			(Co	gno	me)						(No	me)			(N	lume	ro d	i ma	trice	ola)

	ABCDE
1	
2	0000
3	00000
4	00000
5	00000
6	00000
7	00000
8	00000
9	00000
10	00000
11	0000

1. La matrice $\begin{pmatrix} 1 & 3 & -1 \\ 0 & 2 & 0 \\ -1 & 3 & 1 \end{pmatrix}$

A: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 2 B: N.A. C: è diagonalizzabile perché ha tre autovalori distinti D: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 1 E: è diagonalizzabile perché è autoaggiunta

2. Relativamente all'operatore $\mathcal{A}(u) = u''$, da C^{∞} in sé,

A: -1 è un autovalore e $\{1,t\}$ è una sua base spettrale B: N.A. C: -1 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale D: 1 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale E: 0 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale

3. La matrice associata a $\mathcal{A}(u) = u'$, definito su $\langle \cos t, \sin t \rangle$ in sé, e alla base $\{\cos t, \sin t\}$ è

A: $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ B: $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ C: $\begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 2 \end{pmatrix}$ D: $\{\cos t, \sin t\}$ non è una base E

4. La (retta) bisettrice dell'angolo formato dalle semirette (1,0,0)+s(1,2,3) $s \ge 0$, e (1,0,0)+t(-6,2,-4) $t \ge 0$, è:

A: N.A. B: (1,0,0) + t(2,2,1) C: non esiste D: (1,0,0) + t(-2,3,1) E: (1,0,0) + t(1,3,1)

- 5. I sottospazi $X=\langle (1,1,2),(-1,0,1)\rangle$ e $Y=\langle (0,1,3),(1,1,1)\rangle$ verificano A: $X+Y=\mathbb{R}^3$ e $X\cap Y=\langle (1,1,1)\rangle$ B: N.A. C: $\dim X+Y=4$ e $\dim X\cap Y=\emptyset$ D: $X\subset Y$ E: $X+Y=\mathbb{R}^3$ e $X\cap Y=\langle (0,1,3)\rangle$
- 6. La retta per (1,1,1), perpendicolare a (1,0,1)+t(1,2,1) è: A: N.A. B: non esiste C: (1,1,1)+t(2,1,-0) D: (1,1,1)+t(-1,-1,3) E: (1,1,1)+t(-1,1,-1)
- 7. L'inversa della matrice $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ è

A: $\frac{1}{2}\begin{pmatrix} 2 & 2 & 1 \\ -1 & 1 & 1 \\ 3 & 3 & -1 \end{pmatrix}$ B: N.A. C: non esiste D: $\frac{1}{2}\begin{pmatrix} 1 & -3 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$ E: $\frac{1}{3}\begin{pmatrix} -2 & 1 & 0 \\ 1 & 1 & -2 \\ -3 & 0 & 1 \end{pmatrix}$

8. La matrice $\begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 2 & 0 & 2 \end{pmatrix}$

A: non è diagonalizzabile B: N.A. C: è diagonalizzabile su $\mathbb C$ ma non su $\mathbb R$ perché ha tre autovalori distinti, non tutti reali D: è diagonalizzabile su $\mathbb R$ perché ha tre autovalori distinti, tutti reali E: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 2

- 9. La proiezione (in \mathbb{C}^3) di (1,i,-1) su $\langle (2,i,0),(i,2,1)\rangle$ è A: $(30/31-i/2\ ,\ -1/3-14i/13\ ,\ -1/6+i/3)$ B: $(31/30-i/6\ ,\ -1/3+14i/15\ ,\ -1/6+i/6)$ C: non è definita D: N.A. E: $(31/7-i/6\ ,\ -1/3-14i/15\ ,\ -1/3-i/6)$
- 10. Le dimensioni di nucleo e immagine dell'applicazione definita dalla matrice $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{pmatrix}$ sono

A: N.A. B: 2,3 C: 0,4 D: 2,2 E: 1,3

11. L'insieme delle funzioni positive (o nulle) su [0,1], con le consuete operazioni di somma e multiplo scalare

A: non è uno spazio vettoriale B: N.A. C: è uno spazio normato D: è uno spazio vettoriale su $\mathbb R$ E: è uno spazio vettoriale su $\mathbb C$

																						I	
			(Co	ogno	me)							(No	me)				(N	ume	ero	di	mat	trice	ola)

