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If the publication year of Hilbert’s Zahlbericht (1897) can be regarded
as the birth date of algebraic number theory as a separate discipline,
then the field was still at a tender age at the dawn of the 20th century.
Nevertheless it was quickly introduced in Hungary thanks to the efforts
of Gyula Kőnig. Hungarian mathematicians made significant contribu-
tions to the subject during the first decades of the century, but after
the death of Kőnig there was no strong personality who would hold a
research group together. This may explain the fact that work in the
area gradually died out in the country, and it was only in the 1970s
that it received new impetus through the emergence of a new research
group in the city of Debrecen.

In the following we briefly review the number-theoretic work of four
mathematicians: Kőnig, Kürschák, Bauer and Rédei. We are very
grateful to Peter Roquette for his comments on a first version of this
text.

Gyula Kőnig (1849–1913)

When discussing contributions of Hungarian mathematicians to al-
gebraic number theory, the person to start with is undoubtably Gyula
(Julius) Kőnig. Though in retrospect it now seems to us that his last-
ing contributions to mathematics were in the field of set theory and
logic, his influence on arithmetic research is unquestionable. The two
mathematicians who made the most significant contributions to alge-
braic number theory, József Kürschák and Mihály Bauer, were both
his pupils, and he directly stimulated much of the work carried out by
his assistants and colleagues.

Kőnig was a leading figure of Hungarian mathematics from the last
quarter of the 19th century until the beginning of the 20th. He orga-
nized higher mathematical education in Budapest almost single-handedly.
At the Technical University of Budapest he lectured for more than 30
years on virtually all important topics in contemporary mathematics.
Besides serving as department head and later as university rector, he
has also been appointed several times by the government to conduct re-
forms of secondary school education. During the last decade of his life
he even found the time to serve as CEO of one of the largest Hungarian
publishing houses, the Franklin Society.
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His best known result in number theory is a necessary and sufficient
criterion for the solvability of a polynomial equation of degree p−2 over
Fp. According to his criterion, the existence of a root is equivalent to
the vanishing of the cyclic determinant (of rank p− 1) built out of the
coefficients of the polynomial. His theorem was extended and published
by his student G. Rados [26].

Kőnig’s main contribution to algebraic number theory is contained
in his magnum opus Einleitung in die allgemeine Theorie der algebra-
ischen Größen [16], first published in Hungarian in 1901. This thick
volume was one of the first systematic developments of methods of
abstract algebra, in the spirit of Kronecker whose lectures Kőnig had
attended in Berlin in his youth. The last three chapters are devoted to
Diophantine questions and the theory of algebraic integers. Though the
book soon became obsolete through the intensive foundational work of
the German algebraic school, it was highly influential in its time. For
some aspects of its influence on the algebraic research of the period see
[9].

József Kürschák (1864–1933)

Arguably the most important contribution by a Hungarian mathe-
matician to the development of algebraic number theory is the 1913
paper [17] by József (Josef) Kürschák. Remarkably, this is his only
work on the subject, but it is also the work that won him international
recognition when he presented its main results at the 1912 International
Congress of Mathematicians in Cambridge. Otherwise Kürschák’s car-
reer was fairly similar to that of its mentor Kőnig: he studied and later
taught at the Technical University of Budapest, became full professor
in 1904 and served as rector for three years. He was also much occu-
pied with didactics; a mathematical contest for secondary schools he
initiated together with Kőnig now bears his name.

The paper [17] is a masterpiece of mathematical writing, and still
makes excellent reading almost a hundred years later. In it Kürschák
introduces the fundamental notion of a valuation on a field K. This is a
function a 7→ ||a|| with nonnegative real values satisfying the following
three axioms:

1. ||a|| = 0 if and only if a = 0;
2. ||1 + a|| ≤ 1 + ||a|| for all a ∈ K;
3. ||ab|| = ||a|| · ||b|| for all a, b ∈ K.

