semidefinita negativa E: semidefinita positiva
- 2. Determinare, ove esista, una base spettrale dell'operatore derivata dallo spazio dei polinomi di grado (massimo) due $X = \langle 1, t, t^2 \rangle$ in sé.

A: L'operatore non è da X in sé, con X complesso B: $2, 1+2t, t^2-1$ C: Non esiste, perché la derivata non è diagonalizzabile su X D: N.A. E: $1, 1-2t, t^2-2t+1$

3. La matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

A: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione due B: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione uno C: N.A. D: è diagonalizzabile perché ha tre autovalori distinti E: non è diagonalizzabile perché non ha tre autovalori distinti

- 4. La proiezione di (1,2,-1) su $\langle (1,2,1), (1,1,2) \rangle$ A: N.A. B: $\frac{2}{13}(3,1,1)$ C: $\frac{1}{11}(5,24,-9)$ D: $\frac{3}{7}(13,-23,1)$ E: non esiste
- 5. L'area del triangolo di vertici (1,1,1,1) , (1,2,1,1) , (1,2,2,2) è: A: $1/\sqrt{3}$ B: 1/2 C: $2^{-1/2}$ D: N.A. E: 0
- 6. Il determinante di $\begin{pmatrix} 1 & 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 1 & 1 \\ -1 & 1 & -2 & -2 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ vale:

A: 14 B: 0 C: N.A. D: -7 E: -53

7. Il nucleo dell'applicazione lineare da \mathbb{R}^3 a \mathbb{R}^2 definita dalla matrice $\left(\begin{array}{ccc} 3 & 2 & 1 \\ 1 & 1 & 1 \end{array}\right)$ è:

A: $\langle (1,1,-1) \rangle$ B: N.A. C: $\{0\}$ D: $\langle (2,3) \rangle$ E: $\langle (1,-2,1) \rangle$

8. La distanza fra le rette affini in \mathbb{R}^3 $(1,1,2)+\langle (1,1,1)\rangle$ e $\langle (1,1,2)\rangle$ è:

A: 0 B: N.A. C: $1/\sqrt{2}$ D: $\sqrt{3} - 2$ E: $\sqrt{3}$

9. Data $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, e detta I la matrice identica in $R^{3\times3}$, risulta che

A: $(I+A)^2 = I + A$ B: N.A. C: $(I+A)^2 = I + 2A$ D: $(I+A)^2 = 0$ E: $(I+A)^2 = I$

10. La proiezione di (1+i,1) su $\langle (1,i), (i,1) \rangle$ è:

A: (1+i,1) B: (1-i,1+i) C: N.A. D: (1,i) E: (1+i,1+2i)

11. Dati i due sottospazi di \mathbb{R}^3 $X = \langle (-1,1,0), (1,-1,2) \rangle$ e $Y = \langle (1,1,1) \rangle$, risulta che:

		1										1	ı			1								
- I																					1			
				(Cc	gno	me)				_			(N	ome)			(N:	ume	ro di	i ma	trice	ola)	

	ABCDE
1	
2	00000
3	0000
4	0000
5	0000
6	0000
7	
8	0000
9	
10	
11	

1. L'area del triangolo di vertici (1,1,1,1), (1,2,1,1), (1,2,2,2) è:

A: $2^{-1/2}$ B: $1/\sqrt{3}$ C: 1/2 D: N.A. E: 0

2. Determinare, ove esista, una base spettrale dell'operatore derivata dallo spazio dei polinomi di grado (massimo) due $X = \langle 1, t, t^2 \rangle$ in sé.