	ABCDE
1	
2	0000
3	00000
4	00000
5	00000
6	00000
7	00000
8	00000
9	00000
10	00000
11	0000

- 1. I sottospazi $X=\langle (1,1,2),(-1,0,1)\rangle$ e $Y=\langle (0,1,3),(1,1,1)\rangle$ verificano A: $X+Y=\mathbb{R}^3$ e $X\cap Y=\langle (1,1,1)\rangle$ B: N.A. C: dimX+Y=4 e $dimX\cap Y=\emptyset$ D: $X+Y=\mathbb{R}^3$ e $X\cap Y=\langle (0,1,3)\rangle$ E: $X\subset Y$
- 2. Relativamente all'operatore $\mathcal{A}(u) = u''$, da C^{∞} in sé, A: 1 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale B: N.A. C: 0 è un aut

A: 1 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale B: N.A. C: 0 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale D: -1 è un autovalore e $\{1, t\}$ è una sua base spettrale E: -1 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale

- 3. La proiezione (in \mathbb{C}^3) di (1,i,-1) su $\langle (2,i,0),(i,2,1)\rangle$ è A: $(30/31-i/2\ ,\ -1/3-14i/13\ ,\ -1/6+i/3)$ B: non è definita C: $(31/30-i/6\ ,\ -1/3+14i/15\ ,\ -1/6+i/6)$ D: N.A. E: $(31/7-i/6\ ,\ -1/3-14i/15\ ,\ -1/3-i/6)$
- 4. L'insieme delle funzioni positive (o nulle) su [0,1], con le consuete operazioni di somma e multiplo scalare

A: è uno spazio vettoriale su $\mathbb C$ B: non è uno spazio vettoriale C: è uno spazio vettoriale su $\mathbb R$ D: è uno spazio normato E: N.A.

5. La matrice $\left(\begin{array}{ccc} 1 & 3 & -1 \\ 0 & 2 & 0 \\ -1 & 3 & 1 \end{array} \right)$

A: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 2 B: è diagonalizzabile perché ha tre autovalori distinti C: N.A. D: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 1 E: è diagonalizzabile perché è autoaggiunta

6. La (retta) bisettrice dell'angolo formato dalle semirette (1,0,0)+s(1,2,3) $s\geq 0$, e (1,0,0)+t(-6,2,-4) $t\geq 0$, è:

A: (1,0,0)+t(2,2,1) B: (1,0,0)+t(-2,3,1) C: N.A. D: non esiste E: (1,0,0)+t(1,3,1)

7. L'inversa della matrice $\left(\begin{array}{ccc}1&2&1\\0&1&1\\1&1&2\end{array}\right)$ è

A:
$$\frac{1}{2}\begin{pmatrix} 1 & -3 & 1\\ 1 & 1 & -1\\ -1 & 1 & 1 \end{pmatrix}$$
 B: $\frac{1}{3}\begin{pmatrix} -2 & 1 & 0\\ 1 & 1 & -2\\ -3 & 0 & 1 \end{pmatrix}$ C: N.A. D: $\frac{1}{2}\begin{pmatrix} 2 & 2 & 1\\ -1 & 1 & 1\\ 3 & 3 & -1 \end{pmatrix}$

8. La matrice $\begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 2 & 0 & 2 \end{pmatrix}$

A: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 2 B: è diagonalizzabile su $\mathbb R$ perché ha tre autovalori distinti, tutti reali $\mathbb C$: non è diagonalizzabile $\mathbb C$: N.A. $\mathbb E$: è diagonalizzabile su $\mathbb C$ ma non su $\mathbb R$ perché ha tre autovalori distinti, non tutti reali

9. Le dimensioni di nucleo e immagine dell'applicazione definita dalla matrice $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{pmatrix}$ sono

A: 2, 2 B: 2, 3 C: 1, 3 D: N.A. E: 0, 4

10. La matrice associata a $\mathcal{A}(u)=u'$, definito su $\langle \cos t, \sin t \rangle$ in sé, e alla base $\{\cos t, \sin t\}$ è

$$\text{A:} \left\{\cos t, \sin t\right\} \text{ non \`e una base} \quad \text{B:} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \quad \text{C: N.A.} \quad \text{D:} \left(\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array}\right) \quad \text{E:} \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \\ 1 & 2 \end{array}\right)$$

- 11. La retta per (1,1,1), perpendicolare a (1,0,1)+t(1,2,1) è:
 - A: (1,1,1)+t(-1,-1,3) B: non esiste C: (1,1,1)+t(-1,1,-1) D: (1,1,1)+t(2,1,-0) E: N A

