
Chapter 1
Heidelberg Lectures on Fundamental Groups

Tamás Szamuely

As a prelude to the PIA conference, in February 2010 Amnon Besser and I gave
introductory lecture series at Universität Heidelberg, following the kind request of
Jakob Stix. These notes constitute a revised version of the ones I distributed dur-
ing the lectures. They begin with a quick introduction to Grothendieck’s concept
of the algebraic fundamental group. After a reminder on basic results concerning
fundamental groups of curves, we move on to discuss what is arguably the most
famous open problem in the area, Grothendieck’s Section Conjecture. The next sec-
tion presents in detail a beautiful application of the ideas involved in the conjecture:
Parshin’s ‘hyperbolic’ proof of the geometric case of Mordell’s conjecture. The final
section gives an overview of the most important features of anabelian geometry.

I thank Jakob Stix for giving me an opportunity to deliver the lectures and his
warm hospitality at Heidelberg, as well as the referee for a very careful reading of
the text. I also acknowledge partial support from OTKA grant No. NK81203.

1.1 Grothendieck’s Fundamental Group

Grothendieck’s theory of the algebraic fundamental group is a common generaliza-
tion of Galois theory and the theory of covers in topology. Let us briefly recall both.
The proofs of all statements in this section can be found in [48].

Let k be a field. Recall that a finite dimensional k-algebra A is étale (over k) if it
is isomorphic to a finite direct product of separable extensions of k. Fix a separable
closure ks|k. The Gal(ks|k)-action on ks induces a left action on the set of k-algebra
homomorphisms Homk(A,ks). The rule A 7→ Hom(A,ks) is a contravariant func-
tor. The Main Theorem of Galois theory in Grothendieck’s version is the following
statement.

Theorem 1.1 The contravariant functor F : A 7→ Homk(A,ks) gives an anti-equi-
valence between the category of finite étale k-algebras and the category of finite sets
with continuous left Gal(ks|k)-action.
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Note that the functor F depends on the choice of the separable closure ks. The
latter is not a finite étale k-algebra but a direct limit of such. Also, one checks that
Gal(ks|k) is naturally isomorphic to the automorphism group of the functor F (i.e.
the group of isomorphisms F ∼→ F).

Now to the topological situation. Let X be a connected, locally connected and
locally simply connected topological space. Recall that a cover of X is a space Y
equipped with a continuous map p : Y → X subject to the following condition: each
point of X has an open neighbourhood V for which p−1(V ) decomposes as a disjoint
union of open subsets Ui of Y such that the restriction of p to each Ui induces a
homeomorphism of Ui with V .

Given a point x ∈ X , the fundamental group π1(X ,x) has a natural left action
on the fibre p−1(x) defined as follows: given α ∈ π1(X ,x) represented by a closed
path f : [0,1] → X with f (0) = f (1) = x as well as a point y ∈ p−1(x), we define
αy := f̃ (1), where f̃ is the unique lifting of the path f to Y with f̃ (0) = y. One
checks that this indeed gives a well-defined left action of π1(X ,x). It is called the
monodromy action.

Theorem 1.2 The functor Fibx sending a cover p : Y → X to the fibre p−1(x)
equipped with the monodromy action induces an equivalence of the category of
covers of X with the category of left π1(X ,x)-sets.

Here again, the functor Fibx depends on the choice of the point x. It is in fact
representable by a cover π : X̃x → X , i.e. we have an isomorphism of functors
Fibx ∼= Hom(X̃x, ). The space X̃x can be constructed as the space of homotopy
classes of paths starting from x, the projection π mapping the class of a path to
its other endpoint. As a consequence, we have isomorphisms

Aut(X̃x)∼= Aut(Fibx)∼= π1(X ,x).

Here is an important consequence. Call a cover Y → X finite if it has finite fibres;
for connected X these have the same cardinality, called the degree of X .

Corollary 1.3 For X and x as in Theorem 1.2, the functor Fibx induces an equiva-
lence of the category of finite covers of X with the category of finite continuous left
̂π1(X ,x)-sets.

Here ̂π1(X ,x) denotes the profinite completion of π1(X ,x), i.e. the inverse limit
of the natural inverse system of its finite quotients.

We can now come to Grothendieck’s common generalization in algebraic geom-
etry. Let S be a connected scheme. Recall that a finite étale cover of S is a finite flat
surjection X → S such that each fibre at a point s ∈ S is the spectrum of a finite étale
κ(s)-algebra. Fix a geometric point s̄ : Spec(Ω)→ S. For a finite étale cover X → S
we consider the geometric fibre X ×S Spec(Ω) over s̄, and denote by Fibs̄(X) its
underlying set. This gives a set-valued functor on the category of finite étale covers
of X .
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We define the algebraic fundamental group π1(S, s̄) as the automorphism group
of this functor. By definition an automorphism of Fibs̄ induces an automorphism of
the set Fibs̄(X) for each finite étale cover X ; in this way we obtain a natural left
action of π1(S, s̄) on the set Fibs̄(X).

Theorem 1.4 (Grothendieck) Let S be a connected scheme, and s̄ : Spec(Ω)→ S
a geometric point.

1. The group π1(S, s̄) is profinite, and its action on Fibs̄(X) is continuous for every
X in FetS.

2. The functor Fibs̄ induces an equivalence of the category of finite étale covers of
S with the category of finite continuous left π1(S, s̄)-sets.

Here the functor Fibs̄ is pro-representable, which means that there exists a (fil-
tered) inverse system P = (Pα ,ϕαβ ) of finite étale covers and a functorial isomor-
phism lim

→
Hom(Pα ,X) ∼= Fibs̄(X). The automorphism group of each finite étale

cover Pα → S is finite, and π1(S, s̄) is their inverse limit; this explains its profinite-
ness. In fact, Grothendieck showed that one may choose as a pro-representing sys-
tem the system of all Galois covers Pα → X , i.e. those finite étale covers for which
Aut(Pα |S) acts transitively on geometric fibres. These are turned into an inverse
system by choosing a distinguished point pα ∈ Fibs̄(Pα) for each α; for each pair
α ,β there is then at most one S-morphism Pβ → Pα sending pβ to pα . We define
this map to be ϕαβ (if it exists).

