Dipartimento di Matematica Applicata

"Ulisse Dini"

Metodi Matematici per l'Ingegneria Laurea Specialistica in Ingegneria Informatica

29/06/05

1) È data la tabella di valori

Determinare α in modo che il polinomio di interpolazione risulti di grado minimo.

Approssimare i valori \bar{x} per i quali $f(\bar{x}) = 3$.

2) Una catena di Markov ha la seguente matrice di transizione

$$T = \begin{pmatrix} 7/8 & 0 & 0 & 0 & 1/8 \\ 2/5 & 1/5 & 1/5 & 0 & 1/5 \\ 0 & 0 & 1 & 0 & 0 \\ 1/3 & 1/3 & 0 & 1/3 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{pmatrix}.$$

- a) Dire se la catena risulta riducibile e classificarne gli stati.
- b) Determinare le distribuzioni limite.
- c) Calcolare le probabilitá di assorbimento.
- d) Calcolare i tempi medi di assorbimento.

 ${\bf 3)}\,$ Due variabili aleatorie Xe Yhanno la densitá di probabilitá congiunta

$$f(x,y) = \begin{cases} K(x+y) & \text{se } 0 \le x \le 2, 0 \le y \le 1, \\ 0 & \text{altrimenti.} \end{cases}$$

- a) Determinare la costante reale K.
- b) Le due variabili sono indipendenti?
- c) Calcolare la densitá $f_{Y|X}(y|x)$.
- d) Determinare $P\left(y < x \frac{1}{4}x^2\right)$.

1) Si costruisce il quadro delle differenze divise

x	f(x)	DD1	DD2
0	2		
1	1	-1	
3	11	3	2
-1	$3\alpha + 1$	$1-3\alpha$	$(3\alpha-2)/2$
α	4	$2/\alpha$	$(2+\alpha)/(\alpha(\alpha-1))$

L'ultima colonna risulta costante per $\alpha = 2$ ed il polinomio di interpolazione ha grado 2. Svolgendo i calcoli si ottiene $P_4(x) = 2x^2 - 3x + 2$.

I valori \bar{x} per i quali $f(\bar{x})=3$ si approssimano risolvendo l'equazione $P_4(x)=3$ data da $2x^2-3x-1=0$ per cui $\bar{x}\simeq \frac{3\pm\sqrt{17}}{4}$.

2) La catena risulta riducibile con due classi chiuse. Gli stati E_2, E_4 sono transitori, lo stato E_3 è uno stato assorbente e costituisce la classe chiusa $C^{(1)}$, gli stati E_1, E_5 costituiscono una seconda classe chiusa $C^{(2)}$. Le distribuzioni limite sono date dalle soluzioni del sistema $\pi = \pi T$ con la condizione $0 \le \pi_i \le 1$, i = 1, 2, 3, 4, 5, e $\sum_{i=1}^5 \pi_i = 1$ per cui

$$\pi^{(1)} = (0, 0, 1, 0, 0), \quad \pi^{(2)} = \frac{1}{5}(4, 0, 0, 0, 1).$$

Le probabilitá di assorbimento (relative agli stati transitori) sono

$$\lambda_2^{(1)} = \frac{1}{4} \; , \; \lambda_4^{(1)} = \frac{1}{8} \; , \; \lambda_2^{(2)} = \frac{3}{4} \; , \; \lambda_4^{(2)} = \frac{7}{8} \; .$$

I tempi medi di assorbimento sono

$$\eta_2 = \frac{5}{4}, \quad \eta_4 = \frac{17}{8}.$$

3) La costante K si determina imponendo $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = 1$ per cui K = 1/3.

Le densità marginali sono

$$f_X(x) = \int_0^1 \frac{1}{3}(x+y)dy = \frac{1}{3}x + \frac{1}{6}, \ f_Y(y) = \int_0^2 \frac{1}{3}(x+y)dx = \frac{2}{3}(1+y).$$

Le due variabili risultano dipendenti essendo $f(x,y) \neq f_X(x) f_Y(y)$. Risulta

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{\frac{1}{3}(x+y)}{\frac{1}{6}(2x+1)} = \frac{2(x+y)}{2x+1}$$
.

La probabilità richiesta è

$$P\left(y < x - \frac{1}{4}x^2\right) = \int_0^2 dx \int_0^{x - x^2/4} f(x, y) dy$$

$$= \int_0^2 dx \int_0^{x - x^2/4} \frac{1}{3}(x + y) dy$$

$$= \frac{1}{3} \int_0^2 \left[xy + \frac{y^2}{2} \right]_0^{x - x^2/4} dx$$

$$= \frac{1}{3} \int_0^2 \left(\frac{3}{2}x^2 - \frac{1}{2}x^3 + \frac{1}{32}x^4 \right) dx$$

$$= \frac{11}{15}.$$