_	_			(Co	gnoi	me)				-			(No	me)			•	(N	ume	ro d	i ma	trice	ola)

	ABCDE
	АВСВЕ
1	
2	00000
3	
4	
5	00000
6	00000
7	00000
8	00000
9	
10	0000
11	

1. La (retta) bisettrice dell'angolo formato dalle semirette (1,0,0)+s(1,2,3) $s\geq 0$, e (1,0,0)+t(-6,2,-4) $t\geq 0$, è:

2. I sottospazi $X=\langle (1,1,2), (-1,0,1)\rangle$ e $Y=\langle (0,1,3), (1,1,1)\rangle$ verificano

A: N.A. B: $X+Y=\mathbb{R}^3$ e $X\cap Y=\langle (0,1,3)\rangle$ C: $X\subset Y$ D: $X+Y=\mathbb{R}^3$ e $X\cap Y=\langle (1,1,1)\rangle$ E: dimX+Y=4 e $dimX\cap Y=\emptyset$

3. La matrice associata a $\mathcal{A}(u) = u'$, definito su $\langle \cos t, \sin t \rangle$ in sé, e alla base $\{\cos t, \sin t\}$ è

 $\text{A:} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \quad \text{B:} \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \\ 1 & 2 \end{array} \right) \quad \text{C: N.A.} \quad \text{D:} \left\{ \cos t, \sin t \right\} \text{ non \`e una base} \quad \text{E:} \left(\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array} \right)$

4. La matrice $\begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 2 & 0 & 2 \end{pmatrix}$

A: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 2 B: è diagonalizzabile su $\mathbb R$ perché ha tre autovalori distinti, tutti reali $\mathbb C$: N.A. D: è diagonalizzabile su $\mathbb C$ ma non su $\mathbb R$ perché ha tre autovalori distinti, non tutti reali $\mathbb E$: non è diagonalizzabile

5. L'inversa della matrice $\left(\begin{array}{ccc}1&2&1\\0&1&1\\1&1&2\end{array}\right)$ è

A: $\frac{1}{2}\begin{pmatrix} 2 & 2 & 1 \\ -1 & 1 & 1 \\ 3 & 3 & -1 \end{pmatrix}$ B: non esiste C: N.A. D: $\frac{1}{3}\begin{pmatrix} -2 & 1 & 0 \\ 1 & 1 & -2 \\ -3 & 0 & 1 \end{pmatrix}$ E: $\frac{1}{2}\begin{pmatrix} 1 & -3 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$

6. L'insieme delle funzioni positive (o nulle) su [0,1], con le consuete operazioni di somma e multiplo scalare

A: è uno spazio normato B: non è uno spazio vettoriale C: è uno spazio vettoriale su $\mathbb C$ D: è uno spazio vettoriale su $\mathbb R$ E: N.A.

7. La matrice $\begin{pmatrix} 1 & 3 & -1 \\ 0 & 2 & 0 \\ -1 & 3 & 1 \end{pmatrix}$

A: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 1 B: N.A. C: è diagonalizzabile perché è autoaggiunta D: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 2 E: è diagonalizzabile perché ha tre autovalori distinti

8. Relativamente all'operatore $\mathcal{A}(u) = u''$, da C^{∞} in sé,

A: -1 è un autovalore e $\{1,t\}$ è una sua base spettrale B: N.A. C: 0 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale D: 1 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale E: -1 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale

9. La proiezione (in \mathbb{C}^3) di (1,i,-1) su $\langle (2,i,0),(i,2,1)\rangle$ è

- 10. Le dimensioni di nucleo e immagine dell'applicazione definita dalla matrice $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{pmatrix}$ sono
 - A: N.A. B: 2,3 C: 1,3 D: 2,2 E: 0,4
- 11. La retta per (1,1,1), perpendicolare a (1,0,1)+t(1,2,1)è:

A:
$$(1,1,1)+t(2,1,-0)$$
 B: $(1,1,1)+t(-1,1,-1)$ C: non esiste D: $(1,1,1)+t(-1,-1,3)$ E: N.A.