Kürschák also imposes a nontriviality axiom requiring that the valu-
ation takes at least one value other than 0 or 1. Below we shall tacitly
assume that the valuation is nontrivial. A field equipped with a valu-
ation is called a valued field. Using the multiplicativity axiom (3) one
sees that axiom (2) is equivalent to the more familiar triangle equality
||a + b|| ≤ ||a|| + ||b||.
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Examples of valuations are the usual real and complex absolute val-
ues, but also the p-adic absolute value on Q that Kürschák defines by
the formula ||a||p = e−r, where r is the unique integer for which one
may write a = (u/v)pr with u and v integers prime to p. Here e is
the basis of the natural logarithm, but in fact it could be any positive
real number. This valuation satisfies the ultrametric property which is
sharper than (2): one has ||a + b|| ≤ max (||a||, ||b||) for all a, b ∈ K.

In today’s terminology, each valuation defines a norm on K and
hence a metric, so one has a notion of convergence. One says that
K is complete with respect to the valuation (Kürschák used the then
prevalent term ‘perfect’ instead of ‘complete’) if every Cauchy sequence
in K converges. The first main result of Kürschák is that each valued
field K can be embedded as a dense valued subfield in a complete
valued field, its completion. In the case of K = Q and the usual
absolute value one obtains the field of real numbers, and Kürschák’s
construction is a direct generalisation of Cantor’s construction of the
reals by means of fundamental sequences. But he also remarks that his
construction is a special case of one by F. Riesz [32] who, in today’s
terms, considered completions of metric spaces (in fact, the report of
Riesz is rather sketchy).

The main new example is that of the completion of Q with respect
to the p-adic valuation. Here Kürschák shows that the valued field ob-
tained by his procedure is ismorphic to the field Qp of p-adic numbers
introduced a few years before by Kurt Hensel ([14], [15]). Hensel de-
fined p-adic numbers formally by power series expansions of the shape
a0p

r +a1p
r+1 + · · ·+anp

n+r + . . . with r ∈ Z and ai ∈ {0, 1, . . . , p− 1},
and introduced explicit addition and multiplication rules on them. As
Kürschák rightly remarked, the relationship between his construction
and Hensel’s is similar to the relationship between Cantor’s construc-
tion of real numbers and decimal expansions. We may add that this
dichotomy is very fruitful for number-theoretic considerations even at
the present day.

From the above we can clearly see that both Cantor’s ideas and re-
cent developments in number theory were well immersed in Hungarian
mathematical thinking at the time. Maybe it is not hasardous to guess
that this was largely due to Kőnig’s influence, whose own favourite
fields were arithmetic and logic. In any case Kürschák was the right
man at the right place.

Kürschák’s paper contains not only the construction of completions,
but also the proof of a fundamental theorem:

Every valued field can be embedded into a complete valued field that is
algebraically closed.
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More precisely, Kürschák shows that an algebraic closure K of a com-
plete valued field K can be canonically equipped with a valuation ex-
tending that of K, and that the completion of K remains algebraically
closed. In the case K = Qp one obtains by this procedure the field
that is nowadays denoted by Cp; it is the p-adic analogue of the field
of complex numbers. The importance of this field for current research
in number theory cannot be overrated: it is the natural basis for the
development of p-adic analysis, and in particular the theory of p-adic
zeta and L-functions.

To construct the extension of the valuation to the algebraic closure
K, Kürschák observed that the most natural way is to put ||a|| :=
||N(a)||1/n for an element a ∈ K of degree n over K. Here N is
the field norm from K(a) to K; the element N(a) ∈ K equals the
constant term of the minimal polynomial of a up to a sign. With this
definition the axioms (1) and (3) of a valuation can be easily checked,
but (2) is more difficult. Kürschák remarked that in the case of an
ultrametric valuation there is an easy proof using a direct generalisation
of an observation of Hensel according to which if a monic irreducible
polynomial over Qp has a constant term of valuation at most 1, then
all coefficients must have valuation at most 1. Hensel’s observation
in turn has a strong analogy with Weierstrass’ factorization theory of
power series, so accordingly Kürschák sought for inspiration in function
theory in order to handle the general case. His proof is based on a
generalisation of Hadamard’s results on computing the convergence
radius of a power series from its coefficients.