Remark 1.5 Any two fibre functors on the category of finite étale S-schemes are
(non-canonically) isomorphic. One way to prove this is to use pro-representability
of the fibre functor which reduces the construction of an isomorphism between func-
tors to the construction of a compatible system of automorphisms of the Galois
objects Pα transforming one system of maps ϕαβ to another. This can be done by
means of a compactness argument.

An isomorphism between two fibre functors Fibs̄ and Fibs̄′ is called a path from
s̄ to s̄′. It induces an isomorphism of fundamental groups π1(S, s̄)

∼→ π1(S, s̄′). In the
topological situation such an isomorphism is induced by the choice of a (usual) path
between base points, whence the name in the algebraic situation. As in topology,
two isomorphisms π1(S, s̄)

∼→ π1(S, s̄′) induced by different paths differ by an inner
automorphism of π1(S, s̄).

Remark 1.6 Historically, the case of a normal scheme was known earlier. If S is an
integral normal Noetherian scheme, denote by Ks a fixed separable closure of the
function field K of S, and by KS the composite of all finite subextensions L|K of Ks
such that the normalization of S in L is étale over S. Then KS|K is a Galois extension,
and it can be shown that the Galois group Gal(KS|K) is canonically isomorphic to
the fundamental group π1(S, s̄) for the geometric point s̄ : Spec(K)→ S, where K is
the algebraic closure of K containing Ks.

The following examples show that the algebraic fundamental group indeed yields
a common generalization of the algebraic and topological cases:
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Examples 1.7

1. For X = Spec(k), x̄ : Spec(k)→ Spec(k) we have

π1(X , x̄)∼= Gal(ks|k).

This holds basically because finite étale Spec(k)-schemes are spectra of finite
étale k-algebras.

2. For X of finite type over C and x̄ : Spec(C)→X there is a canonical isomorphism

̂π top
1 (Xan, x̄) ∼→ π1(X , x̄)

where on the left hand side we have the profinite completion of the topological
fundamental group of X with base point Im(x̄), and Xan denotes the complex
analytic space associated with X .
This isomorphism relies on a deep algebraization theorem for finite topological
covers of schemes of finite type over C.

A base point preserving morphism of schemes induces a continuous homomor-
phism of fundamental groups. To construct it, let S and S′ be connected schemes,
equipped with geometric points s̄ : Spec(Ω) → S and s̄′ : Spec(Ω) → S′, respec-
tively. Assume given a morphism ϕ : S′ → S with ϕ ◦ s̄′ = s̄. For a finite étale cover
X → S consider the base change X ×S S′ → S′. The condition ϕ ◦ s̄′ = s̄ implies that
Fibs̄(X) = Fibs̄′(X ×S S′). This construction is functorial in X , and thus every auto-
morphism of the functor Fibs̄′ induces an automorphism of Fibs̄, which defines the
required map ϕ∗ : π1(S′, s̄′)→ π1(S, s̄).

The above functoriality, together with Example 1.7 (1), defines the maps in the
following exact sequence which is fundamental not only because it involves funda-
mental groups.

Proposition 1.8 Let X be a quasi-compact and geometrically integral scheme over
a field k. Fix an algebraic closure k of k, and let ks|k be the corresponding separable
closure. Write X := X ×Spec(k) Spec(ks), and let x̄ be a geometric point of X with
values in k. The sequence of profinite groups

1 → π1(X , x̄)→ π1(X , x̄)→ Gal(ks|k)→ 1 (1.1)

induced by the maps X → X and X → Spec(k) is exact.

The group π1(X , x̄) acts on its normal subgroup π1(X , x̄) via inner automor-
phisms, whence a map ϕX : π1(X , x̄) → Aut(π1(X , x̄)). Inside Aut(π1(X , x̄)) we
have the normal subgroup Inn(π1(X , x̄)) of inner automorphisms; the quotient is
the group Out(π1(X , x̄)) of outer automorphisms. By the commutative diagram

1 −−−−−→ π1(X ,x) −−−−−→ π1(X ,x) −−−−−→ Gal(ks|k) −−−−−→ 1y y y
1 −−−−−→ Inn(π1(X ,x)) −−−−−→ Aut(π1(X ,x)) −−−−−→ Out(π1(X ,x)) −−−−−→ 1
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we get an important representation

ρX : Gal(ks|k)→ Out(π1(X , x̄)).

called the outer Galois representation. It will appear several times in subsequent
sections.

Example 1.9 Assume X is a smooth proper curve of genus g, and fix a prime num-
ber ℓ different from the characteristic of k. As we shall see in a moment (Remark
2.2), the maximal abelian pro-ℓ-quotient of π1(X ×k k,x) is isomorphic to the Tate
module Tℓ(J) of the Jacobian J of X ×k k. Taking the pushout of the sequence
(1.1) by the natural map π1(X ×k k) → Tℓ(J) we obtain an extension of Gal(k|k)
by Tℓ(J). By the same argument as above it gives rise to a Galois representation
Gal(ks|k)→ Aut(Tℓ(J)) ∼= GL2g(Zℓ). It is none but the usual Galois representation
on torsion points of the Jacobian, a central object of study in number theory. The
outer Galois representation can thus be viewed as a non-abelian generalization.

1.2 Fundamental Groups of Curves

In the first part of this section k denotes an algebraically closed field of characteristic
p ≥ 0 and X a proper smooth curve over k. We recall some basic structure results
about the fundamental group of X and of its open subschemes; as they concern the
groups up to isomorphism, we drop base points from the notation.

Theorem 2.1 (Grothendieck [13]) Let U ⊂ X be an open subcurve (possibly equal
to X), and n ≥ 0 the number of closed points in X \U. Then π1(U)(p′) is isomorphic
to the profinite p′-completion of the group

Πg,n := ⟨a1,b1, . . . ,ag,bg,γ1, . . . ,γn | [a1,b1] . . . [ag,bg]γ1 . . .γn = 1⟩.

Here G(p′) denotes the maximal prime-to-p quotient of the profinite group G, i.e.
the inverse limit of its finite quotients of order prime to p; for p = 0 we define it to
be G itself.