(Cogn	nome)				•	(No	me)			(Nı	umei	ro di	í ma	trico	ola)

	ABCDE
1	
2	00000
3	0000
4	00000
5	00000
6	0000
7	00000
8	0000
9	00000
10	00000
11	0000

1. La proiezione (in \mathbb{C}^3) di (1, i, -1) su $\langle (2, i, 0), (i, 2, 1) \rangle$ è

A: $(31/30-i/6\ ,\ -1/3+14i/15\ ,\ -1/6+i/6)$ B: N.A. C: $(30/31-i/2\ ,\ -1/3-14i/13\ ,\ -1/6+i/3)$ D: $(31/7-i/6\ ,\ -1/3-14i/15\ ,\ -1/3-i/6)$ E: non è definita

2. L'insieme delle funzioni positive (o nulle) su [0,1], con le consuete operazioni di somma e multiplo scalare

A: è uno spazio vettoriale su $\mathbb C$ B: è uno spazio vettoriale su $\mathbb R$ C: non è uno spazio vettoriale D: è uno spazio normato E: N.A.

3. Relativamente all'operatore $\mathcal{A}(u) = u''$, da C^{∞} in sé,

A: -1 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale B: 1 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale C: 0 è un autovalore e $\{\sin t, \cos t\}$ è una sua base spettrale D: N.A. E: -1 è un autovalore e $\{1, t\}$ è una sua base spettrale

4. La matrice associata a $\mathcal{A}(u) = u'$, definito su $\langle \cos t, \sin t \rangle$ in sé, e alla base $\{\cos t, \sin t\}$ è

A: N.A. B: $\begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 2 \end{pmatrix}$ C: $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ D: $\{\cos t, \sin t\}$ non è una base E: $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

5. La matrice $\begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 2 & 0 & 2 \end{pmatrix}$

A: è diagonalizzabile su $\mathbb R$ perché ha tre autovalori distinti, tutti reali $\mathbb B$: N.A. $\mathbb C$: non è diagonalizzabile $\mathbb D$: è diagonalizzabile su $\mathbb C$ ma non su $\mathbb R$ perché ha tre autovalori distinti, non tutti reali $\mathbb E$: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 2

6. Le dimensioni di nucleo e immagine dell'applicazione definita dalla matrice $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{pmatrix}$ sono

A: N.A. B: 2,3 C: 0,4 D: 2,2 E: 1,3

7. La (retta) bisettrice dell'angolo formato dalle semirette (1,0,0)+s(1,2,3) $s\geq 0$, e (1,0,0)+t(-6,2,-4) $t\geq 0$, è:

A: (1,0,0)+t(1,3,1) B: non esiste C: (1,0,0)+t(-2,3,1) D: (1,0,0)+t(2,2,1) E: N.A.

8. I sottospazi $X = \langle (1,1,2), (-1,0,1) \rangle$ e $Y = \langle (0,1,3), (1,1,1) \rangle$ verificano

A: dimX + Y = 4 e $dimX \cap Y = \emptyset$ B: $X \subset Y$ C: $X + Y = \mathbb{R}^3$ e $X \cap Y = \langle (1, 1, 1) \rangle$ D: $X + Y = \mathbb{R}^3$ e $X \cap Y = \langle (0, 1, 3) \rangle$ E: N.A.

9. La matrice $\begin{pmatrix} 1 & 3 & -1 \\ 0 & 2 & 0 \\ -1 & 3 & 1 \end{pmatrix}$

A: è diagonalizzabile perché ha tre autovalori distinti B: non è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 1 C: N.A. D: è diagonalizzabile perché l'autospazio dell'autovalore doppio ha dimensione 2 E: è diagonalizzabile perché è autoaggiunta

10. L'inversa della matrice $\left(\begin{array}{ccc}1&2&1\\0&1&1\\1&1&2\end{array}\right)$ è

A:
$$\frac{1}{2}\begin{pmatrix} 1 & -3 & 1\\ 1 & 1 & -1\\ -1 & 1 & 1 \end{pmatrix}$$
 B: N.A. C: non esiste D: $\frac{1}{3}\begin{pmatrix} -2 & 1 & 0\\ 1 & 1 & -2\\ -3 & 0 & 1 \end{pmatrix}$ E: $\frac{1}{2}\begin{pmatrix} 2 & 2 & 1\\ -1 & 1 & 1\\ 3 & 3 & -1 \end{pmatrix}$

11. La retta per (1,1,1), perpendicolare a (1,0,1)+t(1,2,1) è:

A:
$$(1,1,1)+t(2,1,-0)$$
 B: N.A. C: non esiste D: $(1,1,1)+t(-1,1,-1)$ E: $(1,1,1)+t(-1,-1,3)$