Today we do not need Kürschák’s long proof any more, because in
his 1917 papers [24] and [25] A. Ostrowski made further significant
advances in the theory. He introduced the notion of archimedean valu-
ations (those for which the powers of a nonzero element may have arbi-
trary high valuation), and proved that a complete archimedean valued
field is isomorphic to either R or C. Thus in this case the construction
of a valuation on the algebraic closure is tautological. Ostrowski also
observed that non-archimedean valuations are necessarily ultrametric,
and hence Hensel’s simple argument can be applied to extend the val-
uation. This approach, which is the standard one adopted today, is
simpler than Kürschák’s, but Kürschák’s proof has the merit of being
uniform. On the other hand, he does not seem to have observed the
important fact that the extension of the valuation is unique.

Having extended the valuation to K, Kürschák finally proved that
the completion of K remains algebraically closed. He called this re-
sult the fundamental theorem of valuation theory, because in the case
K = R it reduces to the fundamental theorem of algebra, viz. that C is
algebraically closed. Accordingly, his way of proving the theorem was
an adaptation of a method of Weierstrass for proving the fundamental
theorem of algebra. He prudently left open the question whether K



CONTRIBUTIONS TO ALGEBRAIC NUMBER THEORY 5

itself was already complete. This was settled in the negative by Os-
trowski in his paper [23], published immediately after Kürschák’s in
the same volume of Crelle’s Journal.

Today we regard Kürschák’s paper as the founding work of valuation
theory, but the author was very modest about it. At the end of the
introduction he wrote that his investigations were ‘almost without ex-
ception obvious generalisations of known theories’. Of course this was
not so. But it may very well be that despite the favourable interna-
tional reactions Kürschák was not fully aware of the importance of his
results. One reason for this was that Hensel’s theory of p-adic numbers
took quite some time to obtain universal recognition. In his obituary
of Hensel [13] Hasse paints a vivid picture of the unfavourable atti-
tude of the leaders of the subject, from Hecke to Artin. The situation
only changed in the 1930s when Hasse, Noether and others obtained
major advances in class field theory using p-adic methods. But after
his groundbreaking paper Kürschák did not return to the subject any
more.

For further details and later developments we refer to the fascinating
survey by Roquette [33].

Mihály Bauer (1874–1945)

Mihály (Michael) Bauer is the only Hungarian mathematician in
the first half of the 20th century who contributed almost exclusively to
algebraic number theory and related algebra. He was a pupil of Kőnig
and Rados and, like his masters, taught at the Technical University of
Budapest. But he never obtained full professorhip and was even forced
to an early retirement in 1936, presumably partly for racial reasons.
In contrast to this neglect in his own country he was held in esteem
by leading mathematicians of the day including Hardy, Landau and
van der Waerden, and he is the only Hungarian mathematician cited
in Hasse’s famous Klassenkörperbericht.

The most important contibutions of Bauer concern the decomposi-
tion of primes in number fields, with special emphasis on the Galois
case. Recall that given a finite extension K|Q with ring of integers OK ,
the ideal pOK of OK generated by a prime number p decomposes as a
product pOK = p

e1

1 . . . per

r , where the pi are exactly the prime ideals in
OK containing p. They are called the prime divisors of p in K. The
degree of the field extension Fp ⊂ OK/pi is called the degree of pi. One
says that p is unramified in K if ei = 1 for all i. If moreover all the pi

are of degree 1, then p is completely split in K.
The first significant result of Bauer concerning the splitting of primes

in extensions appeared in his papers [2] and [3]. Here he proved:

Given two finite extensions K1, K2 of Q, the set of primes that split
completely in the composite field K1K2 equals, up to a finite number of
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exceptions, the set of those primes that split completely both in K1 and
in K2. Moreover, this set has density 1/d, where d is the degree of the
Galois closure of K1K2 over Q.