For k = C the theorem follows via Example 1.7 (2) from the well-known struc-
ture of the topological fundamental group; in this particular case the underlying
algebraization theorem is just the Riemann existence theorem of complex analysis.
One deduces the result for k of characteristic 0 using a rigidity theorem (see e.g.
[48], Proposition 5.6.7 and Remark 5.7.8) which says that the fundamental group of
a smooth curve does not change under extensions of algebraically closed fields of
characteristic 0 (this also holds in positive characteristic, but only for proper curves).

In positive characteristic Grothendieck proved the result by first lifting the curve
to characteristic 0 and then proving a specialization theorem establishing an iso-
morphism between maximal prime-to-p quotients of the fundamental groups of the
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curve and its lifting. Thus this case also relies on the topological result over C. The
only case where a proof avoiding the topological argument is known at present is
for k = Fp. There Wingberg [51] was able to prove that the maximal pro-ℓ quotients
(for ℓ ̸= p a prime) of π1(U) have the above structure using class field theory and
delicate group-theoretic arguments.

Remark 2.2 For X proper and ℓ ̸= p a prime the theorem implies that the maximal
abelian pro-ℓ-quotient of π1(X) is isomorphic to Z2g

ℓ . On the other hand, for J the
Jacobian of X the Tate module Tℓ(J) has the same structure. This is not a coinci-
dence: by a theorem of Serre and Lang ([25], see also [48], Theorem 5.6.10) every
finite étale cover of J of ℓ-power degree is a quotient of some cover given by

0 → ℓnJ → J ℓn
→ J → 0;

on the other hand, given some embedding X → J obtained by sending a point x to
the divisor class of x− ξ for a fixed base point ξ , the induced map on fundamen-
tal groups becomes an isomorphism on the maximal prime-to-p abelian quotient
(‘abelian prime-to-p covers are obtained via pullback from the Jacobian’).

There is also a generalization to open curves: if U ⊂ X is an open subcurve,
one still identifies the maximal abelian pro-ℓ-quotient of π1(U) with the ℓ-adic Tate
module of the Jacobian J̃ of U ; the latter is a commutative group variety which is an
extension of J by the (n−1)-st power of the multiplicative group Gm, in accordance
with the theorem. See e.g. ([20], (2.7)).

The maximal pro-p quotient G(p) of G is defined as the inverse limit of finite
quotients of p-power order, and we have:

Theorem 2.3 (Shafarevich [43]) Assume p> 0. Then π1(X)(p) is a free pro-p group
of finite rank equal to the p-rank of the Jacobian variety of X.

For an open subcurve U ̸= X the group π1(U)(p) is a free pro-p group of infinite
rank equal to the cardinality of k.

Here recall that the p-rank of an abelian variety A over an algebraically closed
field k of characteristic p > 0 is the dimension of the Fp-vector space given by
the kernel of the multiplication-by-p map on the k-points of A. It is a nonnegative
integer bounded by dimA.

Using methods of étale cohomology one can give a quick proof of this theo-
rem (see e.g. [11] for details). It is based on the group-theoretic fact that a pro-p-
group G is free if and only if the Galois cohomology groups H i(G,Z/pZ) vanish
for i > 1. In the case G = π1(X)(p) they can be identified with the étale cohomology
groups H i

ét(X ,Z/pZ) of X using arguments of cohomological dimension and the
latter groups are known to vanish for i > 1. The rank is then equal to that of the
maximal abelian quotient, i.e. the dual of H1

ét(X ,Z/pZ) and thus can be determined
using Artin–Schreier theory.

Remark 2.4 Observe that Theorems 2.1 and 2.3 do not elucidate completely the
structure of the fundamental group of an integral normal curve over an algebraically
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closed field of positive characteristic; this is still unknown at the present day. The
theorems give, however, a good description of its maximal abelian quotient: this
group is the direct sum of its maximal prime-to-p and pro-p quotients, and hence
the previous two theorems together suffice to describe it.

Concerning curves over non-closed fields, a much-studied object is the outer
Galois representation

ρX : Gal(ks|k)→ Out(π1(X , x̄))

over fields of arithmetic interest. One of the most basic results is:

Theorem 2.5 (Matsumoto [28]) If k is a number field and X is affine such that X
has non-commutative fundamental group, then ρX is injective.

Recently, Hoshi and Mochizuki [17] proved that the result holds for proper curves
of genus > 1 as well. One can easily decide using Theorem 2.1 which curves have
noncommutative geometric fundamental group: those for which (g,n) ̸= (0,0),(0,1),
(0,2),(1,0). These are the so-called hyperbolic curves: their fundamental groups are
center-free and, for g > 0, even free.

The case (g,n) = (0,3) is due to Belyi [1] and is a consequence of his famous
theorem stating that every smooth proper curve definable over a number field can
be realized as a finite cover of P1 branched above at most 3 points. The proof of the
general case uses different methods.

1.3 Grothendieck’s Section Conjecture

Arguably the most famous open question concerning fundamental groups of curves
is Grothendieck’s Section Conjecture, stated in [14]. It concerns the exact sequence

1 → π1(X , x̄)→ π1(X , x̄)
p∗→ Gal(ks|k)→ 1 (1.2)

of Proposition 1.8, where p : X → Spec k is the structure map.
Given a k-rational point y : Spec k → X , it induces by functoriality a map

σy : Gal(ks|k) → π1(X , ȳ) for a geometric point ȳ lying above y. This is not quite
a splitting of the exact sequence above because of the difference of base points.
But the choice of a path (see Remark 1.5) from ȳ to x̄ induces an isomorphism
λ : π1(X , ȳ) ∼→ π1(X , x̄). Changing the path is reflected by an inner automor-
phism of π1(X , x̄); moreover, this automorphism induces the trivial automorphism
of Gal(ks|k), so it is in fact conjugation by an element of π1(X , x̄). The composite
λ ◦σy is then a section of the exact sequence uniquely determined up to conjugation
by elements of π1(X , x̄). We thus obtain a map

X(k)→{π1(X , x̄)-conjugacy classes of sections of p∗}. (1.3)

The Section Conjecture now states:
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Conjecture 3.1 (Grothendieck [14]) If k is finitely generated over Q and X is a
smooth projective curve of genus g ≥ 2, then the above map is a bijection.