A: $2, 1+2t, t^2-1$ B: L'operatore non è da X in sé, con X complesso C: $1, 1-2t, t^2-2t+1$ D: N.A. E: Non esiste, perché la derivata non è diagonalizzabile su X

3. La proiezione di (1,2,-1) su $\left\langle \left(1,2,1\right),\,\left(1,1,2\right)\right\rangle$

A: non esiste B: N.A. C: $\frac{1}{11}(5, 24, -9)$ D: $\frac{3}{7}(13, -23, 1)$ E: $\frac{2}{13}(3, 1, 1)$

4. La matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

A: non è diagonalizzabile perché non ha tre autovalori distinti B: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione due C: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione uno D: N.A. E: è diagonalizzabile perché ha tre autovalori distinti

5. Data $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, e detta I la matrice identica in $R^{3\times3}$, risulta che

A: $(I+A)^2 = I$ B: $(I+A)^2 = I+A$ C: N.A. D: $(I+A)^2 = 0$ E: $(I+A)^2 = I+2A$

6. La distanza fra le rette affini in \mathbb{R}^3 $(1,1,2)+\langle (1,1,1)\rangle$ e $\langle (1,1,2)\rangle$ è:

A: 0 B: $\sqrt{3}$ C: N.A. D: $\sqrt{3} - 2$ E: $1/\sqrt{2}$

- 7. Dati i due sottospazi di \mathbb{R}^3 $X=\langle (-1,1,0),(1,-1,2)\rangle$ e $Y=\langle (1,1,1)\rangle$, risulta che: A: La somma fra X e Y non è diretta B: N.A. C: $X\supseteq Y$ D: La somma fra X e Y è diretta E: $Y\subseteq X$
- 8. Il nucleo dell'applicazione lineare da \mathbb{R}^3 a \mathbb{R}^2 definita dalla matrice $\begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ è:

A: $\langle (1, 1, -1) \rangle$ B: $\langle (1, -2, 1) \rangle$ C: $\langle (2, 3) \rangle$ D: N.A. E: $\{0\}$

9. La proiezione di (1+i,1) su $\langle (1,i), (i,1) \rangle$ è:

A: N.A. B: (1,i) C: (1+i,1) D: (1-i,1+i) E: (1+i,1+2i)

10. Il determinante di $\begin{pmatrix} 1 & 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 1 & 1 \\ -1 & 1 & -2 & -2 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ vale:

A: -7 B: -53 C: 14 D: N.A. E: 0

11. La forma quadratica $x^2 + 2xy + 2y^2 - 2yz + 2z^2$ è:

A: definita negativa B: semidefinita negativa C: definita positiva D: indefinita E: semidefinita positiva

			(Co	gnoi	me)							(No	me)				(N	lum	ero	di	ma	trice	ola)

	ABCDE
1	
2	00000
3	00000
4	00000
5	
6	00000
7	
8	
9	
10	
11	

1. Determinare, ove esista, una base spettrale dell'operatore derivata dallo spazio dei polinomi di grado (massimo) due $X = \langle 1, t, t^2 \rangle$ in sé.

A: $1, 1 - 2t, t^2 - 2t + 1$ B: L'operatore non è da X in sé, con X complesso C: Non esiste, perché la derivata non è diagonalizzabile su X D: N.A. E: $2, 1+2t, t^2-1$

2. Il determinante di $\begin{pmatrix} 1 & 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 1 & 1 \\ -1 & 1 & -2 & -2 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ vale:

A: N.A. B: 14 C: -7 D: -53

3. Data $A=\left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right)$, e detta I la matrice identica in $R^{3\times3}$, risulta che

A: $(I+A)^2 = I$ B: $(I+A)^2 = I+2A$ C: $(I+A)^2 = 0$ D: N.A. E: $(I+A)^2 = I+A$

4. La matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

A: non è diagonalizzabile perché non ha tre autovalori distinti B: è diagonalizzabile perché ha tre autovalori distinti C: N.A. D: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione due E: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione uno