As an immediate corollary, one obtains:

If K1 and K2 are two finite Galois extensions of Q such that, up to
a finite number of exceptions, the same primes split completely in K1

and in K2, then K1 = K2.

Nowadays we usually view these results as consequences of the fa-
mous density theorem of Chebotarev [35]. However, Bauer obtained
them twenty years earlier.

The statement of the corollary is rather surprising. In fact, it answers
in the Galois case a question raised by Kronecker about characterising
number fields by the splitting behavior of primes. Kronecker called this
a ‘boundary value problem’ (Randwertproblem) because of a (vague)
analogy with Cauchy’s theorem computing the values of an analytic
function on a disc from its values taken at the boundary.

A perhaps even more striking theorem was discovered in the late
1960’s by J. Neukirch [21]: Given two finite Galois extensions K1, K2

contained in a fixed algebraic closure Q, the existence of an isomor-
phism of Galois groups Gal (Q|K1) ∼= Gal (Q|K2) forces K1 = K2.
The starting point of Neukirch’s proof is Bauer’s result above, which
reduces the statement to a characterisation of decomposition and in-
ertia groups of prime ideals in the Galois group. Neukirch did this
using class field theory. Today we know that the theorem holds more
generally for arbitrary finite extensions of Q (Neukirch, Uchida), and
even for arbitrary fields finitely generated over the prime field (Pop).
But the starting point of the whole development was Neukirch’s paper
[21] which exploited Bauer’s result.

In 1916 Bauer obtained notable extensions of his earlier results. For
a finite extension K|Q he considered the set P (K) of primes unramified
in K and having a prime divisor of degree 1. In the Galois case this is
just the set of completely split primes, but in the non-Galois case there
is a difference. In fact, his paper [4] contains the following remarkable
observation: a finite extension K|Q is Galois if and only if each prime
in P (K) splits completely in K.

Concerning the sets P (K) he showed in his paper [5]:

Let K be a finite extension of Q, and let N be a finite Galois extension.
Then K ⊃ N if and only if P (K) ⊂ P (N) up to a finite number of
exceptions.

This result, the most famous one of Bauer, gives a final answer to
Kronecker’s question. Again it is nowadays derived from the Cheb-
otarev density theorem (see [22], §VII.13), but the priority of Bauer is
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unquestionable. He himself used an earlier density theorem of Frobe-
nius. The result holds more generally for extensions of an arbitrary
number field instead of Q, with essentially the same proof.

The papers [4] and [5] are the ones cited in the Klassenkörperbericht
of Hasse. In his next article [6] and some later works Bauer pursued the
study of the topic, obtaining more general results about the decomposi-
tion of (not necessarily split) prime ideals in composita of finite Galois
extensions.

Bauer proved the above theorems by global methods, but (not sur-
prisingly, given his environment) he was also among the first to recog-
nize the power of the p-adic techniques introduced by Hensel. He wrote
several papers about the relationship between local and global ramifi-
cation theory, and in the joint paper [7] arising from correspondence
with Chebotarev gave a simple p-adic proof of a then recent theorem
of Ore. This theorem computes the ramification indices ei and degrees
fi of the prime divisors of a prime p in a finite extension K|Q from
the decomposition of the reductions of the defining polynomial of K
modulo suitable powers of p.

Here we conclude this brief overview of Bauer’s most lasting contri-
butions. The very clear survey by Rédei [30] discusses Bauer’s math-
ematical papers one by one. We now say a few words about Rédei’s
own work.