Remark 3.2 Grothendieck also formulated a variant of the conjecture for open
curves. Its formulation is, however, more complicated than the above because one
has to circumvent the fact that for an affine curve U with smooth compactification
X there are tons of sections coming from points of X \U (see [8]).

Injectivity is not hard to prove and was known to Grothendieck. As the argument
works over other base fields as well, we include a slightly more general statement.

Proposition 3.3 Let X is a smooth projective curve of genus g > 0 over a field k.
Assume any of the following:

• k is finite;
• k is p-adic;
• k is finitely generated over Q.

Then the map (1.3) is injective.

Proof. The proof will show that even the sections of the exact sequence

0 → πab
1 (X)→ Π → Gal(ks|k)→ 1

obtained from (1.2) by pushout via the abelianization map π1(X ,x)→ πab
1 (X) sepa-

rate the k-points of X .
Set Γ := Gal(k|k). Fix a k-point y0 of X and denote by s0 the correspond-

ing section Γ → π1(X , x̄). Given another k-point y of X with corresponding sec-
tion s, the composite map Γ → π1(X , x̄) → πab

1 (X) induced by s0s−1 has im-
age in πab

1 (X) and is a continuous 1-cocycle. We thus get compatible classes in
H1(Γ ,πab

1 (X)/m) for all m > 0. Denoting by J the Jacobian of X we have a Galois-
equivariant isomorphism πab

1 (X)/m ∼= mJ (see Remark 2.2), so we actually get maps
Div0(X)→ H1(Γ ,mJ) for all m, where Div0(X) is the group of degree 0 divisors on
X . Moreover, it is an exercise to check the commutativity of the diagram

Div0(X) −−−−→ H1(Γ ,mJ)y x
J(k)

∼=−−−−→ J(k)Γ

where the right vertical map comes from the Kummer sequence

J(k)Γ m→ J(k)Γ → H1(Γ ,mJ).

By this commutativity, if we assume s = s0, the class of the divisor y− y0 lies in
the kernel of the Kummer map J(k)Γ → H1(Γ ,mJ) for all m, i.e. it is divisible
in J(k). But if k satisfies any of the assumptions above, the group J(k) has trivial
divisible subgroup: over a finite k it is finite, over a p-adic k it has a finite index
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subgroup isomorphic to a finite direct power of Zp (Mattuck [27]), and for k finitely
generated over Q it is finitely generated by the Mordell–Weil–Lang–Néron theorem
([24], Chapter I, Corollary 4.3). Therefore the class of the divisor y− y0 is trivial in
J(k). As X has positive genus, we conclude that y = y0.

Remark 3.4 The injectivity result of the proposition holds for open hyperbolic
curves U as well, with basically the same proof. The role of J is played by the
generalized Jacobian J̃ encountered in the second paragraph of Remark 2.2. How-
ever, over a field finitely generated over Q its toric part has a nontrivial divisible
subgroup of k-points in general. To remedy this, one chooses a normal separated
scheme S of finite type over Z such that U extends to a smooth relative curve over
S. The classes in H1(Γ ,mJ̃) that one considers are then unramified over S, and one
can invoke the finite generation of units in rings of integers together with freeness
of groups of divisors.

Remark 3.5 Assume k is a subfield of a finitely generated extension of Qp for some
prime p (e.g. a p-adic field or a finitely generated field over Q). Consider the exact
sequence

1 → π1(X , x̄)(p) → Π p → Gal(ks|k)→ 1 (1.4)

obtained from (1.2) by pushout via the map π1(X ,x)→ π1(X , x̄)(p). Mochizuki has
shown in ([29], Theorem 19.1) as a consequence of his anabelian characterization of
hyperbolic curves (Theorem 5.5 below) that the injectivity result of the proposition
(and also its generalization as in the previous remark) remains valid for splittings
of (1.4) that come from k-points of X . On the other hand, Hoshi [16] recently gave
examples of curves over number fields where not all splittings of (1.4) come from
k-points. Therefore the ‘pro-p-version’ of the section conjecture is false.

So much about injectivity in the section conjecture. As for surjectivity, it is
widely open: at the time of writing not a single curve is known over a number field
that has a rational point and for which the map (1.3) is proven to be bijective, or at
least for which the finiteness of conjugacy classes of sections is known (this would
then yield another proof of Mordell’s conjecture). In the next section we shall see
that over function fields over C statements of this type can actually be proven.

Let us mention, however, a nice observation that goes back to Tamagawa [49]
and was first stated in [22].

Proposition 3.6 Conjecture 3.1 is equivalent to the following seemingly weaker
statement: if k is finitely generated over Q and X is a smooth projective curve of
genus g ≥ 2, then X has a k-rational point if and only if the sequence (1.2) splits.

The proposition does not claim that for a given curve the splitting of (1.2) implies
the bijectivity of (1.3); one has to consider all curves.

The proof is based on the following lemma which has many other applications.

Lemma 3.7 (Tamagawa) Let X be a smooth curve over a field k. Assume k satisfies
one of the assumptions as in Proposition 3.3; in the third case assume moreover that
the smooth compactification of X has genus ≥ 2.
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A section s : Gal(ks|k) → π1(X ,x) comes from a k-point if and only if for each
open subgroup H ⊂ π1(X ,x) containing s(Gal(ks|k)) the corresponding cover XH
has a k-point.

Proof. Let X̃ be the ‘universal cover’ of X , i.e. the normalization of X in the ex-
tension KX |K of Remark 1.6. If s is a section coming from a k-rational point P, the
image s(Gal(ks|k)) is the stabilizer in π1(X ,x) of a closed point Q of X̃ above P. For
H ⊃ s(G) it is also the stabilizer of Q under the action of π1(XH ,x); in particular,
it maps onto Gal(ks|k) under the projection π1(XH ,x)→ Gal(ks|k). This means that
the image of Q by the projection X̃ → XH is k-rational.