- 5. Dati i due sottospazi di \mathbb{R}^3 $X = \langle (-1,1,0), (1,-1,2) \rangle$ e $Y = \langle (1,1,1) \rangle$, risulta che: A: La somma fra X e Y è diretta B: La somma fra X e Y non è diretta C: N.A. D: $Y \subseteq X$ E: $X \supseteq Y$
- 6. La proiezione di (1, 2, -1) su ((1, 2, 1), (1, 1, 2))A: non esiste B: $\frac{1}{11}(5, 24, -9)$ C: $\frac{3}{7}(13, -23, 1)$ D: $\frac{2}{13}(3, 1, 1)$ E: N.A.
- 7. Il nucleo dell'applicazione lineare da \mathbb{R}^3 a \mathbb{R}^2 definita dalla matrice $\begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ è:

A: $\langle (1,1,-1) \rangle$ B: $\langle (1,-2,1) \rangle$ C: N.A. D: $\langle (2,3) \rangle$ E: $\{0\}$

- 8. L'area del triangolo di vertici (1, 1, 1, 1), (1, 2, 1, 1), (1, 2, 2, 2) è: A: 0 B: $2^{-1/2}$ C: 1/2 D: $1/\sqrt{3}$ E: N.A.
- 9. La proiezione di (1+i,1) su $\langle (1,i), (i,1) \rangle$ è: A: N.A. B: (1, i) C: (1 + i, 1) D: (1 - i, 1 + i) E: (1 + i, 1 + 2i)
- 10. La distanza fra le rette affini in \mathbb{R}^3 $(1,1,2) + \langle (1,1,1) \rangle$ e $\langle (1,1,2) \rangle$ è: A: N.A. B: $\sqrt{3}$ C: $\sqrt{3} - 2$ D: 0 E: $1/\sqrt{2}$
- 11. La forma quadratica $x^2 + 2xy + 2y^2 2yz + 2z^2$ è: A: definita negativa B: definita positiva C: semidefinita positiva D: semidefinita ne-

E: indefinita gativa

			(Co	gnoi	me)				_			(No	me)			,	ume		trice	ola)

	ABCDE
1	
2	0000
3	00000
4	00000
5	00000
6	00000
7	00000
8	00000
9	
10	
11	0000

1. La matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

A: non è diagonalizzabile perché non ha tre autovalori distinti B: è diagonalizzabile perché ha tre autovalori distinti C: N.A. D: è diagonalizzabile perché l'autospazio dell'autovalore E: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione due doppio ha dimensione uno

- 2. Dati i due sottospazi di \mathbb{R}^3 $X = \langle (-1,1,0), (1,-1,2) \rangle$ e $Y = \langle (1,1,1) \rangle$, risulta che: A: $Y \subseteq X$ B: La somma fra X e Y non è diretta C: La somma fra X e Y è diretta D: $X \supseteq Y$ E: N.A.
- 3. La proiezione di (1,2,-1) su $\langle (1,2,1), (1,1,2) \rangle$ A: $\frac{1}{11}(5,24,-9)$ B: N.A. C: $\frac{2}{13}(3,1,1)$ D: $\frac{3}{7}(13,-23,1)$ E: non esiste
- 4. La proiezione di (1+i,1) su $\langle (1,i), (i,1) \rangle$ è: A: (1, i) B: (1 + i, 1 + 2i) C: (1 + i, 1) D: (1 - i, 1 + i) E: N.A.
- 5. L'area del triangolo di vertici (1, 1, 1, 1), (1, 2, 1, 1), (1, 2, 2, 2) è: A: N.A. B: 0 C: $2^{-1/2}$ D: $1/\sqrt{3}$ E: 1/2
- 6. Determinare, ove esista, una base spettrale dell'operatore derivata dallo spazio dei polinomi di grado (massimo) due $X = \langle 1, t, t^2 \rangle$ in sé.