László Rédei (1900–1980)

The distinguished algebraist László Rédei started his carreer with
number-theoretic investigations. After his first papers, which were de-
voted to new proofs of the quadratic reciprocity law, he focused his at-
tention on a problem which was to occupy him during the next twenty
years, namely the determination of the 2-primary part of the ideal class
group ClK of a quadratic number field K. This is a finite abelian group
which is a direct sum of cyclic groups of 2-power order. At the time
he started working on the problem the only known result was the fact,
going back to Gauss, that the number of cyclic components equals 2r−1,
where r is the number of distinct prime divisors of the discriminant D
of K. This did not explain how large the cyclic components can be.
Rédei was the first to obtain a formula on the number r4 of those cyclic
components which have order at least 4. Namely, he showed that 2r4

equals the number of those product decompositions D = D0D1 where
each Di is again the discriminant of some quadratic number field (or
equals 1), and moreover for each prime divisor p of Di the integer D1−i

is a quadratic residue mod p (i = 0, 1). Soon afterwards H. Reichardt
found a simpler proof of the formula, and after a first publication by
Rédei in Hungarian they published the result in the joint paper [31].

In a long series of subsequent papers Rédei continued his exploration
of the 2-primary part of the class group, culminating in the papers [28]
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and [29]. Here he described an algorithm that computes the 2-torsion
part even for generalized ideal class groups defined using orders in the
quadratic number field. For this he had to study the Artin symbol in
towers of class fields of 2-power degree over the quadratic field K. As an
application, he obtained conditions for the solvability of the Pell type
Diophantine equations x2 − df 2y2 = −1, where d and f are squarefree
integers with (f, 2d) = 1. His theory was later substantially simplified
by Morton [20], who also gave a new short proof of the Rédei–Reichardt
theorem.

In a series of papers published between 1936 and 1942 Rédei also
investigated the problem of determining those real quadratic number
fields Q(

√
d) whose ring of integers is Euclidean. This was a question

intensively studied in the 1930’s and ’40s by many number theorists,
including Erdős, Heilbronn, Hua and, most importantly, Davenport.
Today we know that there are exactly 21 such fields; their list can be
found e.g. in later editions of the classic text by Hardy and Wright
[11]. Rédei found several of them and showed that many others are
not Euclidean. For the anecdote we may mention that he actually
delayed the complete solution of the problem by a few years, because
his 1942 paper [27] contained the erroneous claim that the field Q(

√
97)

is Euclidean. The mistake was only noticed ten years later by Barnes
and Swinnerton-Dyer [1]. For a recent survey of the question see [8].

The obituaries [18] and [19] contain a complete list of Rédei’s publi-
cations.

Later developments

During the decades following the work of Rédei described above,
number-theoretic research in Hungary concentrated almost exclusively
on elementary and analytic questions. It is only in the 1970’s that
a new, internationally recognized research group on Diophantine ques-
tions was created in the city of Debrecen under the leadership of Kálmán
Győry. They have obtained significant effective finiteness results for
solutions of Diophantine equations using methods of transcendental
number theory. Another main focus of their research is on algorithmic
aspects of algebraic number theory and explicit methods for Diophan-
tine equations. Despite the untimely death of some of its members,
the group is still very active and vigorous. Therefore according to the
principles of the present volume we cannot discuss their work in detail,
leaving the task to historians of the 22nd century.
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[2] M. Bauer, Über einen Satz von Kronecker, Arch. der Math. u. Phys. (3) 6
(1903), 218–219.



CONTRIBUTIONS TO ALGEBRAIC NUMBER THEORY 9
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[6] , Über zusammengesetzte Zahlkörper, Math. Ann. 77 (1916), 357-361.
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[20] P. Morton, On Rédei’s theory of the Pell equation, J. reine angew. Math.

307/308 (1979), 373–398.
[21] J. Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen

Zahlkörper, Invent. Math. 6 (1969), 296–314.
[22] , Algebraic number theory, Grundlehren der Mathematischen Wis-

senschaften, vol. 322, Springer, Berlin, 1999.
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