For the converse we choose x to be a geometric generic point. The sets XH(k)
form a natural inverse system indexed by the subgroups H ⊂ s(Gal(ks|k)). Under
any of the three assumptions on k these sets are compact in their natural topology.
(In the first two cases this is immediate but the third case is based on a highly
nontrivial input: Faltings’s theorem on the finiteness of XH(k).) Hence the inverse
limit of the XH(k) is nonempty. An element of the inverse limit defines a point of X̃
whose image in X induces s.

The proposition follows from the lemma because the splitting of (1.2) for X by a
section s : Gal(ks|k)→ π1(X ,x) implies its splitting for XH when H ⊃ s(Gal(ks|k)).

Remark 3.8 In recent years a birational analogue of the Section Conjecture was
also studied. If K is the function field of a smooth proper curve X over a field k of
characteristic 0, a k-rational point P of X induces a conjugacy class of sections of
the exact sequence of Galois groups

1 → Gal(K|Kk)→ Gal(K|K)→ Gal(k|k)→ 1.

Indeed, the local ring of P is a discrete valuation ring with fraction field K and
residue field k; a decomposition group DP ⊂ Gal(K|K) of this valuation is isomor-
phic to Gal(k((t))|k((t))). The natural projection Gal(k((t))|k((t)))→ Gal(k|k) has
a section; its image is the subgroup of Gal(k((t))|k((t))) fixing the extension of
k((t)) obtained by adjoining the n-th roots of t for all n > 1. The composite map
Gal(k|k)→ Gal(k((t))|k((t)) ∼→ DP → Gal(K|K) is a section as required.

Each k-point P is uniquely determined by the conjugacy classes of sections it
induces because the arising DP pairwise intersect trivially by an old theorem of F.
K. Schmidt [42]. One may then ask whether the analogue of the Section Conjecture
holds over arithmetically interesting fields. Koenigsmann [22] observed that the an-
swer is yes if k is a p-adic field (see also Pop [38] for a sharpened version). Over
a global field there are only partial results, but in contrast to the original conjecture
of Grothendieck at least examples are known of curves having rational points where
the answer is positive ([15], [45]).
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1.4 Parshin’s Proof of Mordell’s Conjecture Over Function
Fields

Let B be a smooth projective connected curve over the field C of complex numbers,
and let C be a smooth projective connected curve defined over the function field
C(B) of B. The following statement is usually called the geometric case of Mordell’s
Conjecture or the Mordell Conjecture for function fields of characteristic 0.

Theorem 4.1 Assume that there is no finite extension K|C(B) for which the base
changed curve C ×C(B) K can be defined over C. Then C has only finitely many
C(B)-rational points.

As a consequence, one gets the same result over finitely generated base fields of
characteristic 0 (assuming B geometrically integral).

This famous theorem has several proofs. The first one was given by Manin [26];
Coleman later discovered that it contained a gap which he was able to fill in [4].
The first complete published proof seems to be that of Grauert [12]. Parshin himself
gave two proofs ([35], [36]); it is the second one that we are going to explain now.
As we shall see, it is partly inspired by the ideas explained in the previous section.

We prove the following equivalent statement.

Theorem 4.2 Let V be a smooth projective surface equipped with a proper flat
morphism p : V → B with generic fibre C as above. If V as a family over B is non-
isotrivial, then the projection p has only finitely many sections.

Recall that the family p : V → B is isotrivial if there is a finite flat base change
B′ → B such that V ×B B′ → B′ is a trivial family (i.e. isomorphic to a direct product
C′×B′).

To see the equivalence of the two statements, note that one may find a smooth
projective surface Ṽ over C whose function field is that of the curve C of Theorem
4.1, by resolution of singularities for surfaces. The inclusion C(B)→ C(Ṽ ) induces
a rational map Ṽ → B with generic fibre C; by elimination of indeterminacy we find
a blowup V of Ṽ in finitely many points equipped with a morphism p : V → B as
required. A section of p induces a section on the generic fibre. On the other hand,
by properness of V any section of the projection C → Spec C(B) extends uniquely
to a section of p.

Strategy of the proof of Theorem 4.2. Choose a Zariski open subset B0 ⊂ B such that
p is smooth over B0. Fix a point b0 ∈ B0, and denote by F the fibre p−1(b0). Fixing
a base point v0 ∈ F , we have a homotopy exact sequence of topological fundamental
groups

1 → π top
1 (F,v0)→ π top

1 (V0,v0)
p∗→ π top

1 (B0,b0)→ 1

where V0 = p−1(B0). A section s0 : B0 → V0 of p over B0 meets F in a point v1,
whence a map s0∗ : π top

1 (B0,b0)→ π top
1 (V0,v1). Fixing a path from v0 to v1 induces

an isomorphism π top
1 (V0,v1)

∼→ π top
1 (V0,v0); it is unique up to inner automorphism.
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By composition s0∗ induces a section of the map p∗ above. Therefore we obtain a
map

S : {sections of p|v0 : V0 → B0}→ {conjugacy classes of sections of p∗}.

As any section of p is determined by its restriction to B0, the theorem follows from
the two claims below.

Claim 4.3 The map S has finite fibres.

Claim 4.4 The map S has finite image.

We begin with the proof of Claim 4.3. First we recall the notion of K|k-trace for
abelian varieties. Given a field extension K|k and an abelian variety A over K, the
K|k-trace tr K|k(A) is the k-abelian variety characterized by the property that

Hom(BK ,A)
∼→ Hom(B, tr K|k(A))

for all k-abelian varieties B. Its existence is a theorem of Chow; see ([18], Appendix
A) or [5] for modern proofs. Applying the defining property with B = Spec(k)
we obtain a bijection A(K)

∼→ tr K|k(A)(k); its inverse is induced by the map
τ : tr K|k(A)K → A obtained by setting B = tr K|k(A) and taking the map correspond-
ing to the identity. The image of τ is the maximal abelian subvariety of A defined
over k.

Proof of Claim 4.3. The diagram

C −−−−→ Spec C(B)y y
V0 −−−−→ B0

is Cartesian, so a section s0 : B0 → V0 induces a section s : SpecC(B)→ C; more-
over, s0 is uniquely determined by s. On the other hand, a section π top

1 (B0,b0) →
π top

1 (V0,v0) induces a map on profinite completions, i.e. a map π1(B0,b0)→ π1(V0,v0)
of algebraic fundamental groups. For some geometric point c0 of C above v0 the di-
agram of groups

π1(C,c0) −−−−→ Gal(C(B)|C(B))y y
π1(V0,v0) −−−−→ π1(B0,b0)

coming from the previous diagram of schemes commutes, the sections s and s0
inducing compatible sections of the horizontal maps. Hence it is enough to show
that the map

C(C(B))→{conjugacy classes of sections of π1(C,c0)→ Gal(C(B)|C(B))}
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has finite fibres. This is done as in the injectivity part of the section conjecture.
If y0 is a a C(B)-point of C and y another C(B)-point inducing the same section
Gal(C(B)|C(B)) → π1(C,c0), then the argument given there shows that the class
of the divisor y− y0 is divisible in J(C(B)). But by the Lang–Néron theorem (see
[19] for a beautiful short proof) the group J(C(B))/τ(tr C(B)|C(J)(C)) is finitely
generated and as such has no nontrivial divisible element. Therefore the image of y
by the embedding C → J with base point y0 lies in the image of the trace tr C(B)|C(J).
But if C is non-isotrivial, the whole of C cannot lie in the trace (this can be checked
using the explicit construction of the trace in [18]). Their intersection is thus a proper
closed, hence finite subset of C, which shows that there can be only finitely many
points y inducing the same section as y0.

The proof of Claim 4.4 is entirely topological. The idea is to bound the ‘size’
of sections of p∗ in a suitable way. This is accomplished using ideas of complex
hyperbolic geometry, of which we summarize here some basic facts (see [21] and
[23] for proofs and much more).

Equip the complex unit disc D with the Poincaré metric given by z 7→ (1−|z|2)−1.
It defines a distance function dhyp on D which we may use to define the Kobayashi
pseudo-distance on any complex manifold X :

dX (x,y) = inf

(
r

∑
i=1

dhyp(pi,qi)

)

where the infimum is taken over systems of points pi,qi ∈ D (1 ≤ i ≤ r) for which
there exist holomorphic maps f1, . . . , fr : D → X with f1(p1) = x, fr(qr) = y and
fi(qi) = fi+1(pi+1). Holomorphic maps are distance-decreasing: if ϕ : X → Y is
a holomorphic map, then dY (ϕ(x),ϕ(y)) ≤ dX (x,y) (this follows from the case
X = Y = D, where it is a consequence of Schwarz’s lemma).

The pseudo-distance dD is identically 0, so dX does not satisfy dX (x,y) ̸= 0 for
x ̸= y in general. The manifold X is said to be hyperbolic if dX (x,y) ̸= 0 for x ̸= y,
and in this case we get a distance function that can be used to define the length of
a path in X . Given a holomorphic map X → Y which is topologically a cover, it is
known that the hyperbolicity of Y implies that of X .

By a classical theorem of Brody, a compact manifold X is hyperbolic if and only
if there is no non-constant holomorphic map C → X . In particular, a compact Rie-
mann surface of genus g > 1 is hyperbolic and we may obtain a hyperbolic manifold
from any compact Riemann surface after removing finitely may open discs. Also, a
fibred complex manifold with base and fibre of this type is again hyperbolic.

So in our case we can make a hyperbolic manifold V ′ out of V0 by removing the
preimage of finitely many open discs in B (which we may assume to contain the
finitely many deleted points of B). Write B′ = p(V ′) and assume that the fixed fibre
F (and in particular the base point v0) lies in V ′. The inclusion V ′ ↪→V0 then induces
an isomorphism π top

1 (V ′,v0)
∼→ π top

1 (V0,v0) since V ′ is a deformation retract of V0.
Similarly, we have a canonical isomorphism π top

1 (B′,b0)
∼→ π top

1 (B0,b0).
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Lemma 4.5 For each C > 0 there are only finitely many elements of π top
1 (V0,v0)∼=

π top
1 (V ′,v0) that can be represented by paths lying in V ′ that have length at most C

in the hyperbolic metric of V ′.

Proof. Consider the universal cover Ṽ ′ → V ′; it carries a canonical holomorphic
structure. Any holomorphic map D → V ′ lifts to Ṽ ′, therefore the definition of the
pseudo-distance implies that liftings of paths of length ≤C starting at v0 stay inside
a closed ball of radius C. As V ′ is hyperbolic, so is the cover Ṽ ′, and therefore the
ball is compact. Closed paths around v0 lift to paths with endpoints contained in a
fixed orbit of π top

1 (V ′,v0). As these orbits are discrete, they intersect the compact
ball in finitely many points.

Now fix generators x1, . . . ,xr of the finitely generated group π top
1 (B0,b0). In view

of the lemma, Claim 4.4 is a consequence of:

Proposition 4.6 There exists a constant C > 0 such that for every section s : B0 →
V0 the images of x1, . . . ,xn under the induced map π top

1 (B0,b0) → π top
1 (V0,v0) can

be represented by paths lying in V ′ that have length at most C.

Proof. Let s : B0 → V0 be a section, and let s′ : B′ → V ′ be its restriction to B′.
We may identify the map π top

1 (B0,b0) → π top
1 (V0,v0) induced by s with the map

π top
1 (B′,b0)→ π top

1 (V ′,v0) induced by s′ and hence we may assume that the xi are
represented by closed paths γi lying inside B′. As holomorphic maps are distance-
decreasing, we have for x,y ∈ s′(B′) a sequence of inequalities

ds′(B′)(x,y)≥ dV ′(x,y)≥ dB′(p(x), p(y))≥ ds′(B′)(x,y)

induced by the maps s′(B′) ↪→V ′ p→ B′ s′→ s′(B′). Thus we have equality throughout,
which shows that for each i the length of s(γi) calculated with respect to dV ′ is the
same as that of γi with respect to dB′ . This gives a uniform bound on the V ′-length of
the s(γi). A representative of s∗(xi) in π top

1 (V0,v0) is given by γs(γi)γ−1, where γ is
a path lying in F ⊂V ′ joining v0 to s(b0). But F is a compact hyperbolic Riemann
surface, so we may join v0 to any point by a path of length bounded by an absolute
constant (e.g. a geodesic). This proves the proposition, and thereby Claim 4.4.

1.5 Anabelian Geometry

By ‘anabelian geometry’ one refers to a sheaf of conjectures formulated by Groth-
endieck in a famous letter to Faltings [14]. The rough idea is that a certain category
of schemes defined over finitely generated fields should be determined by their ge-
ometric fundamental groups together with its outer Galois action.

There are two kinds of motivation for the conjectures. The first one comes from
topology.
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Fact 5.1 Recall that for a smooth proper curve X of genus ≥ 2 over C the topolog-
ical fundamental group has a presentation

Π = ⟨a1,b1, . . . ,ag,bg | [a1,b1] . . . [ag,bg] = 1⟩

This group is non-commutative; moreover, it has trivial center. The universal
cover of X is the unit disc D which is contractible. Therefore the higher homo-
topy groups πq(X) are trivial for q ≥ 2, and so X is the Eilenberg-MacLane space
K(Π ,1), and as such it is determined up to homotopy.

As an algebraic curve, X may be defined over a finitely generated extension k of
Q. The hope therefore arises that the extra structure given by Galois action on Π
may determine X up to algebraic isomorphism, not just up to homotopy.

The second motivation comes from the Tate conjecture.

Fact 5.2 Let k now be a number field, X1,X2 smooth proper curves over k, of genus
≥ 2. Assume for simplicity that both have a k-point. These k-points can be used to
embed Xi in its Jacobian Ji. Write X i := Xi ×k k and similarly for Ji. We know that
for each prime ℓ and i = 1,2

Tℓ(Ji)∼= πab
1 (Ji)

(ℓ) ∼= πab
1 (X i)

(ℓ)

where Tℓ stands for the ℓ-adic Tate module (Remark 2.2).
By a fundamental theorem of Faltings [9] (ex Tate conjecture) the natural map

Hom(J1,J2)⊗Z Zℓ → HomZℓ
(Tℓ(J1),Tℓ(J2))

Gal(k|k)

is bijective. In other words, Galois-equivariant homomorphisms Tℓ(J1)→ Tℓ(J2)
can be ‘approximated ℓ-adically’ by morphisms J1 → J2.

One can ask here whether working with the whole geometric fundamental group
instead of its abelian quotient can give a stronger result: does a Galois-invariant
outer homomorphism π1(X1) → π1(X2) come from a k-morphism X1 → X2? Or,
even more economically, does a Galois-invariant outer homomorphism π1(X1)

(ℓ) →
π1(X2)

(ℓ) between maximal pro-ℓ-quotients come from a map of curves?

Before formulating precise statements, let us elucidate the role of center-freeness.
Recall that the representation

ρX : Gal(k|k)→ Out(π1(X ,x))

is defined using the exact commutative diagram

1 −−−−→ π1(X ,x) −−−−→ π1(X ,x) −−−−→ Gal(k|k) −−−−→ 1y y y
1 −−−−→ Inn(π1(X ,x)) −−−−→ Aut(π1(X ,x)) −−−−→ Out(π1(X ,x)) −−−−→ 1.
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Observe: when the center of π1(X ,x) is trivial, this becomes a pushout diagram.
Therefore

π1(X ,x)∼= Aut(π1(X ,x))×Out(X ,x) Gal(k|k),

i.e. π1(X ,x) is determined by π1(X ,x) and ρX . When k ⊂ C, it thus appears as a
“transcendental object” endowed with a Galois action.

We now define a category of profinite groups as follows. Given two profinite
groups G1, G2 together with morphisms pi : Gi → G, define Hom∗

G(G1,G2) as the
set of morphisms G1 → G2 compatible with the pi up to conjugation by an element
of G. This set carries an action of G1 from the left and of G2 from the right. The
latter defines a finer equivalence, so put Homext

G (G1,G2) = Hom∗
G(G1,G2) modulo

action of G2. Fixing G we thus get a category Profext
G with objects profinite groups

with projections onto G and Hom-sets the Homext
G (G1,G2). Denote by Profext,open

G
the full subcategory with the same objects but with morphisms having open image.

Sending a variety over a field k to its algebraic fundamental group gives a functor

π1 : {k-varieties}→ Profext
Gal(k)

where base points do not play a role any more, so we drop them from now on.
Similarly, sending a field to its absolute Galois group yields a contravariant func-

tor
Gal : {field extensions of k}→ Profext

Gal(k).

In his letter to Faltings Grothendieck formulated the following conjecture.

Conjecture 5.3 Let k be a finitely generated extension of Q. Denote by Hypk the
category of hyperbolic k-curves equipped with dominating k-morphisms. The func-
tor

π1 : Hypk → Profext,open
Gal(k)

is fully faithful.

Recall that hyperbolic k-curves are the smooth k-curves of genus g with at least
2− 2g+ 1 geometric points at infinity. These are precisely the smooth curves with
non-trivial center-free geometric π1. Grothendieck also speculated about extending
Hypk by including some higher-dimensional varieties called ‘anabelian varieties’.
At present there is no precise conjectural characterization of anabelian varieties in
dimensions > 1. However, there is a precisely formulated birational analogue:

Conjecture 5.4 Let k be finitely generated over Q. Denote by Birdom
k the category

of fields finitely generated over k together with k-morphisms. Then the contravariant
functor

Gal : Birdom
k → Profext,open

Gal(k)

is fully faithful.

Here are the most important known results about these conjectures.
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Theorem 5.5 (Mochizuki [29]) Conjecture 5.3 is true more generally for k sub-
p-adic, i.e. a subfield of some finitely generated extension of a Qp. In fact, over
such fields the following holds: for a hyperbolic k-curve X and an arbitrary smooth
k-variety V the map

Homdom
k (V,X)→ Homext,open

Gal(k) (π1(V ),π1(X))

is bijective. Here π1 may be replaced by its quotient π p
1 classifying covers whose

base change to k is of p-power degree.

This is all the more remarkable as the Tate conjecture does not hold over Qp!
Concerning the birational version, we have:

Theorem 5.6

1. (Pop, [37], [47]) The isomorphism version of conjecture 5.4 is true, even in pos-
itive characteristic. More precisely, if K, L are finitely generated fields (over the
prime field), the natural map

Isomi(K,L)→ Isomext(Gal(L),Gal(K))

is bijective, where on the left Isomi means isomorphisms between purely insepa-
rable extensions K′|K and L′|L.

2. (Mochizuki [29]) Conjecture 5.4 is true more generally for k sub-p-adic.

Here part (2) has been recently improved by Corry and Pop [6]: one can replace
Gal(K) (and similarly Gal(L) by its natural quotient obtained as an extension of
Gal(k) by the maximal pro-p quotient of the subgroup Gal(Kk). Thus one has a
birational result that is completely analogous to Theorem 5.5. However, the positive
characteristic analogue is not known at present.

Remark 5.7 The statements of Theorem 5.6 are of arithmetic nature. In remark-
able contrast to this, Bogomolov [2] initiated a program according to which finitely
generated fields of transcendence degree at least 2 over algebraically closed fields
should be characterized up to isomorphism by their absolute Galois group, and even
by its maximal pro-ℓ nilpotent quotient of class 2, for a prime ℓ different from
the characteristic. There has been important recent progress in this direction, by
Bogomolov–Tschinkel [3], and in a series of preprints by Pop ([39] being the last
one to date).

Observe that Pop’s result does not use the augmentation Gal(K)→ Gal(k). This
hints at the possibility that ‘absolute’ forms of Grothendieck’s conjecture hold true.
And indeed, Mochizuki proved by combining Theorem 5.3 and Theorem 5.4 (1):

Theorem 5.8 (Mochizuki [31]) Let X and Y be hyperbolic curves defined over some
finitely generated extension of Q (not necessarily the same). Then the natural map

Isom(X ,Y )→ Isomext(π1(X),π1(Y ))

is bijective.
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Even more surprisingly, ‘absolute’ results hold over a finite base field:

Theorem 5.9

1. (Tamagawa [49]) Let X and Y be smooth affine curves defined over some finite
field (not necessarily the same) with profinite universal covers X̃ , Ỹ , respectively.
Then the natural map

Isom(X̃ |X ,Ỹ |Y )→ Isom(π1(X),π1(Y ))

is bijective. Here on the left hand side we have the set of commutative diagrams
of isomorphisms

X̃
∼=−−−−→ Ỹy y

X
∼=−−−−→ Y.

2. (Mochizuki [31]) The same statement holds for proper smooth curves of genus
≥ 2 over a finite field.

Here the profinite universal cover of an normal integral scheme S means its nor-
malization in the field KS of Proposition 1.6.

Remarks 5.10

1. Recently Saı̈di and Tamagawa [41] proved that in the theorem above one may
replace fundamental groups by their maximal prime-to-p quotients (where p is
the characteristic of the base field). They also proved results with even smaller
quotients but it is not known whether the statement holds for the maximal pro-ℓ
quotients of the fundamental groups (where ℓ ̸= p is a prime).

2. Before the full statement of Theorem 5.5 was proven, Tamagawa and Mochizuki
used specialization arguments to derive the statement of Theorem 5.5 for isomor-
phisms of hyperbolic curves over number fields from Theorem 5.9 (1). Stix [44]
used a similar method to prove an isomorphism statement for hyperbolic curves
over global fields of positive characteristic.

Although in the oral lectures I gave a sketch of some of the ideas involved in the
proofs of the above results, I feel that one cannot do them justice in just a couple of
pages. On the other hand, besides the mostly well-written original papers there are
quite a few detailed surveys that the interested reader may consult with profit. So let
me conclude with some bibliographic indications.

The first results that can be associated with anabelian geometry, though they ac-
tually predate the formulation of the conjectures, are the theorems of Neukirch [33]
and Uchida [50] concerning Galois characterization of global fields. They can now
be viewed as special cases of Theorem 5.6 (1) of Pop, but in fact their methods have
been highly inspirational for the proof of the general result. A nice exposition can
be found in the last chapter of the book [34] by Neukirch, Schmidt and Wingberg.
As for Pop’s theorem, the reader may consult my Bourbaki exposé [47].
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The impact of the Neukirch-Uchida techniques can also be seen in Tamagawa’s
proof of Theorem 5.9 (1); the recent results of Saı̈di–Tamagawa mentioned above
refine this method further. An introduction to these ideas can be found in [46]. But
the best introduction to the contributions of Tamagawa and Mochizuki is the survey
paper [32] which also includes an overview of the work of Nakamura that contains
germs of many of the ideas that were developed later. Mochizuki’s methods are
completely different from the approach initiated by Neukirch and Uchida and are
based on constructions in p-adic Hodge theory. A succinct survey can be found in
the Bourbaki exposé [10] by Faltings.
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12. H. Grauert, Mordells Vermutung über rationale Punkte auf algebraischen Kurven und Funk-
tionenkörper, Publ. Math. IHES 25 (1965), 131–149.

13. A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Math-
ematics, vol. 224, Springer-Verlag, Berlin-New York, 1971. New annotated edition: Société
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in Motives and algebraic cycles: a celebration in honour of Spencer J. Bloch, Fields Institute
Communications, vol. 56, Amer. Math. Soc., 2009, pp. 149–155.

20. N. M. Katz, S. Lang, Finiteness theorems in geometric class field theory, L’Enseign. Math. 27
(1981), 285–314

21. S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math.
Soc. 82 (1976), 357–416.

22. J. Koenigsmann, On the Section Conjecture in anabelian geometry, J. reine angew. Math. 588
(2005), 221-235.

23. S. Lang, Introduction to complex hyperbolic spaces, Springer, Berlin, 1987.
24. S. Lang, Number theory III, Encyclopaedia of Mathematical Sciences, vol. 60, Springer-

Verlag, Berlin, 1991.
25. S. Lang, J–P. Serre, Sur les revêtements non ramifiés des variétés algébriques, Amer. J. Math.
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