A: $2, 1 + 2t, t^2 - 1$ B: N.A. C: $1, 1 - 2t, t^2 - 2t + 1$ D: L'operatore non è da X in sé, con X complesso — E: Non esiste, perché la derivata non è diagonalizzabile su X

7. Il determinante di $\begin{pmatrix} 1 & 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 1 & 1 \\ -1 & 1 & -2 & -2 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ vale: B: N.A. C: -53 D: 0

A: 14

8. Il nucleo dell'applicazione lineare da \mathbb{R}^3 a \mathbb{R}^2 definita dalla matrice $\begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ è:

A: $\langle (1,1,-1) \rangle$ B: $\langle (2,3) \rangle$ C: $\{0\}$ D: $\langle (1,-2,1) \rangle$

- 9. La distanza fra le rette affini in \mathbb{R}^3 $(1,1,2) + \langle (1,1,1) \rangle$ e $\langle (1,1,2) \rangle$ è: A: $\sqrt{3}$ B: N.A. C: $1/\sqrt{2}$ D: 0 E: $\sqrt{3} - 2$
- 10. La forma quadratica $x^2 + 2xy + 2y^2 2yz + 2z^2$ è:

A: semidefinita negativa B: semidefinita positiva C: definita negativa D: indefinita E: definita positiva

11. Data $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, e detta I la matrice identica in $R^{3\times3}$, risulta che

\(\begin{aligned} \(0 & 0 & 0 \end{aligned} \) A: $(I+A)^2 = I$ B: N.A. C: $(I+A)^2 = I + A$ D: $(I+A)^2 = 0$ E: $(I+A)^2 = I + 2A$

			(Co	gnoi	me)				_			(No	me)			,	ume		trice	ola)

	ABCDE
1	
2	0000
3	00000
4	
5	
6	00000
7	
8	
9	
10	
11	

1. La proiezione di (1+i,1) su $\langle (1,i), (i,1) \rangle$ è:

A:
$$(1,i)$$
 B: $(1+i,1+2i)$ C: $(1+i,1)$ D: N.A. E: $(1-i,1+i)$

2. L'area del triangolo di vertici (1,1,1,1), (1,2,1,1), (1,2,2,2) è:

A: N.A. B:
$$2^{-1/2}$$
 C: 0 D: $1/\sqrt{3}$ E: $1/2$

3. Dati i due sottospazi di \mathbb{R}^3 $X = \langle (-1,1,0), (1,-1,2) \rangle$ e $Y = \langle (1,1,1) \rangle$, risulta che:

A: La somma fra X e Y non è diretta B: $X \supseteq Y$ C: N.A. D: La somma fra X e Y è diretta E: $Y \subseteq X$

4. La matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

A: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione uno non è diagonalizzabile perché non ha tre autovalori distinti C: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione due D: N.A. E: è diagonalizzabile perché ha tre autovalori distinti

5. La forma quadratica $x^2 + 2xy + 2y^2 - 2yz + 2z^2$ è:

A: definita positiva B: semidefinita positiva C: semidefinita negativa D: indefinita E: definita negativa

6. Il determinante di $\begin{pmatrix} 1 & 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 1 & 1 \\ -1 & 1 & -2 & -2 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ vale:

7. La distanza fra le rette affini in \mathbb{R}^3 $(1,1,2) + \langle (1,1,1) \rangle$ e $\langle (1,1,2) \rangle$ è:

A:
$$1/\sqrt{2}$$
 B: N.A. C: $\sqrt{3} - 2$ D: $\sqrt{3}$ E: 0

8. La proiezione di (1,2,-1) su $\langle (1,2,1), (1,1,2) \rangle$

9. Determinare, ove esista, una base spettrale dell'operatore derivata dallo spazio dei polinomi di grado (massimo) due $X = \langle 1, t, t^2 \rangle$ in sé.

A: N.A. B: $2, 1+2t, t^2-1$ C: $1, 1-2t, t^2-2t+1$ D: L'operatore non è da X in sé, con X complesso $\,\,\,$ E: Non esiste, perché la derivata non è diagonalizzabile su X

10. Il nucleo dell'applicazione lineare da \mathbb{R}^3 a \mathbb{R}^2 definita dalla matrice $\begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ è:

A:
$$\langle (2,3) \rangle$$
 B: $\{0\}$ C: N.A. D: $\langle (1,-2,1) \rangle$ E: $\langle (1,1,-1) \rangle$

11. Data $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, e detta I la matrice identica in R^{3x3} , risulta che A: N.A. B: $(I+A)^2 = 0$ C: $(I+A)^2 = I+A$ D: $(I+A)^2 = I$ E: $(I+A)^2 = I+2A$

A: N.A. B:
$$(I+A)^2 = 0$$
 C: $(I+A)^2 = I+A$ D: $(I+A)^2 = I$ E: $(I+A)^2 = I+2A$

			(Co	gnoi	me)				_			(No	me)			,	ume		trice	ola)

	ABCDE
1	
2	0000
3	00000
4	
5	
6	00000
7	
8	
9	
10	
11	

- 1. Determinare, ove esista, una base spettrale dell'operatore derivata dallo spazio dei polinomi di grado (massimo) due $X = \langle 1, t, t^2 \rangle$ in sé.
 - A: L'operatore non è da X in sé, con X complesso B: $1, 1-2t, t^2-2t+1$ C: $2, 1+2t, t^2-1$
- D: Non esiste, perché la derivata non è diagonalizzabile su X E: N.A.
- 2. La forma quadratica $x^2 + 2xy + 2y^2 2yz + 2z^2$ è:
 - A: indefinita B: semidefinita positiva C: definita positiva D: semidefinita negativa E: definita negativa
- 3. Il determinante di $\begin{pmatrix} 1 & 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 1 & 1 \\ -1 & 1 & -2 & -2 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ vale:
 - A: 0 B: N.A. C: -53 D: 14 E: -7
- 4. Data $A=\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$, e detta I la matrice identica in $R^{3\mathrm{x}3}$, risulta che

A:
$$(I+A)^2 = I + A$$
 B: $(I+A)^2 = I$ C: $(I+A)^2 = I + 2A$ D: N.A. E: $(I+A)^2 = 0$

5. La proiezione di (1, 2, -1) su ((1, 2, 1), (1, 1, 2))

A:
$$\frac{2}{13}(3,1,1)$$
 B: N.A. C: $\frac{3}{7}(13,-23,1)$ D: non esiste E: $\frac{1}{11}(5,24,-9)$

6. L'area del triangolo di vertici (1,1,1,1), (1,2,1,1), (1,2,2,2) è:

A:
$$2^{-1/2}$$
 B: $1/2$ C: N.A. D: $1/\sqrt{3}$ E: 0

7. Il nucleo dell'applicazione lineare da \mathbb{R}^3 a \mathbb{R}^2 definita dalla matrice $\begin{pmatrix} 3 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ è:

A:
$$\langle (1,1,-1) \rangle$$
 B: $\{0\}$ C: N.A. D: $\langle (1,-2,1) \rangle$ E: $\langle (2,3) \rangle$

8. La proiezione di (1+i,1) su $\langle (1,i), (i,1) \rangle$ è:

A:
$$(1+i, 1+2i)$$
 B: $(1,i)$ C: N.A. D: $(1+i, 1)$ E: $(1-i, 1+i)$

9. La matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

A: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione uno B: non è diagonalizzabile perché non ha tre autovalori distinti C: è diagonalizzabile perché ha tre autovalori distinti D: N.A. E: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione due

10. La distanza fra le rette affini in \mathbb{R}^3 $(1,1,2) + \langle (1,1,1) \rangle$ e $\langle (1,1,2) \rangle$ è:

A:
$$1/\sqrt{2}$$
 B: $\sqrt{3} - 2$ C: $\sqrt{3}$ D: 0 E: N.A.

- 11. Dati i due sottospazi di \mathbb{R}^3 $X = \langle (-1,1,0), (1,-1,2) \rangle$ e $Y = \langle (1,1,1) \rangle$, risulta che: