
LECTURES ON LINEAR ALGEBRAIC GROUPS

TAMÁS SZAMUELY

This is a somewhat expanded version of the notes for courses given
at the Eötvös and Technical Universities of Budapest in 2006, and
at Central European University in 2012 and 2017. My aim was to
provide a quick introduction to the main structural results for affine
algebraic groups over algebraically closed fields with full proofs but
assuming only a very modest background. The necessary techniques
from algebraic geometry are developed from scratch along the way. In
fact, some readers may regard the text as a good example of applying
the basic theory of quasi-projective varieties in a nontrivial way.

The experts should be warned at once: there is almost no theo-
rem here that cannot be found in the standard textbooks of Borel,
Humphreys or Springer. There are some differences, however, in the
exposition. We do not leave the category of quasi-projective varieties
for a single moment, and carry a considerably lighter baggage of al-
gebraic geometry than the above authors. Lie algebra techniques are
not used either, except at the very end. Finally, for two of the main
theorems we have chosen proofs that have been somewhat out of the
spotlight for no apparent reason. Thus for Borel’s fixed point theo-
rem we present Steinberg’s beautiful correspondence argument which
reduces the statement to a slightly enhanced version of the Lie-Kolchin
theorem, and for the conjugacy of maximal tori we give Grothendieck’s
proof from Séminaire Chevalley.

We work over an algebraically closed base field throughout. Linear
algebraic groups over more general base fields are best treated using
the theory of group schemes. For this approach (and much more) we
refer the reader to Milne’s forthcoming book [9] and Conrad’s notes [5].

I thank Philippe Gille for helpful comments and corrections. All
remaining errors are mine.
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Chapter 1. Basic Notions

The concept of a linear algebraic group may be introduced in two
equivalent ways. One is to define it as a subgroup of some general
linear group GLn which is closed for the Zariski topology. The other,
more intrinsic approach is to say that a linear algebraic group is a group
object in the category of affine varieties. In this chapter we develop the
foundational material necessary for making the two definitions precise,
and prove their equivalence. Some basic examples are also discussed.

1. Affine varieties

Throughout these notes we shall work over an algebraically closed
field k. We identify points of affine n-space An

k with

{(a1, . . . , an) : ai ∈ k}.

Given an ideal I ⊂ k[x1, . . . , xn], set

V (I) := {P = (a1, . . . , an) ∈ An : f(P ) = 0 for all f ∈ I}.

Definition 1.1. X ⊂ An is an affine variety if there exists an ideal
I ⊂ k[x1, . . . , xn] for which X = V (I).

The above definition is not standard; a lot of textbooks assume that
I is in fact a prime ideal.

According to the Hilbert Basis Theorem there exist finitely many
polynomials f1, . . . , fm ∈ k[x1, . . . , xn] with I = (f1, . . . , fm). Therefore

V (I) = {P = (a1, . . . , an) ∈ An : fi(P ) = 0 i = 1, . . . ,m}.

The following lemma is easy.

Lemma 1.2. Let I1, I2, Iλ (λ ∈ Λ) be ideals in k[x1, . . . , xn]. Then

• I1 ⊆ I2 ⇒ V (I1) ⊇ V (I2);
• V (I1) ∪ V (I2) = V (I1 ∩ I2) = V (I1I2);

• V (⟨Iλ : λ ∈ Λ⟩) =
∩
λ∈Λ

V (Iλ).

The last two properties imply that the affine varieties may be used
to define the closed subsets in a topology on X (note that An = V (0),
∅ = V (1)). This topology is called the Zariski topology on An, and
affine varieties are equipped with the induced topology.

Next another easy lemma.

Lemma 1.3. The open subsets of the shape

D(f) := {P ∈ An : f(P ) ̸= 0},

where f ∈ k[x1, . . . , xn] is a fixed polynomial, form a basis of the Zariski
topology on An.
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Now given an affine variety X ⊂ An, set

I(X) := {f ∈ k[x1, . . . , xn] : f(P ) = 0 for all P ∈ X}.
Now arises the natural question: which ideals I ⊂ k[x1, . . . , xn] sat-

isfy I(V (I)) = I? An obvious necessary condition is that fm ∈ I

should imply f ∈ I for all m > 0, i.e. I should equal its radical
√
I.

Such ideals are called radical ideals.
The condition is in fact sufficient:

Theorem 1.4. (Hilbert Nullstellensatz) I =
√
I ⇔ I(V (I)) = I.

According to the Noether-Lasker theorem, given an ideal I with

I =
√
I, there exist prime ideals P1, . . . , Pr ⊂ k[x1, . . . , xn] satisfy-

ing I = P1 ∩ · · · ∩ Pr. (Recall that an ideal I is a prime ideal if ab ∈ I
implies a ∈ I or b ∈ I.) Since in this case V (I) = ∪V (Pi), it is enough
to prove the theorem in the case when I is a prime ideal.

This we shall do under the following additional condition:

(∗) There exists a subfield F ⊂ k with tr.deg.(k|F ) = ∞.

(Recall that this last condition means that there exist infinite systems
of elements in k that are algebraically independent over F , i.e. there
is no polynomial relation with F -coefficients among them.)

The condition (∗) is satisfied, for instance, for k = C. See Remark
1.6 below on how to get rid of it.

Lemma 1.5. Let I ⊂ k[x1, . . . , xn] be a prime ideal, and F ⊂ k a
subfield satisfying (∗). Then there exists P ∈ V (I) such that

f ∈ F [x1, . . . , xn], f(P ) = 0 ⇒ f ∈ I.

Proof. Choose a system of generators f1, . . . , fm for I. By adjoining
the coefficients of the fi to F we may assume fi ∈ F [x1, . . . , xn] for
all i without destroying the assumptions. Set I0 := I ∩ F [x1, . . . , xn].
This is again a prime ideal, so F [x1, . . . , xn]/I0 is a finitely generated
F -algebra which is an integral domain. Denoting by F0 its fraction
field, we have a finitely generated field extension F0|F , so (∗) implies
the existence of an F -embedding ϕ : F0 ↪→ k. Denote by x̄i the image
of xi in F0 and set ai := ϕ(x̄i), P = (a1, . . . , an). By construction
fi(P ) = 0 for all i, so P ∈ V (I), and for f ∈ F [x1, . . . , xn] \ I0 one has
f(x̄1, . . . , x̄n) ̸= 0, and therefore f(P ) ̸= 0. �
Proof of the Nullstellensatz assuming (∗): Pick f ∈ I(V (I)) and F ⊂ k
satisfying (∗) such that f ∈ F [x1, . . . , xn]. If f /∈ I, then for P ∈
V (I) as in the above lemma one has f(P ) ̸= 0, which contradicts
f ∈ I(V (I)).

Remark 1.6. Here is how to eliminate (∗) using mathematical logic.
If k does not satisfy (∗), let Ω = kI/F an ultrapower of k which is
big enough to satisfy (∗). According to the Loş lemma Ω is again
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algebraically closed, so the Nullstellensatz holds over it. Again by the
Loş lemma we conclude that it holds over k as well.

Corollary 1.7. The rule I 7→ V (I) is an order reversing bijection

between ideals in k[x1, . . . xn] satisfying I =
√
I and affine varieties in

An. Maximal ideals correspond to points, so in particular each maximal
ideal is of the form (x1 − a1, . . . , xn − an).

Lemma 1.8. I ⊂ k[x1, . . . , xn] is a prime ideal if and only if V (I) is
an irreducible closed subset in An.

Recall that Z is an irreducible closed subset if there exists no de-
composition Z = Z1 ∪ Z2 with the Zi closed and different from Z.

Proof. Look at the decomposition I = P1∩· · ·∩Pr given by the Noether-
Lasker theorem. If I is not a prime ideal, then r > 1, whence a
nontrivial decomposition V (I) = ∪V (Pi). On the other hand, if V (I) =
Z1 ∪ Z2 nontrivially, then by the Nullstellensatz I is the nontrivial
intersection of two ideals that equal their own radical, whence r must
be > 1. �
Corollary 1.9. Each affine variety X is a finite union of irreducible
varieties Xi. Those Xi which are not contained in any other Xj are
uniquely determined, and are called the irreducible components of X.

Proof. In view of the lemma and the Nullstellensatz, this follows from
the Noether-Lasker theorem. �
Example 1.10. For I = (x1x2) ⊂ k[x1, x2] one has

V (I) = V ((x1)) ∪ V ((x2)).

Definition 1.11. If X is an affine variety, the quotient

AX := k[x1, . . . , xn]/I(X)

is called the coordinate ring of X.

Note that since I(X) is a radical ideal, the finitely generated k-
algebra AX is reduced, i.e. it has no nilpotent elements.

The elements of AX may be viewed as functions on X with values
in k; we call them regular functions. Among these the images of the
xi are the restrictions of the coordinate functions of An to X, whence
the name. Note that X is a variety if and only if AX is reduced (i.e.
has no nilpotents).

Definition 1.12. Given an affine variety X ⊂ An, by a morphism
or regular map X → Am we mean an m-tuple ϕ = (f1, . . . , fm) ∈ Am

X .
Given an affine variety Y ⊂ Am, by a morphism ϕ : X → Y we mean
a morphism ϕ : X → Am with ϕ(P ) := (f1(P ), . . . , fm(P )) ∈ Y for all
P ∈ X.
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Lemma 1.13. A morphism ϕ : X → Y is continuous in the Zariski
topology.

Proof. It is enough to show that the preimage of each basic open set
D(f) ⊂ Y is open. This is true, because ϕ−1(D(f)) = D(f ◦ ϕ), where
f ◦ ϕ ∈ AX is the regular function obtained by composition. �
Definition 1.14. Given affine varieties X ⊂ An, Y ⊂ Am, the Carte-
sian product X × Y ⊂ An × Am ∼= An+m is called the product of X
and Y .

Lemma 1.15. The product X × Y ⊂ An+m is an affine variety.

Proof. If X = V (f1, . . . , fr) and Y = V (g1, . . . , gs), then

X × Y = V (f1, . . . , fr, g1, . . . , gs).

�

2. Affine algebraic groups

Definition 2.1. An affine (or linear) algebraic group is an affine vari-
ety G equipped with morphisms m : G×G→ G (‘multiplication’) and
i : G→ G (‘inverse’) satisfying the group axioms.

Examples 2.2.

(1) The additive group Ga of k. As a variety it is isomorphic to
A1, and (x, y) → (x+ y) is a morphism from A1 ×A1 to A1.

(2) The multiplicative group Gm of k. As a variety, it is isomorphic
to the affine hyperbola V (xy − 1) ⊂ A2.

(3) The subgroup of n-th roots of unity µn ⊂ Gm for n invertible
in k. As a variety, it is isomorphic to V (xn− 1) ⊂ A1. It is not
irreducible, not even connected (it consists of n distinct points).

(4) The group of invertible matrices GLn over k is also an algebraic
group (note that GL1 = Gm). To see this, identify the set

Mn(k) of n× n matrices over k with points of An2

. Then

GLn ∼= {(A, x) ∈ An2+1 : det(A)x = 1}.
This is a closed subset, since the determinant is a polynomial
in its entries.

(5) SLn is also an algebraic group: as a variety,

SLn ∼= {A ∈ An2

: det(A) = 1}.
Similarly, we may realise On, SOn, etc. as affine algebraic groups.

Proposition 2.3. Let G be an affine algebraic group.

(1) All connected components of G (in the Zariski topology) are
irreducible. In particular, they are finite in number.

(2) The component G◦ containg the identity element is a normal
subgroup of finite index, and its cosets are exactly the compo-
nents of G.
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Proof. (1) Let G = X1 ∪ · · · ∪ Xr be the decomposition of G into
irrreducible components. As the decomposition is irredundant, X1 ̸⊂
Xj for j ̸= 1, and therefore X1 ̸⊂ ∪j ̸=1Xj, as it is irreducible. Therefore
there exists x ∈ X1 not contained in any other Xj. But x may be
transferred to any other g ∈ G by the homeomorphism y 7→ gx−1y.
This implies that there is a single Xj passing through g. Thus the Xj

are pairwise disjoint, and hence equal the connected components.
(2) Since y 7→ gy is a homeomorphism for all g ∈ G, gG◦ is a whole
component for all g. If here g ∈ G◦, then g ∈ G◦∩gG◦ implies gG◦ = G◦

and thus G◦G◦ = G◦. Similarly (G◦)−1 = G◦ and gG◦g−1 ⊂ G◦ for all
g ∈ G, so G is a normal subgroup, and the rest is clear. �
Remark 2.4. A finite connected group must be trivial. On the other
hand, we shall see shortly that any finite group can be equipped with
a structure of affine algebraic group.

Now we investigate the coordinate ring of affine algebraic groups. In
general, if ϕ : X → Y is a morphism of affine varieties, there is an
induced k-algebra homomorphism ϕ∗ : AY → AX given by ϕ∗(f) =
f ◦ ϕ.

Proposition 2.5. (1) Given affine varieties X and Y , denote by
Mor(X,Y ) the set of morphisms X → Y . Then the map ϕ→ ϕ∗

induces a bijection between Mor(X, Y ) and Hom(AY ,AX).
(2) If A is a finitely generated reduced k-algebra, there exists an

affine variety X with A ∼= AX .

Proof. (1) Choose an embedding Y ↪→ Am, and let x̄1, . . . , x̄m be the
coordinate functions on Y . Then ϕ∗ 7→ (ϕ∗(x̄1), . . . , ϕ

∗(x̄m)) is an in-
verse for ϕ 7→ ϕ∗.

(2) There exist n > 0 and an ideal I ⊂ k[x1, . . . , xn] with I =
√
I and

A ∼= k[x1, . . . , xn]/I. The Nullstellensatz implies that X = V (I) is a
good choice. �
Corollary 2.6. The maps X → AX , ϕ→ ϕ∗ induce an anti-equivalence
between the category of affine varieties over k and that of finitely gen-
erated reduced k-algebras.

We say that the affine varieties X and Y are isomorphic if there exist
ϕ ∈ Mor(X,Y ), ψ ∈ Mor(Y,X) with ϕ ◦ ψ = idY , ψ ◦ ϕ = idX . The
affine variety X in Proposition 2.5 is unique up to isomorphism, but
its embedding in affine space is by no means unique.

Corollary 2.7. Let X and Y be affine varieties.

(1) X and Y are isomorphic as k-varietes if and only if AY and
AX are isomorphic as k-algebras.

(2) X is isomorphic to a closed subvariety of Y if and only if there
exists a surjective homomorphism AY → AX .
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Proof. (1) is easy. For (2), note that by Lemma 1.2 (1) X ⊂ Y closed
implies I(X) ⊃ I(Y ), so that I(X) induces an ideal Ī ⊂ AY , and there
is a surjection AY → AY /Ī ∼= AX . Conversely, given a surjection ϕ :
AY → AX , setting I = Ker (ϕ) and X ′ = V (I) we obtain AX′ ∼= AX ,
whence X ∼= X ′ by (1). �
Lemma 2.8. If X and Y are affine varieties, there is a canonical
isomorphism AX×Y ∼= AX ⊗k AY .

Proof. Define a map λ : AX ⊗AY → AX×Y by λ(Σfi ⊗ gi) = Σ(figi).
This is a surjective map, because the coordinate functions on X × Y
are in the image (to see this, set fi or gi to 1), and they generate AX×Y .
For injectivity, assume Σfigi = 0, We may assume the fi are linearly
independent over k, but then gi(P ) = 0 for all i and P ∈ Y , so that
gi = 0 for all i by the Nullstellensatz. Hence Σfi ⊗ gi = 0. �
Corollary 2.9. For an affine algebraic group G the coordinate ring
AG carries the following additional structure:

multiplication m : G×G→ G ↔ comultiplication ∆ : AG → AG⊗kAG

unit {e} → G ↔ counit e : AG → k

inverse i : G→ G ↔ coinverse ι : AG → AG

These are subject to the following commutative diagrams.

G×G×G G×G AG ⊗AG ⊗AG AG ⊗AG

G×G G AG ⊗AG AG

-id×m

?
m×id

?
m

�id⊗∆

-m

6
∆⊗id

� ∆

6
∆

G G×G AG AG ⊗AG

G×G G AG ⊗AG AG

@
@
@
@

@@R

id

?

e×id

-id×e

?

m

�id⊗e

-m

6

e⊗id

@
@

@
@

@@I
id

�∆

6

∆

G G×G AG AG ⊗AG

G×G G AG ⊗AG AG

@
@
@
@

@@R

c

?

i×id

-id×i

?

m

�id⊗ι

-m

6

ι⊗id

@
@

@
@

@@I
γ

�∆

6

∆

where in the last diagram c is the constant map G → {e} and γ the
composite A→ k → A.
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Definition 2.10. A k-algebra equipped with the above additional struc-
ture is called a Hopf algebra.

Corollary 2.11. The maps G→ AG, ϕ→ ϕ∗ induce an anti-equivalence
between the category of affine algebraic groups over k and that of finitely
generated reduced Hopf algebras.

Examples 2.12.

(1) The Hopf algebra structure on AGa = k[x] is given by ∆(x) =
x⊗ 1 + 1⊗ x, e(x) = 0, ι(x) = −x.

(2) The Hopf algebra structure on AGm = k[x, x−1] is given by
∆(x) = x⊗ x, e(x) = 1, ι(x) = x−1.

(3) The Hopf algebra structure on AGLn = k[x11, . . . , xnn, det(xij)
−1]

is given by ∆(xij) = Σl xil⊗ xlj, e(xij) = δij (Kronecker delta),
ι(xij) = yij, where [yij] = [xij]

−1.

Remark 2.13. Given any k-algebra R, the Hopf algebra structure
on AG induces a group structure on Hom(AG, R). (In particular, we
obtain the group structure on Hom(AG, k) ∼= G(k) using the Nullstel-
lensatz.) Therefore an affine algebraic group may also be defined as
a functor G from the category of k-algebras to the category of groups
for which there exists a finitely generated reduced k-algebra A with
G ∼= Hom(A, ) as a set-valued functor. Dropping the additional as-
sumptions on A we obtain the notion of an affine group scheme over k.

3. Embedding in GLn

In this section we prove:

Theorem 3.1. Each affine algebraic group is isomorphic to a closed
subgroup of GLn for appropriate n > 0.

Because of this theorem affine algebraic groups are also called linear
algebraic groups.

To give an idea of the proof, we first construct a closed embedding
into GLn for a finite group G. The regular representation is faithful,
hence defines an embedding G → GL(k[G]), where k[G] is the group
algebra of G viewed as a k-vector space. The image of G is finite, hence
Zariski closed.

For an arbitrary affine algebraic group the coordinate ring AG could
play the role of k[G] in the above argument, but it is not finite di-
mensional. The idea is to construct a finite-dimensional G-invariant
subspace.

Construction 3.2. For an affine algebraic group G the map x 7→ xg
is an automorphism of G as an affine variety for all g ∈ G. Thus it
induces a k-algebra automorphism ρg : AG → AG. Viewing it as a k-
vector space automorphism, we obtain a homomorphism G→ GL(AG)
given by g 7→ ρg.



LECTURES ON LINEAR ALGEBRAIC GROUPS 11

Lemma 3.3. Let V ⊂ AG be a k-linear subspace.

(1) ρg(V ) ⊂ V for all g ∈ G if and only if ∆(V ) ⊂ V ⊗k AG.
(2) If V is finite dimensional, there is a finite-dimensional k-subspace

W ⊂ AG containing V with ρg(W ) ⊂ W for all g ∈ G.

Proof. (1) Assume ∆(V ) ⊂ V ⊗k AG. Then for f ∈ V we find fi ∈ V ,
gi ∈ AG with ∆(f) = Σfi ⊗ gi. Thus (ρgf)(h) = f(hg) = Σfi(h)gi(g)
for all h ∈ G, hence

(1) ρgf =
∑

gi(g)fi,

so ρgf ∈ V , since fi ∈ V and gi(g) ∈ k. Conversely, assume ρg(V ) ⊂ V
for all g. Let {fi : i ∈ I} be a basis of V , and let {gj : j ∈ J}
be such that {fi, gj : i ∈ I, j ∈ J} is a basis of AG. Since ∆(f) =
Σfi ⊗ ui +Σgj ⊗ vj for some ui, vj ∈ AG, we obtain as above ρgf(h) =
Σfi(h)ui(g) + Σgj(h)vj(g). By assumption here vj(g) must be 0 for all
g ∈ G, thus vj = 0 for all j.
(2) By writing V as a sum of 1-dimensional subspaces it is enough to
consider the case dim (V ) = 1, V = ⟨f⟩. Choosing fi as in formula
(1) above, the formula implies that the finite-dimensional subspace W ′

generated by the fi contains the ρgf for all g ∈ G. Thus the subspace
W := ⟨ρgf : g ∈ G⟩ ⊂ W ′ meets the requirements. �

Remark 3.4. The lemma holds in a more general setting. Namely, one
says that an affine algebraic group G acts on an affine variety X if there
is a morphism G×X → X of affine varieties satisfying the usual axioms
for group actions. Each g ∈ G then induces a k-algebra automorphism
ρg : AX → AX . The same proof as in the case X = G above shows
that the statements of the lemma hold for subspaces V ⊂ AX .

Proof of Theorem 3.1: Let V be the finite-dimensional k-subspace of
AG generated by a finite system of k-algebra generators of AG. Apply-
ing part (2) of the lemma we obtain a k-subspace W invariant under
the ρg which still generates AG. Let f1, . . . , fn be a k-basis of W . By
part (1) of the lemma we find elements aij ∈ AG with

∆(fi) = Σjfj ⊗ aij for all 1 ≤ i ≤ n.

It follows that

(2) ρg(fi) = Σjaij(g)fj for all 1 ≤ i ≤ n, g ∈ G.

Thus [aij(g)] is the matrix of ρg in the basis f1, . . . , fn. Define a mor-

phism Φ : G → An2

by (a11, . . . , ann). Since the matrices [aij(g)] are
invertible, its image lies in GLn, and moreover it is a group homomor-
phism by construction. The k-algebra homomorphism Φ∗ : AGLn →
AG (see Example 2.12 (3)) is defined by sending xij to aij. Since
fi(g) = Σjfj(1)aij(g) for all g ∈ G by (2), we have fi = Σjfj(1)aij, and
therefore Φ∗ is surjective, because the fi generate AG. So by Corollary
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2.7 (2) and Proposition 2.5 (1) Φ embeds G as a closed subvariety in
GLn, thus as a closed subgroup.

4. Sharpenings of the embedding theorem

Later we shall also need more refined versions of the embedding
theorem. The first of these is:

Corollary 4.1. Let G be an affine algebraic group, H a closed sub-
group. Then there is a closed embedding G ⊂ GL(W ) for some finite-
dimensional W such that H equals the stabilizer of a subspace WH ⊂
W .

Proof. Let IH be the ideal of functions vanishing on H in AG. In
the above proof we may arrange that some of the fi form a system of
generators for IH . Put WH :=W ∩ IH . Observe that

g ∈ H ⇔ hg ∈ H for allh ∈ H ⇔ ρg(IH) ⊂ IH ⇔ ρg(WH) ⊂ WH ,

whence the corollary. �
Next a classical trick of Chevalley which shows that the subspace

WH of the previous corollary can be chosen 1-dimensional.

Lemma 4.2. (Chevalley) Let G be an affine algebraic group, H a
closed subgroup. Then there is a morphism of algebraic groups G →
GL(V ) for some finite-dimensional V such that H is the stabilizer of
a 1-dimensional subspace L in the induced action of G on V .

Proof. Apply Corollary 4.1 to obtain an embedding G ⊂ GL(V ) such
that H is the stabilizer of a subspace VH ⊂ V . Let d = dimVH . We
claim thatH is the stabilizer of the 1-dimensional subspace L := Λd(VH)
in Λd(V ) equipped with its natural G-action (which is defined by set-
ting g(v1∧· · ·∧vd) = g(v1)∧· · ·∧g(vd) for g ∈ G). Indeed, H obviously
stabilizes L. For the converse, let g ∈ G be an element stabilizing L.
We may choose a basis e1, . . . , en of V in such a way that e1, . . . , ed is
a basis of VH and moreover em+1, . . . , em+d is a basis of gVH . We have
to show m = 0, for then gVH = VH and g ∈ H. If not, then e1∧· · ·∧ed
and em+1 ∧ · · · ∧ em+d are linearly independent in Λd(V ). On the other
hand, we must have e1∧· · ·∧ed, em+1∧· · ·∧em+d ∈ L since g stabilizes
L, a contradiction. �

Based on Chevalley’s lemma we can finally prove:

Proposition 4.3. If H ⊂ G is a closed normal subgroup, there exists
a finite-dimensional vector space W and a morphism ρ : G→ GL(W )
of algebraic groups with kernel H.

Proof. Again start with a representation ϕ : G → GL(V ), where H
is the stabilizer of a 1-dimensional subspace ⟨v⟩ as in Lemma 4.2. In
other words, v is a common eigenvector of the h ∈ H. Let VH be the
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span of all common eigenvectors of the h ∈ H in V . Pick h ∈ H and
a common eigenvector v of H. Then hv = χ(h)v, where χ(h) ∈ k× is
a constant depending on h (in fact χ : H → Gm is a character of H,
but we shall not use this). Since H ⊂ G is normal, we have

hgv = g(g−1hg)v = g(χ(g−1hg)v) = χ(g−1hg)gv.

As h was arbitrary, we conclude that gv ∈ VH . So VH is G-invariant,
and we may as well assume VH = V . Thus V is the direct sum of the
finitely many common eigenspaces V1, . . . , Vn of H.

Let W ⊂ End(V ) be the subspace of endomorphisms that leave each
Vi invariant; it is the direct sum of the End(Vi). There is an action
of G on End(V ) by g(λ) = ϕ(g) ◦ λ ◦ ϕ(g)−1. This action stabilizes
W , because if Vi is a common eigenspace for H, then so is ϕ(g)−1(Vi)
because H is normal, and is therefore preserved by λ. We thus obtain
a morphism ρ : G→ GL(W ) of algebraic groups.

It remains to show H = Ker (ρ). As W is the direct sum of the
End(Vi) and each h ∈ H acts on Vi by scalar multiplication, we have
ϕ(h) ◦ λ ◦ ϕ(h)−1 = λ for all λ ∈ W , i.e. H ⊂ Ker (ρ). Conversely,
g ∈ Ker (ρ) means that ϕ(g) lies in the center of W , which is the direct
sum of the centers of the End(Vi). Thus g acts on each Vi by scalar
multiplication. In particular, it preserves the 1-dimensional subspace
⟨v⟩, i.e. it lies in H. �
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Chapter 2. Jordan Decomposition and Triangular Form

The embedding theorem of the last chapter enables us to apply linear
algebra techniques to the study of affine algebraic groups. The first
main result of this kind will be a version of Jordan decomposition
which is independent of the embedding into GLn. In the second part
of the chapter we discuss three basic theorems that show that under
certain assumptions one may put all elements of some matrix group
simultaneously into triangular form. The strongest of these, the Lie-
Kolchin theorem, concerns connected solvable subgroups of GLn. As
an application of this theorem one obtains a strong structural result
for connected nilpotent groups. In the course of the chapter we also
describe diagonalizable groups, i.e. commutative groups that can be
embedded in GLn as closed subgroups of the diagonal subgroup.

5. Jordan decomposition

The results of the last section allow us to apply linear algebra tech-
niques in the study of affine algebraic groups. For instance, since k
is algebraically closed, in a suitable basis each endomorphism ϕ of an
n-dimensional vector space has a matrix that is in Jordan normal form.
Recall that this means that if λ1, . . . , λm are the eigenvalues of ϕ, the
matrix of ϕ is given by blocks along the diagonal that have the form

λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
0 0 λi · · · 0 0
...

. . .
...

0 0 0 · · · λi 1
0 0 0 · · · 0 λi

 .
We shall generalise this result to affine algebraic groups independently
of the embedding into GLn. First some definitions.

Definition 5.1. Let V be a finite-dimensional vector space. An ele-
ment g ∈ End(V ) is semisimple (or diagonalizable) if V has a basis
consisting of eigenvectors of g. The endomorphism g is nilpotent if
gm = 0 for some m > 0.

Remark 5.2. Recall from linear algebra that g is semisimple if and
only if its minimal polynomial has distinct roots. Consequently, if
W ⊂ V is a g-invariant subspace and g is semisimple, then so is g|W
(because the minimal polynomial of g|W divides that of g). This fact
will be repeatedly used in what follows.

The above statement about matrices can be restated (in a slightly
weaker form) as follows:

Proposition 5.3. (Additive Jordan decomposition) Let V be a
finite-dimensional vector space, g ∈ End(V ).
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There exist elements gs, gn ∈ End(V ) with gs semisimple, gn nilpo-
tent, g = gs + gn and gsgn = gngs.

Proof. In the basis yielding the Jordan form define gs by the diagonal
of the matrix. �

One has the following additional properties.

Proposition 5.4.

(1) The elements gs, gn ∈ End(V ) of the previous proposition are
uniquely determined.

(2) There exist polynomials P,Q ∈ k[T ] with P (0) = Q(0) = 0 and
gs = P (g), gn = Q(g).

(3) If W ⊂ V is a g-invariant subspace, it is invariant for gs and
gn as well. Moreover, (g|W )s = gs|W and (g|W )n = gn|W .

Proof. (1) Let

Φ(T ) := det(T · idV − g) =
∏

(T − λi)
ni

the characteristic polynomial of g, and set

Vi := {v ∈ V : (g − λi)
niv = 0}.

This is a g-invariant subspace corresponding to the i-th Jordan block
of g. By construction gs|Vi = λiidVi .

Now assume g = g′s + g′n is another Jordan decomposition. Since
gg′s = g′sg, we have g

′
s(g−λiid) = (g−λiid)g′s, which implies g′s(Vi) ⊂ Vi

for all i. Since g−g′s = g′n is nilpotent, all eigenvalues of g′s|Vi are equal
to λi, but then g

′
s|Vi = λiidVi as g

′
s is semisimple (and hence so is g′s|Vi

– see the above remark). Thus gs = g′s.
(2) The Chinese Remainder Theorem for polynomial rings gives a direct
sum decomposition

k[T ]/(Φ) ∼=
⊕
i

k[T ]/((T − λi)
ni),

so we find P ∈ k[T ] with P ≡ λi mod (T − λi)
ni for all i. By con-

struction P (g) = gs, and so (T − P )(g) = gn. If Φ(0) = 0, then 0 is an
eigenvalue of g, and so P ≡ 0 mod T , i.e. P (0) = 0. Otherwise, adding
a suitable constant multiple of Φ to P if necessary, we may assume
P (0) = 0. Now set Q = T − P .
The first part of (3) immediately follows from (2). Moreover, as the
characteristic polynomial of g|W divides Φ, (g|W )s = P (g|W ) = gs|W is
a good choice; the statement for (g|W )n follows from this. �
Definition 5.5. An endomorphism h ∈ End(V ) is unipotent if h− idV
is nilpotent (equivalently, if all eigenvalues of h are 1).

Corollary 5.6. (Multiplicative Jordan decomposition) Let V be
a finite-dimensional vector space, g ∈ GL(V ).
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(1) There exist uniquely determined elements gs, gu ∈ GL(V ) with
gs semisimple, gu unipotent, and g = gsgu = gugs.

(2) There exist polynomials P,R ∈ k[T ] with P (0) = R(0) = 0 and
gs = P (g), gu = R(g).

(3) If W ⊂ V is a g-invariant subspace, it is invariant for gs and
gu as well. Moreover, (g|W )s = gs|W and (g|W )u = gu|W .

Proof. Since g ∈ GL(V ), its eigenvalues are nonzero, hence so are those
of the gs defined in the above proof. Thus gs is invertible, and gu =
idV +g−1

s gn will do for (1). Then to prove (2) it is enough to see by the
proposition that g−1

s is a polynomial in gs, and hence in g. This is clear,
because if xn+an−1x

n−1+ · · ·+a0 is the minimal polynomial of gs (note
that a0 ̸= 0), we have −a−1

0 gn−1
s − a−1

0 an−1g
n−2
s − · · · − a−1

0 a1 = g−1
s .

Statement (3) follows from (2) as above. �

We now consider an infinite-dimensional generalisation.

Definition 5.7. Let V be a not necessarily finite dimensional vec-
tor space and fix g ∈ GL(V ). Assume that V is a union of finite-
dimensional g-invariant subspaces. We say that g is semisimple (resp.
locally unipotent) if g|W is semisimple (resp. unipotent) for all finite-
dimensional g-invariant subspaces W .

Note that if G is an affine algebraic group, then for all g ∈ G the
action of the ‘right translation’ ρg ∈ GL(AG) on AG satisfies the finite-
ness condition of the definition by Lemma 3.3 (2).

Corollary 5.8. Let V be a not necessarily finite-dimensional vector
space, g ∈ GL(V ). Assume that V is a union of finite-dimensional
g-invariant subspaces.

(1) There exist uniquely determined elements gs, gu ∈ GL(V ) with
gs semisimple, gu locally unipotent, and g = gsgu = gugs.

(2) If W ⊂ V is a g-invariant subspace, it is invariant for gs and
gu as well, and (g|W )s = gs|W , (g|W )u = gu|W .

Proof. Using the third statement of the last corollary and the unicity
statement of part (1) we may ‘glue the (g|W )s and (g|W )u together’ to
obtain the required gs and gu, whence the first statement. The second
one follows from part (3) of the last corollary, once we have remarked
that W is also a union of finite-dimensional g-invariant subspaces. �

In the case V = AG equipped with the right action of G via the
ρg ∈ GL(AG) the corollary implies that a unique decomposition ρg =
(ρg)s(ρg)u exists.

Theorem 5.9. Let G be an affine algebraic group.

(1) There exist uniquely determined gs, gu ∈ G with g = gsgu = gugs
and ρgs = (ρg)s, ρgu = (ρg)u.
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(2) In the case G = GLn the elements gs and gu are the same as
those of Corollary 5.6.

(3) For each embedding ϕ : G → GLn we have ϕ(gs) = ϕ(g)s and
ϕ(gu) = ϕ(g)u.

Definition 5.10. We call g ∈ G semisimple (resp. unipotent) if g = gs
(resp. g = gu).

The following lemma already proves part (2) of the theorem.

Lemma 5.11. Let V be a finite-dimensional vector space. An ele-
ment g ∈ GL(V ) is semisimple (resp. unipotent) if and only if ρg ∈
GL(AGL(V )) is semisimple (resp. locally unipotent).

Proof. Recall that AGL(V )
∼= k[End(V ), 1/D], where D = det(xij) with

x11, . . . , xnn the standard basis of End(V ) ∼= Mn(k). Right multiplica-

tion by g acts not only on GL(V ), but also on End(V ) ∼= An2

, whence
another induced map ρg ∈ GL(AEnd(V )). Pick a function f ∈ AEnd(V ).
We claim that fD−m is an eigenvector for ρg on AGL(V ) for all m if
and only if f is an eigenvector for ρg on AEnd(V ) = k[End(V )]. Indeed,
regarding fD−m as a function on GL(V ) we have

(3) ρg(fD
−m)(x) = f(xg)D−m(x)D−m(g) = D−m(g)(ρg(f)D

−m)(x),

where Dm(g) = det(g)m for all m ≥ 0.
Thus ρg is semisimple on AGL(V ) if and only if it is semisimple on

AEnd(V ). The same holds with ‘semisimple’ replaced by ‘locally unipo-
tent’. (Indeed, note that the formula ρg(D) = D(g)D implies that D
is an eigenvector for ρg, so if ρg is unipotent, D(g) = 1 and (3) yields
‘if’; the converse is trivial.)

By the above it is enough to prove the lemma for AGL(V ) replaced
by the polynomial ring AEnd(V ). Observe that

AEnd(V )
∼= k[x11, . . . , xnn] ∼= Sym(End(V )∨),

where ∨ denotes the dual vector space and

Sym(End(V )∨) :=
∞⊕
m=0

(End(V )∨)⊗m/⟨x⊗ y − y ⊗ x⟩.

The action of ρg on End(V )∨ is given by (ρgf)(x) = f(xg), and the ac-
tion on AEnd(V ) is induced by extending this action to Sym(End(V )∨).
If ϕ ∈ End(V ) is semisimple or unipotent, then so is ϕ⊗m for all m,
so using the fact that End(V )∨ is the direct summand of degree 1
in Sym(End(V )∨) we see that ρg is semisimple (resp. unipotent) on
End(V )∨ if and only if it is semisimple (resp. locally unipotent) on
AEnd(V ). Thus we are reduced to showing that g ∈ GL(V ) is semisim-
ple (resp. unipotent) if and only if ρg is semisimple (resp. unipotent) on
End(V )∨. This is an exercise in linear algebra left to the readers. �
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Proof of Theorem 5.9: Note first that part (2) of the Theorem is an
immediate consequence of the above lemma in view of the unicity of the
decompositions g = gsgu and ρg = (ρg)s(ρg)u. Next take an embedding
ϕ : G→ GL(V ). For all g ∈ G the diagram

AGL(V )
ϕ∗−−−→ AG

ρϕ(g)

y yρg
AGL(V )

ϕ∗−−−→ AG

commutes.
Now there is a unique Jordan decomposition ϕ(g) = ϕ(g)sϕ(g)u in

GL(V ). We claim that it will be enough to show for (1) and (3) that
ϕ(g)s, ϕ(g)u ∈ ϕ(G). Indeed, once we have proven this, we may define
gs (resp. gu) to be the unique element in G with ϕ(gs) = ϕ(g)s (resp.
ϕ(gu) = ϕ(g)u). Since (1) holds for G = GL(V ) by the previous lemma,
the above diagram for gs and gu in place of g then implies that it holds
for G as well. Statement (3) now follows by the unicity statement of
(1) and the diagram above.

It remains to prove ϕ(g)s, ϕ(g)u ∈ ϕ(G). Setting I := Ker (ϕ∗),
observe that for ḡ ∈ GL(V )

(4) ḡ ∈ ϕ(G) ⇔ hḡ ∈ ϕ(G) for allh ∈ ϕ(G) ⇔ ρḡ(I) ⊂ I,

since I consists of the functions vanishing on G. In particular, ρϕ(g)
preserves I, hence so do (ρϕ(g))s and (ρϕ(g))u by Corollary 5.8 (2). On
the other hand, by the lemma above (ρϕ(g))s = ρϕ(g)s and (ρϕ(g))u =
ρϕ(g)u . But then from (4) we obtain ϕ(g)s, ϕ(g)u ∈ ϕ(G), as required.

We conclude with the following complement.

Corollary 5.12. Let ψ : G → G′ be a morphism of algebraic groups.
For each g ∈ G we have ψ(gs) = ψ(g)s and ψ(gu) = ψ(g)u.

Proof. Write G′′ for the closure of Im (ψ) in G′ (we shall prove later
that Im (ϕ) ⊂ G′ is in fact closed). It suffices to treat the morphisms
ψ1 : G→ G′′ and ψ2 : G

′′ → G′ separately.
As ψ1 has dense image, the induced map ψ∗

1(AG′′) → AG is injective,
and its image identifies with a ρg-invariant subspace of AG (ρg acting
on AG′′ via ρψ1(g) like in the diagram above). Now apply Corollary 5.8
(2) to this subspace.

To treat ψ2, choose an embedding ϕ : G′ → GLn, and apply part (3)
of the theorem to ϕ and ϕ◦ψ2. The statement follows from the unicity
of Jordan decomposition. �

6. Unipotent groups

In the next three sections we shall prove three theorems about putting
elements of matrix groups simultaneously into triangular form. In
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terms of vector spaces this property may be formulated as follows.
In an n-dimensional vector space V call a strictly increasing chain
{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V of subspaces a complete flag. Then
finding a basis of V in which the matrix of all elements of a subgroup
G ⊂ GL(V ) is upper triangular is equivalent to finding a complete flag
of G-invariant subspaces in V .

We call a subgroup of an affine algebraic group unipotent if it consists
of unipotent elements.

Proposition 6.1. (Kolchin) For each unipotent subgroup G ⊂ GL(V )
there exists a complete flag of G-invariant subspaces in V .

The following proof uses some basic facts from representation theory
(see e.g. Lang, Algebra, Chapter XVII).

Proof. By induction on the dimension n of V it will suffice to show
that V has a nontrivial G-invariant subspace. Assume not. Then V is
an irreducible representation of G, hence a simple n-dimensional k[G]-
module. By Schur’s lemma D = Endk[G](V ) is a division algebra over
k, hence D = k because k is algebraically closed (and each α ∈ D \ k
would generate a commutative subfield of finite degree). But then by
the Jacobson density theorem the natural map k[G] → Endk(V ) =
EndD(V ) is surjective. In other words, the elements of G generate
Endk(V ) as a k-vector space. Each element g ∈ G has trace n because
the trace of a nilpotent matrix is 0 and g − 1 is nilpotent. It follows
that for g, h ∈ G Tr(gh) = Tr(g), or in other words Tr((g − 1)h) = 0.
Since the h ∈ G generate Endk(V ), we obtain Tr((g − 1)ϕ) = 0 for all
ϕ ∈ Endk(V ). Fixing a basis of V and applying this to those ϕ whose
matrix has a single nonzero entry we see that this can only hold for
g = 1. But g was arbitrary, so G = 1, in which case all subspaces are
G-invariant, and we obtain a contradiction. �
Corollary 6.2. Each unipotent subgroup G ⊂ GLn is conjugate to a
subgroup of Un, the group of upper triangular matrices with 1’s in the
diagonal.

Proof. This follows from the proposition, since all eigenvalues of a
unipotent matrix are 1. �
Corollary 6.3. A unipotent algebraic group is nilpotent, hence solvable
(as an abstract group).

Recall that a group G is nilpotent if in the chain of subgroups

G = G0, G1 = [G,G], . . . , Gi = [G,Gi−1], . . .

we have Gn = {1} for some n. It is solvable if in the chain of subgroups

G = G(0), G(1) = [G,G], . . . , G(i) = [G(i−1), G(i−1)], . . .

we have G(n) = {1} for some n.
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Proof. A subgroup of a nilpotent group is again nilpotent, so by the
previous corollary it is enough to see that the group Un is nilpotent.
This is well-known (and easy to check). �

7. Commutative groups

We begin the study of commutative linear algebraic groups with the
following well-known statement.

Lemma 7.1. For each set S of pairwise commuting endomorphisms
of a finite-dimensional vector space V , there is a complete flag of S-
invariant subspaces of V . If all elements of S are semisimple, there is
a basis of V consisting of common eigenvectors of the elements in S.

Proof. The lemma is easy if all elements in S act by scalar multipli-
cations. Otherwise there is s ∈ S that has a nontrivial eigenspace
Vλ ( V . For all t ∈ S and v ∈ Vλ one has stv = tsv = λtv, i.e. tv ∈ Vλ,
so Vλ is S-invariant. The first statement then follows by induction on
dimension. For the second, choose s and Vλ as above, and let W be
the direct sum of the other eigenspaces of s. As above, both Vλ and
W are stable by S, and we again conclude by induction on dimension
(using Remark 5.2). �

Given an affine algebraic group G, write Gs (resp. Gu) for the set
of its semisimple (resp. unipotent) elements. Note that Gu is always a
closed subset, for applying the Cayley-Hamilton theorem after embed-
ding G into some GLn we see that all elements g ∈ Gu satisfy equation
(g − 1)n = 0, which implies n2 polynomial equations for their matrix
entries. The subset Gs is not closed in general.

Theorem 7.2. Let G be a commutative affine algebraic group. Then
the subsets Gu and Gs are closed subgroups of G, and the natural map
Gs ×Gu → G is an isomorphism of algebraic groups.

Proof. We may assume that G is a closed subgroup of some GL(V ).
The second statement of the previous lemma shows that in this case
Gs is a subgroup, and its first statement implies that Gu is a subgroup
as well (since a triangular unipotent matrix has 1-s in the diagonal).
Now use the second statement again to write V as a direct sum of the
common eigenspaces Vλ of the elements in Gs. Each Vλ is G-invariant
(again by the calculation stv = tsv = λtv), so applying the first state-
ment of the lemma to each of the Vλ we find a closed embedding of
G into GLn in which all elements map to upper triangular matrices
and all semisimple elements to diagonal ones. This shows in particu-
lar that Gs ⊂ G is closed (set the off-diagonal entries of a triangular
matrix to 0), and for Gu we know it already. The group homomor-
phism Gs × Gu → G is injective since Gs ∩ Gu = {1}, and surjective
by the Jordan decomposition. It is also a morphism of affine varieties,
so it remains to see that the inverse map is a morphism as well. The
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same argument that proves the closedness of Gs shows that the map
g 7→ gs given by Jordan decomposition is a morphism, hence so is
g 7→ gu = g−1

s g and finally g 7→ (gs, gu). �
We now investigate commutative semisimple groups. By the above

these are closed subgroups of some group Dn of diagonal matrices with
invertible entries, hence they are also called diagonalizable groups. An-
other standard terminology is groups of multiplicative type. A diago-
nalizable group is called a torus if it is actually isomorphic to some Dn,
and hence to the direct power Gn

m.
Obviously, direct products of the form Gr

m × µm1 × . . . µmn can be
embedded as closed subgroups in a direct power of Gm and hence are
diagonalizable. We now show that there are no others. For this we need
the notion of the character group. Given a not necessarily commutative
algebraic group G, a character of G is a morphism of algebraic groups

G → Gm. These obviously form an abelian group, denoted by Ĝ.

Moreover, the map G 7→ Ĝ is a contravariant functor: each morphism

G → H of algebraic groups induces a group homomorphism Ĥ → Ĝ
by composition.

Proposition 7.3. If G is diagonalizable, then Ĝ is a finitely generated
abelian group having no elements of order char (k).

The proof uses the following famous lemma.

Lemma 7.4. (Dedekind) Let G be an abstract group, k a field and
ϕi : G → k× group homomorphisms for 1 ≤ i ≤ m. Then the ϕi are
linearly independent in the k-vector space of functions from G to k.

Proof. Assume Σλiϕi = 0 is a linear relation with λi ∈ k× that is of
minimal length. Then Σλiϕi(gh) = Σλiϕi(g)ϕi(h) = 0 for all g, h ∈ G.
Fixing g with ϕ1(g) ̸= ϕi(g) for some i (this is always possible after
a possible renumbering) and making h vary we obtain another linear
relation Σλiϕi(g)ϕi = 0. On the other hand, multiplying the initial
relation by ϕ1(g) we obtain Σλiϕ1(g)ϕi = 0. The difference of the two
last relations is nontrivial and of smaller length, a contradiction. �

Next recall from Example 2.2(2) that AGm
∼= k[T, T−1], with the

Hopf algebra structure determined by ∆(T ) = T ⊗ T . It follows that
any character χ : G → Gm is determined by the image of T by χ∗,
which should satisfy ∆(χ∗(T )) = χ∗(T )⊗χ∗(T ). Thus we have proven:

Lemma 7.5. The map χ 7→ χ∗(T ) induces a bijection between Ĝ and
the set of elements x ∈ AG satisfying ∆(x) = x⊗ x.

The elements x ∈ AG with ∆(x) = x ⊗ x are called group-like ele-
ments. The two previous lemmas imply:

Corollary 7.6. The group-like elements are k-linearly independent in
AG.



22 TAMÁS SZAMUELY

Proof of Proposition 7.3: In the case G = Gm a group-like element
in AGm can only be T n for some n ∈ Z (for instance, by the above

corollary), so Ĝm
∼= Z. Next we have Ĝn

m
∼= Ĝm

n ∼= Zn and also
AGn

m
∼= k[T, T−1]⊗n ∼= k[T1, T

−1
1 , . . . , Tn, T

−1
n ] using Lemma 2.8. If

ϕ : G → Gn
m is a closed embedding, the induced surjection ϕ∗ :

k[T1, T
−1
1 , . . . , Tn, T

−1
n ] → AG is a map of Hopf algebras, so in par-

ticular it sends group-like elements to group like ones. Since the ele-
ments Tm1

1 . . . Tmn
n are group-like and span AGn

m
as a k-vector space,

the ϕ∗(Tm1
1 . . . Tmn

n ) must span AG. But then by the previous corollary
a group-like element in AG should be one of the ϕ∗(Tm1

1 . . . Tmn
n ), so the

natural map Zn = Ĝn
m → Ĝ is surjective. Finally, if char (k) = p > 0

and χ ∈ Ĝ has order dividing p, then χp(g) = χ(g)p = 1 for all g ∈ G,
but since k× has no p-torsion, χ(g) = 1 and so χ = 1.

In the course of the above proof we have also proven:

Corollary 7.7. The group-like elements form a k-basis of AG.

Now we can prove.

Theorem 7.8. The functor G → Ĝ induces an anti-equivalence of
categories between diagonalizable algebraic groups over k and finitely
generated abelian groups having no elements of order char (k). Here
tori correspond to free abelian groups.

Proof. Construct a functor in the reverse direction as follows. Given

a finitely generated abelian group Ĝ as in the theorem, consider the

group algebra k[Ĝ]. Equip it with a Hopf algebra structure by declaring

the elements of Ĝ to be group-like and take the associated affine group

G̃. This construction is contravariantly functorial and for Ĝ = Zn gives

G̃ = Gn
m. In the general case a surjection Zn � Ĝ induces a closed

embedding G̃ ↪→ Gn
m, so we get a diagonalizable group whose character

group is Ĝ by construction. On the other hand, if G is diagonalizable,

we have an isomorphism of k-vector spaces AG
∼= k[Ĝ] by the previous

corollary. It is also a Hopf algebra isomorphism as it is so for Gn
m and

we may take Hopf algebra surjections AGn
m

� AG, k[Z
n] � k[Ĝ] in

the general case. �

Remark 7.9. The above theory is more interesting over non-algebra-
ically closed fields. In this case the character group has an extra struc-
ture: the action of the absolute Galois group of the base field. In fact,

the theorem above can be generalized as follows: the functor G→ Ĝ re-
alizes an anti-equivalence of categories between diagonalizable groups
over a perfect field k (i.e. algebraic groups defined over k that be-
come diagonalizable over an algebraic closure k̄) and finitely generated
abelian groups equipped with a continuous action of Gal (k̄|k).
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As an example, consider k = R and tori with character group Z.
Here Gal (C|R) ∼= Z/2Z and there are two possible actions of Z/2Z
on Z, sending 1 to 1 and −1, respectively. The first case corresponds
to Gm over R and the second case to the circle group: the affine R-
variety with equation x2 + y2 = 1 where the group structure comes
from identifying the R-points with complex numbers of absolute value
1 (this is also the group SO2 over R). If we now consider Q in place
of R, we get many different actions of Gal (Q|Q) on Z corresponding
to different quadratic extensions of Q. These correspond to tori over
Q with equation x2 − ay2 = 1 where a ∈ Q× \Q×2.

8. The Lie-Kolchin theorem

We now come to the third main triangularisation theorem. In the
special case when G is a connected solvable complex Lie group it was
proven by Lie.

Theorem 8.1. (Lie-Kolchin) Let V be a finite-dimensional k-vector
space and G ⊂ GL(V ) a connected solvable subgroup. Then there is a
complete flag of G-invariant subspaces in V .

Remarks 8.2.

(1) This is not really a theorem about algebraic groups, for we have
not assumed that G is closed. It is just a connected subgroup
equipped with the induced topology which is solvable as an ab-
stract group. In the case when G is also closed, we shall see later
(Corollary 16.6) that the commutator subgroup [G,G] is closed
as well (this is not true in general when G is not connected!), so
all subgroups Gi in the finite commutator series of G are closed
connected algebraic subgroups, by Lemma 8.3 below.

(2) The converse of the theorem also holds, even without assuming
G connected: if there is a complete G-invariant flag, then G is
solvable (because the group of upper triangular matrices is).

(3) However, the connectedness assumption is necessary even for
closed subgroups, as the following example shows. Let G ⊂
GL2(k) be the group of matrices with a single nonzero entry in
each row and column. It is not connected but a closed subgroup,
being the union of the diagonal subgroup D2 with the closed
subset A2 of invertible matrices with zeros in the diagonal. It is
also solvable, because D2 is its identity component and G/D2

∼=
Z/2Z. The only common eigenvectors for D2 are of the form(
a

0

)
and

(
0

a

)
, but these are not eigenvectors for the matrices

in A2. Thus there is no common eigenvector for G.

Lemma 8.3. If G is a connected topological group, then the commu-
tator subgroup [G,G] is connected as well.
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Proof. Write ϕi for the map G2i → G sending (x1, . . . , xi, y1, . . . yi) to
[x1, y1] . . . [xi, yi]. Since G is connected, so is Im (ϕi). Thus Im (ϕ1) ⊂
Im (ϕ2) ⊂ . . . is a chain of connected subsets and [G,G] is their union,
hence it is connected. �

Proof of Theorem 8.1: By induction on dimV it suffices to show that
the elements of G have a common eigenvector v, for then the image
of G in GL(V/⟨v⟩) is still connected and solvable, and thus stabilizes
a complete flag in V/⟨v⟩ whose preimage in V yields a complete flag
together with ⟨v⟩. We may also assume that V is an irreducible k[G]-
module, i.e. there is no nontrivial G-invariant subspace in V , for if V ′

were one, we would find a common eigenvector by looking at the image
of G in GL(V ′), again by induction on dimension.

We now use induction on the smallest i for which Gi = {1}. By
Lemma 8.3 [G,G] is a connected normal subgroup inG with [G,G]i−1 =
{1}, so by induction its elements have a common eigenvector. WriteW
for the span of all common eigenvectors of [G,G] in V . We claim that
W = V . By the irreducibility of V for this it is enough to see that W
is G-invariant, which follows from the normality of [G,G] by the same
argument as at the beginning of the proof of Proposition 4.3.

We conclude that there is a basis of V in which the matrix of each
h ∈ [G,G] is diagonal. This holds in particular for the conjugates
g−1hg ∈ [G,G] with g ∈ G, and thus conjugation by g corresponds to
a permutation of the finitely many common eigenvalues of the g−1hg.
In particular, each h ∈ [G,G] has a finite conjugacy class in G. In
other words, for fixed h ∈ [G,G] the map G→ G, g 7→ g−1hg has finite
image. Since G is connected and the map is continuous, it must be
constant. This means that [G,G] is contained in the center of G.

Next observe that each h ∈ [G,G] must act on V via multiplication
by some λ ∈ k×. Indeed, if Vλ is a nontrivial eigenspace of h with
eigenvalue λ, it must be G-invariant since h is central in G, but then
Vλ = V by irreducibility of V . On the other hand, h is a product of
commutators, so its matrix has determinant 1. All in all, the matrix
should be of the form ω · id, where ω is a dimV -th root of unity. In
particular, [G,G] is finite, but it is also connected, hence [G,G] = 1
and G is commutative. We conclude by Lemma 7.1.

Corollary 8.4. If G is connected and solvable, then Gu is a closed
normal subgroup of G.

Proof. By the theorem we find an embedding G ⊂ GLn so that the
elements of G map to upper triangular matrices. Then Gu = G ∩ Un,
and moreover it is the kernel of the natural morphism of algebraic
groups G → Dn, where Dn is the subgroup of diagonal matrices. So
Gu is a closed normal subgroup. �
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In contrast, Gs need not be a subgroup in general. However, this is
so in the nilpotent case, where much more is true.

Theorem 8.5. Let G be a connected nilpotent affine algebraic group.
Then the subsets Gu and Gs are closed normal subgroups of G, and the
natural map Gs ×Gu → G is an isomorphism of algebraic groups.

Proof. We shall prove that Gs ⊂ Z(G), for then everything will follow
as in the proof of Theorem 7.2: Gs is a subgroup as its elements com-
mute (Lemma 7.1), so if G ⊂ GL(V ) and Vλ is a common eigenspace
for Gs, it is G-invariant as Gs ⊂ Z(G), and hence by applying the Lie–
Kolchin theorem to each Vλ we get an embedding G ⊂ GLn in which
G maps to the upper triangular subgroup and Gs to the diagonal sub-
group. Hence Gs ⊂ G is a closed central subgroup and the rest follows
from Jordan decomposition as in the proof of Theorem 7.2.

Now assume Gs ̸⊂ Z(G), and choose g ∈ Gs and h ∈ G that do
not commute. Embed G into some GL(V ), and apply the Lie-Kolchin
theorem to find a complete flag of G-invariant subspaces. We find a
largest subspace Vi in the flag on which g and h commute but they do
not commute on the next subspace Vi+1 = Vi ⊕ ⟨v⟩. As g is diagonal-
izable, v is an eigenvector for g, i.e. gv = λv for some λ ̸= 0. On the
other hand, the G-invariance of Vi+1 shows that there is w ∈ Vi with
hv = µv + w.

Put h1 := h−1g−1hg. We now show that g and h1 do not commute.
Indeed, noting g−1v = λ−1v and h−1v = µ−1v − µ−1h−1w we have

h1gv = h−1g−1hg2v = λ2h−1g−1hv = λ2h−1g−1(µv + w) =

= λµh−1v + λ2h−1g−1w = λv − λh−1w + λ2h−1g−1w

and

gh1v = gh−1g−1hgv = λgh−1g−1hv = λgh−1g−1(µv + w) =

= µgh−1v + λgh−1g−1w = λv − gh−1w + λgh−1g−1w.

Since g and h commute on Vi, we have λgh−1g−1w = λh−1w, so by
substracting the two equations we obtain

(h1g − gh1)v = λ2h−1g−1w − 2λh−1w + gh−1w = h−1g−1(λ− g)2w.

But gw ̸= λw, for otherwise we would have ghv = λµv + λw = hgv,
and g and h and would commute on the whole of Vi+1. Thus h1 and g
do not commute. Repeating the argument with h1 in place of h and so
on we obtain inductively hj ∈ Gj that does not commute with g (recall
that G0 = G and Gj = [G,Gj−1]). But Gj = {1} for j large enough by
the nilpotence of G, a contradiction. Therefore Gs ⊂ Z(G). �

The direct product decomposition of the theorem shows that Gs is
a homomorphic image of G, hence it is connected. Thus it is a torus,
and we shall see later that it is the largest torus contained as a closed
subgroup in G. For this reason it is called the maximal torus of G.
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If G is only connected and solvable, there exist several maximal tori
in G (i.e. tori contained as closed subgroups and maximal with respect
to this property). We shall prove in Section 25 that the maximal tori
are all conjugate in G, and G is the semidirect product of Gu with a
maximal torus.

9. A glimpse at Lie algebras

In order to define the Lie algebra associated with an algebraic group,
we first have to discuss tangent spaces.

Let first X = V (I) ⊂ An be an affine variety, and P = (a1, . . . an)
a point of X. The tangent space TP (X) of X at P is defined as the
linear subspace of An given by the equations

n∑
i=1

(∂xif)(P )(xi − ai) = 0,

for all f ∈ I, where the xi are the coordinate functions on An. Geomet-
rically this is the space of lines tangent to X at P . If I = V (f1, . . . , fm),
then we may restrict to the finitely many equations coming from the
fj in the above definition, because if Σjgjfj is a general element of I,
then

∂xi(
∑
j

gjfj)(P ) =
∑
j

((∂xigj)(P )fj(P ) + gj(P )(∂xifj)(P ))

=
∑
j

gj(P )∂xifj(P ),

and so
n∑
i=1

∂xi(
∑
j

gjfj)(P )(xi − ai) =
∑
j

gj(P )
n∑
i=1

∂xifj(P )(xi − ai) = 0.

A drawback of this definition is that it depends on the choice of the
embedding of X into An. We can make it intrinsic at follows. Let
MP be the maximal ideal in AX consisting of functions vanishing at
P . Denote by TP (X)∗ the dual k-vector space to TP (X), and define a
map ∂P : MP/M

2
P → TP (X)∗ by

∂P (f̄) := restriction of
n∑
i=1

(∂xif)(P )(xi − ai) to TP (X),

where f is a polynomial in k[x1, . . . , xn] with f(P ) = 0 that maps to
f̄ in MP/M

2
P . The map does not depend on the choice of f , because

it vanishes on elements of I(X) by definition of TP (X), and it also
vanishes on elements of M2

P by a calculation using the Leibniz rule as
above.

Lemma 9.1. (Zariski) The map ∂P : MP/M
2
P → TP (X)∗ is an iso-

morphism of k-vector spaces.
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Proof. For surjectivity one sees that all elements of TP (X)∗ can be
written as a sum Σαi(xi − ai) with suitable αi, and these linear func-
tions are preserved by ∂P . For injectivity, ∂P (f̄) = 0 means that for a
representative f one has

n∑
i=1

(∂xif)(P )(xi − ai) =
∑
j

αj

n∑
i=1

(∂xigj)(P )(xi − ai)

for some g1, . . . , gr ∈ I(X) and αj ∈ k. Replacing f by f − Σjajgj we

may thus assume
n∑
i=1

(∂xif)(P )(xi − ai) = 0, i.e. f has no linear term

in the xi − ai, and therefore its image in MP lies in M2
P . �

For the above reason one calls MP/M
2
P the Zariski cotangent space

of X at P , and its dual the Zariski tangent space.
Let now G be an affine algebraic group, and look at the tangent

space T1(G) at the unit element 1. The maximal ideal M1 ⊂ AG

corresponding to 1 is none but the kernel of the counit map e : AG → k,
and AG decomposes as a direct sum AG

∼= M1 ⊕ k via e. Given an
element of T1(G), identified with a k-linear map ϕ : M1/M

2
1 → k, the

above decomposition allows us to view it as a map AG → k vanishing
on M2

1 and k; in fact we get a bijection between elements of T1(G) and
k-linear maps AG → k with this property. Using this bijection we may
introduce a Lie bracket on T1(G) by setting [ϕ, ψ] := (ϕ⊗ψ−ψ⊗ϕ)◦∆,
where ∆ : AG → AG ⊗k AG is the comultiplication map. This is a k-
bilinear function that satisfies [ϕ, ϕ] = 0 and the Jacobi identity

[ϕ, [ψ, χ]] + [ψ, [χ, ϕ]] + [χ, [ϕ, ψ]] = 0.

Thus T1(G) is equipped with a Lie algebra structure.

Definition 9.2. Let G be an affine algebraic group. the Lie algebra
Lie(G) of G is the (Zariski) tangent space of G at 1 equipped with the
above Lie algebra structure.

Examples 9.3.

(1) Lie(GLn) is the Lie algebra gln of all n×n matrices. Indeed, the

tangent space of GLn at 1 is the same as that of An2

, namely
An2

.
(2) Lie(SLn) is the Lie algebra sln of all n× n matrices of trace 0.

This is because ∂xij(det(xij) − 1)(δij)(xij − δij) = δij(xij − 1)
(Kronecker delta). In this way we obtain those matrices M
where M − 1 has trace 0; translating from 1 to 0 we get sln
embedded as a vector subspace in An2

.

A morphism G → G′ of algebraic groups induces a homomorphism
Lie(G) → Lie(G′) of Lie algebras. In particular, any representation
G→ GLn induces a Lie algebra representation Lie(G) → gln.
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Remark 9.4. The theorems of Kolchin and Lie-Kolchin have analogues
(in fact, predecessors) in Lie algebra theory. Engel’s theorem states
that if ρ : L → gln is a Lie algebra representation such that ρ(x) is a
nilpotent matrix for all x ∈ L, then ρ stabilizes a complete flag in kn.
Lie’s theorem says that a similar conclusion holds for representations
of solvable Lie algebras. Here one calls a Lie algebra L solvable if the
subalgebras Di(L) defined inductively by D0(L) = L and Di(L) =
[Di−1(L), Di−1(L)] satisfy Di(L) = 0 for all i large enough.

One may show that if G is solvable as a group, then Lie(G) is solvable
as a Lie algebra (the converse also holds in characteristic 0, but not
in characteristic p > 0!), and hence deduce Lie’s theorem for Lie(G)
from the Lie-Kolchin theorem on G◦. Similarly, one may show that
Kolchin’s theorem for unipotent G implies that of Engel for Lie(G).
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Chapter 3. Flag Varieties and the Borel Fixed Point
Theorem

One way to rephrase the Lie-Kolchin theorem is the following: the
natural action of a connected solvable subgroup of GL(V ) on the set of
complete flags in V has a fixed point. In the first part of this chapter
we show that this set carries an additional structure, namely that of a
projective variety. In the simplest case when dimV = 2 the problem
reduces to classifying lines through the origin in V which indeed corre-
spond to points of the projective line P1. The higher-dimensional case
is more difficult, however, and gives rise to the so-called flag varieties.
With this basic example at hand one gains more insight into the main
theorem of this section, the Borel fixed point theorem. It states that
quite generally the action of a connected solvable group on a projective
variety has a fixed point. For the proof we shall have to develop some
foundational material from the theory of quasi-projective varieties.

10. Quasi-projective varieties

We identify points of projective n-space over our algebraically closed
base field k with

Pn(k) := ({P = (a0, . . . , an) : ai ∈ k} \ {(0, . . . , 0)}) / ∼,
where ∼ is the equivalence relation for which (a0, . . . , an) ∼ (b0, . . . , bn)
if and only if there exists λ ∈ k× with ai = λbi for all i.

Definition 10.1. Let f1, . . . , fm ∈ k[x0, . . . , xn] be homogeneous poly-
nomials. Define

V (f1, . . . , fm) := {P ∈ Pn(k) : fi(P ) = 0, 1 ≤ i ≤ m}.
A subset of Pn(k) of this form is called a projective variety. These
subsets are the closed subsets of a topology on Pn called the Zariski
topology.

Remark 10.2. We say that a non-homogeneous polynomial vanishes
at a point of Pn(k) if it vanishes on all of its representatives. If X ⊂
Pn is a projective closed subset, then the ideal I(X) ⊂ k[x0, . . . , xn]
of polynomials vanishing on X has the following additional property:
each homogeneous component of a polynomial in I(X) is contained
in I(X). (Indeed, if f = Σfd with fd homogeneous of degree d, then
0 = f(λa0, . . . , λan) = Σλdfd(a0, . . . , an) can only hold for all λ ̸= 0 if
fd(a0, . . . , an) = 0 for all d, because k is infinite.) Ideals in k[x0, . . . , xn]
having this property are called homogeneous ideals.

There is the following analogue of the Nullstellensatz for projective
varieties: if I ⊂ k[x0, . . . , xn] is a homogeneous ideal that equals its
radical and does not contain the ideal (x0, . . . , xn), then I(V (I)) = I.
This is not hard to derive from the affine Nullstellensatz. Note that
V (x0, . . . , xn) = ∅, so the additional condition is necessary.
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Consider the Zariski open subsets

D+(xi) := Pn \ V (xi) = {P = (x0, . . . xn) ∈ Pn(k) : xi ̸= 0}
for all 0 ≤ i ≤ n. These form an open covering of Pn. The points of
D+(xi) are in bijection with those of An via the maps

(x0, . . . , xn) 7→ (
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)

and
(t1, . . . , tn) 7→ (t1, . . . , ti−1, 1, ti . . . , tn).

Here if X = V (J) is a projective variety, then

X(i) := X ∩D+(xi) = V (J (i))

is an affine variety in D+(xi) ∼= An for all i, where J (i) ⊂ k[t1, . . . , tn]
is the ideal formed by the polynomials

f (i)(t1, . . . , tn) = f(t1, . . . , ti−1, 1, ti+1, . . . , tn)

for all f ∈ J . Conversely, ifXi = V (Ii) ⊂ D+(xi) is an affine variety, its
projective closure X i ⊂ Pn is defined as its closure in Pn for the Zariski
topology. It can be described as V (I), where I is the homogeneous ideal
formed by all polynomials arising as

G = xdi g(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)

for some g ∈ Ii of degree d. One has (X i)
(i) = Xi, so the inclusion map

D+(xi) → Pn is a homeomorphism in the Zariski topology.

Example 10.3. For the conic X = V (x1x2 − x20) in P2 the subsets
X(1) and X(2) are affine parabolas of equations x2 = x20 and x1 = x20,
respectively, whereas X(0) is the affine hyperbola x1x2 = 1.

Definition 10.4. A quasi-projective variety is a Zariski open subset
of a projective variety.

This is a common generalisation of affine and projective varieties
(any affine variety is open in its closure). Another example of a quasi-
projective variety is the complement in Pn of a projective variety. It
need not be affine in general.

We now define products of quasi-projective varieties, beginning with
the product of two projective spaces Pn and Pm.

Definition 10.5. The Segre embedding Sn,m : Pn ×Pm → PN (where
N := nm+ n+m) is the (set-theoretic) map defined by

Sn,m((a0, . . . , an), (b0, . . . , bm)) = (a0b0, a0b1, . . . , aibj, . . . , anbm−1, anbm),

the products aibj being listed in lexicographic order.

It is clear from the definition that Sn,m is injective.

Lemma 10.6. The image of Sn,m is a closed subvariety of PN .
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Proof. To ease notation, denote the coordinate functions on PN by wij
(0 ≤ i ≤ n, 0 ≤ j ≤ m). We claim that the closed subvariety

W := V (wijwkl − wkjwil : 0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m) ⊂ PN

is exactly the image of Sn,m. The inclusion Im (Sn,m) ⊂ W is ob-
vious. For the converse, pick Q = (q00, . . . , qnm) ∈ W . By per-
muting the coordinates if necessary we may assume q00 ̸= 0. Then
Q = Sn,m((q00, . . . , qn0), (q00, . . . , q0m)), because qi0q0l = q00qil accord-
ing to the equations of W . �
Remark 10.7. In the above proof we have in fact shown the equal-
ity W ∩ D+(w00) = Sn,m(D+(x0) × D+(x0)). This holds in general:
W ∩D+(wij) = Sn,m(D+(xi)×D+(xj)). ThusW has a standard affine
open covering by copies of D+(xi) × D+(xj) ∼= An+m. The con-
struction of the above proof also shows that the map An × Am →
Sn,m(D+(xi)×D+(xj)) is a homeomorphism in the Zariski topology.

Definition 10.8. If X ⊂ Pn and Y ⊂ Pm are quasi-projective vari-
eties, the product X × Y is defined as Sn,m(X × Y ) ⊂ PN .

Lemma 10.9. The product X × Y is a quasi-projective variety. If X
and Y are projective, then so is X × Y .

Proof. This follows from the above remark and the following easy topo-
logical statement (applied to theD+(xi) and theD+(xi)×D+(xj)): If a
topological space X has an open covering by subspaces Ui, then Z ⊂ X
is open (resp. closed) if and only if each Z ∩ Ui is open (resp. closed)
in Ui. �

11. Flag varieties

We now show that the set of complete flags in an n-dimensional
vector space V may be endowed with the structure of a projective
variety. As a first step we consider subspaces of fixed dimension d.

Recall that the exterior algebra Λ(V ) =
⊕

Λd(V ) is defined by

Λ(V ) :=
∞⊕
d=0

V ⊗d/⟨x⊗ x⟩.

The image of v1 ⊗ · · · ⊗ vd in Λd(V ) is denoted by v1 ∧ · · · ∧ vd. If
e1, . . . , en is a basis of V , then the elements ei1 ∧· · ·∧eid form a basis of

Λd(V ) for i1 < · · · < id. Thus Λ
d(V ) has dimension

(
n

d

)
; in particular,

it has dimension 1 for n = d. In this case, given vectors v1, . . . , vd with
vi = Σaijej, one has v1 ∧ · · · ∧ vd = det(aij)e1 ∧ · · · ∧ ed.

Now denote by Grd(V ) the set of d-dimensional subspaces in V . The
Plücker embedding pd : Grd(V ) → P(Λd(V )) is defined by sending a
dimension d subspace S to Λd(S). Explicitly the map can be described
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as follows: if e1, . . . , en is a basis of V , then giving a basis v1, . . . , vd for
S is the same as giving an n × d matrix with coefficients in k. Then

pd(S) is the point of P(nd)−1 given by the d× d minors of this matrix.

Lemma 11.1. The map pd is injective.

Proof. Assume S1 and S2 are two subspaces of dimension d in V . We
may choose bases of S1 and S2 as follows: e1, . . . , ed is a basis of S1,
and er, . . . , er+d−1 is a basis of S2. Now pd(S1) = pd(S2) is equivalent
to e1 ∧ · · · ∧ ed = λer ∧ · · · ∧ er+d−1 for some λ ∈ k×, which can only
hold with r = 1. �

Example 11.2. The simplest nontrivial case is when n = 4, d =
2. If e0, . . . e3 is a basis of V and v1 = Σaiei, v2 = Σbiei generate

a 2-dimensional subspace, the image p2(⟨v1, v2⟩) ∈ P(42)−1 = P5 is
the point (p01, p02, p03, p12, p13, p23) with pij = aibj − biaj. Denote the
homogeneous coordinates onP5 by x01, . . . , x23 as above. One may then
check that the image of p2 is the projective hypersurface of equation
x01x23 − x02x13 + x03x12 = 0, called the Plücker quadric.

In general, we have:

Proposition 11.3. The image of pd is a closed subvariety of P(nd)−1

for 0 ≤ d ≤ n.

Proof. The point of P(nd)−1 defined by a vector w ∈ Λd(V ) is in the
image of pd if and only if w is of the form w = λv1 ∧ · · · ∧ vd with
vi ∈ V and λ ∈ k×. We first show that this happens if and only if
the kernel Vw of the map V → Λd+1(V ), v 7→ v ∧ w is of dimension
d, and otherwise dimVw < d. Indeed, choose a basis v1, . . . , vm of Vw,
and extend it to a basis of V by adding vectors vm+1, . . . , vn. Then w
is expressed as a linear combination of terms of the form vi1 ∧ · · · ∧ vid ,
i1 < · · · < id. For each 1 ≤ i ≤ d we have vi1 ∧· · ·∧vid ∧vi = 0 if i = ij
for some j, and otherwise these are linearly independent (d+1)-vectors.
Since w∧vi = 0 for 1 ≤ i ≤ m, this implies that each vi must be one of
these vij ’s. Thus m ≤ d, with equality if and only if w = λv1∧ · · · ∧ vd.

Now embed Λd(V ) in Homk(V,Λ
d+1(V ) via the map w 7→ (v 7→ v ∧ w).

This induces a closed embedding P(Λd(V )) ↪→ P(Homk(V,Λ
d+1(V )).

By the above observation here the points of Im (pd) come from linear
maps whose image has dimension ≤ n−d. Choosing bases, this means
that the (n−d+1)×(n−d+1) minors of the matrix of the map vanish.
These give rise to homogeneous polynomials on P(Homk(V,Λ

d+1(V )),
and hence exhibit Im (pd) as the intersection of P(Λd(V )) with a Zariski
closed subset. �

The above projective variety is called a Grassmann variety or a
Grassmannian.
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Now we come to flag varieties. These parametrise flags in finite-
dimensional vector spaces. So let V be an n-dimensional vector space,
and denote by Fl(V ) the set of complete flags in V . Define a map
pV : Fl(V ) → Gr0(V )× · · · × Grn(V ) by sending a flag V0 ⊂ · · · ⊂ Vn
to (p0(V0), . . . , pn(Vn)). The map is obviously injective.

Proposition 11.4. The image of pV is Zariski closed, and hence pV
realises Fl(V ) as a projective variety.

Proof. It will be enough to show that the subset Zd ⊂ Gr(Vd)×Gr(Vd+1)
consisting of pairs (pd(Vd), pd+1(Vd+1)) satisfying Vd ⊂ Vd+1 is closed.
Indeed, then the image of pV will arise as the intersection of the closed
subsets Gr0(V )× · · · ×Grd−1(V )× Zd ×Grd+2(V )× · · · ×Grn(V ).

Putting wd := pd(Vd), wd+1 := pd+1(Vd+1) it comes out from the
previous proof that Vd = Vwd

and Vd+1 = Vwd+1
. Thus we are dealing

with the condition Vwd
⊂ Vwd+1

, which holds if and only if the kernel of

the map V → Λd+1(V )×Λd+2(V ), v 7→ (v∧wd, v∧wd+1) is exactly Vwd
.

Again by the above proof, this is the same as requiring that the image
has dimension ≤ n− d, which is again a determinant condition. �

We call the above projective variety the variety of complete flags in
V .

Remark 11.5. Of course, one may also study flag varieties parametris-
ing non-complete flags (increasing chains of subspaces of fixed dimen-
sions). These arise from the above by projection to the product of some
components of Gr0(V )× · · · ×Grn(V ).

12. Function fields, local rings and morphisms

We next discuss rational functions and morphisms for quasi-projective
varieties. We assume everywhere that our varieties are irreducible.
This is not a serious restriction, because in our applications all vari-
eties will be either irreducible or finite disjoint unions of irreducibles
(think of algebraic groups). The definition will generalize in a straight-
forward manner to the latter case.

First assume X is affine. The function field k(X) of X is the quotient
field of the coordinate ring AX of X, which is an integral domain by
the irreducibility assumption on X. Its elements are represented by
quotients of regular functions f/g. If P ∈ X is a point, the local
ring OX,P is the subring of k(X) consisting of functions that have a
representative with g(P ) ̸= 0. It is the same as the localisation of AX

by the maximal ideal corresponding to P . One thinks of it as the ring
of functions ‘regular at P ’.

Lemma 12.1. For an affine variety X one has AX =
∩
P

OX,P .
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Proof. To show the nontrivial inclusion, pick f ∈ ∩POX,P , and choose
for each P a representation f = fp/gP with gP (P ) ̸= 0. The ideal
I := ⟨gP : P ∈ X⟩ ⊂ AX satisfies V (I) = ∅ by our assumption
on f , so by the Nullstellensatz I = AX . In particular, there exist
P1, . . . , Pr ∈ X with 1 = gP1hP1 + . . . gPrhPr with some hPi

∈ AX .
Thus

f =
r∑
i=1

fgPi
hPi

=
r∑
i=1

(fPi
/gPi

)gPi
hPi

=
r∑
i=1

fPi
hPi

∈ AX .

�
Next we define the function field k(X) for a projective variety X as

follows. Consider the ring

RX := {f
g
: f, g ∈ k[x0, . . . , xn] homogeneous, g /∈ I(X), deg f = deg g}.

The f/g ∈ RX with f ∈ I(X) form a maximal ideal MX , because
f/g /∈ MX ⇒ g/f ∈ MX . Therefore k(X) := RX/MX is a field, the
function field of X. Its elements, called rational functions, are repre-
sented by quotients of homogeneous polynomials of the same degree.

Now consider the standard affine open covering of X.

Lemma 12.2. For each i one has k(X(i)) ∼= k(X).

Proof. Define maps

f(x0, . . . , xn)

g(x0, . . . , xn)
∈ k(X) 7→ f(t1, . . . , ti−1, 1, ti+1, . . . , tn)

g(t1, . . . , ti−1, 1, ti+1, . . . , tn)
∈ k(X(i))

and

f (i)(t1, . . . , tn)

g(i)(t1, . . . , tn)
∈ k(X(i)) 7→ xe−di

xdi f
(i)(x0

xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi
)

xeig
(i)(x0

xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi
)
,

where d = deg(f (i)), e = deg(g(i)). The reader will check that the two
maps are inverse to each other. �

As in the affine case, one defines the local ring OX,P at P is the
subring of k(X) consisting of functions that have a representative with
g(P ) ̸= 0.

Corollary 12.3. For each i with P ∈ X(i) one has OX(i),P
∼= OX,P .

Therefore OX(i),P
∼= OX(j),P for P ∈ X(i) ∩X(j).

Thus it makes sense to define the function field (resp. local ring at
a point) for a quasi-projective variety as the function field (resp. local
ring) of its projective closure; this agrees with the definition made for
affine varieties.

We now define morphisms for quasi-projective varieties. Unfortu-
nately the same definition as in the affine case does not work, for we
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shall see in Corollary 14.3 below that on an irreducible projective va-
riety there are no nonconstant everywhere regular functions.

We proceed as follows. First, if X is a quasi-projective variety, and
U ⊂ X is an open subset, we define the ring of regular functions on U
by

O(U) :=
∩
P∈U

OX,P ,

the intersection being taken inside k(X). Next, we define a morphism
ϕ : X → Y of quasi-projective varieties as a continuous map such that
for all open U ⊂ Y and all f ∈ O(U) one has f ◦ ϕ ∈ O(ϕ−1(U)).

Examples 12.4.

(1) If X and Y are affine, this is the same notion as before. In-
deed, it is enough to check this in the case Y = Am. Then if
f1, . . . , fm ∈ AX , then ϕ = (f1, . . . , fm) has the above property,
and conversely, if ϕ is as above, then for U = Am the functions
fi := ti ◦ ϕ are in AX and define a morphism in the old sense,
where the ti are the coordinate functions.

(2) If X ⊂ Pn is projective, and F1, . . . , Fm are homogeneous poly-
nomials of the same degree d with V (F0, . . . , Fm)∩X = ∅, then
ϕ(P ) := (F0(P ), . . . , Fm(P )) ∈ Pm defines a morphism of X
into Pm. Indeed, note first that ϕ is everywhere defined by the
assumption V (F0, . . . , Fm)∩X = ∅. Over each X(i) it coincides
with the map (F1/x

d
i , . . . , Fm/x

d
i ) which is given by everywhere

regular functions. Thus ϕ restricts to a morphism on each affine
variety X(i), and thus it is a morphism on X because the defi-
nition of morphisms is local (note that if a rational function is
regular on an open covering, then it is regular).

(3) If X is a quasi-projective variety and U ⊂ X is an open subset,
then the inclusion map U → X is a morphism.

The following lemma will be used many times in what follows.

Lemma 12.5. Let X be a quasi-projective variety, and P ∈ X. Then
P has an open neighbourhood isomorphic (as a quasi-projective variety)
to an affine variety. Hence X has an open covering by affine varieties.

Proof. By cutting X with some D+(xi) containing P we may assume
that X is a Zariski open subset in some affine variety Y . Since a basis
of the Zariski topology of Y is given by open subsets of the form D(f),
we only have to prove that each D(f) is isomorphic to an affine variety.
To prove this we reduce to the case Y = An. Then D(f) is isomorphic
to the closed subset V (xn+1f − 1) ⊂ An+1 (a trick we already used
in realising GLn as an affine variety). We leave it to the readers to
check that the map (x1, . . . , xn) : V (xn+1f − 1) → D(f) is indeed an
isomorphism of quasi-projective varieties. �
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13. Dimension

Once we have defined function fields, we can introduce the concept
of dimension in algebraic geometry.

Definition 13.1. The dimension dimX of an irreducible quasi-pro-
jective variety X is the transcendence degree of k(X) over k. In general
it is the maximum of the dimensions of the irreducible components.

Recall that the transcendence degree means the maximal number of
algebraically independent elements in k(X). The definition generalises
the notion of dimension for vector spaces, as k(An) = k(t1, . . . , tn),
and so dimAn = n. Similarly, k(Pn) = k(D+(xi)) = k(t1, . . . , tn), and
therefore dimPn = n.

In most of this text we shall get away with some very coarse prop-
erties of dimension.

Lemma 13.2. If ϕ : X → Y is a surjective morphism, then dimY ≤
dimX.

Proof. We may assume that X is irreducible, and hence so is Y , being
its continuous image. Then ϕ induces a homomorphism of function
fields ϕ∗ : k(Y ) → k(X) via f 7→ f ◦ ϕ. Since ϕ∗ must be an injection,
the lemma follows from the definition of dimension. �
Remark 13.3. In fact, the lemma holds (with the same proof) under
the weaker assumption that Im (ϕ) is dense in Y . Note, however, that
some restrictive assumption is needed on Im (ϕ), because e.g. if ϕ is a
constant map to P ∈ Y , then ϕ∗(f) is only defined if f ∈ OY,P .

Proposition 13.4. If X is irreducible, and Y ⊂ X is a closed subva-
riety with Y ̸= X, then dimY < dimX.

Proof. We may assume that Y is irreducible and moreover (by taking
the projective closure and then cutting with a suitable D+(xi)) that X
and Y are affine. Then AY

∼= AX/P with a nonzero prime ideal P , and
the proposition results from the following purely algebraic lemma. �
Lemma 13.5. Let A be an integral domain which is a finitely generated
k-algebra, and P a nonzero prime ideal in A. Then the transcendence
degree of A/P is strictly smaller than that of A.

Here the transcendence degree of an integral domain is defined as
that of its quotient field.

Proof. Let t̄1, . . . , t̄d be a maximal algebraically independent subset in
A/P . Lift the t̄i to elements ti ∈ A. We show that for any nonzero
t0 ∈ P the elements t0, t1, . . . td are algebraically independent in A.
If not, there is a polynomial f ∈ k[x0, . . . , xd] with f(t0, . . . , td) = 0.
We may assume f is irreducible (because A is an integral domain)
and that it is not a polynomial in x0 only (because k is algebraically
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closed). It follows that reducing modulo P we obtain a nontrivial
relation f(0, t̄1, . . . , t̄d) = 0, a contradiction. �
Proposition 13.6. Let X ⊂ An be an irreducible affine variety of
dimension d, and f ∈ k[x1, . . . , xn] a polynomial vanishing at some
point of X. Then each irreducible component of the intersection X ∩
V (f) has dimension at least d− 1.

Proof. This is a form of Krull’s principal ideal theorem. For the alge-
braic version, see e.g. Chapter 11 of Atiyah–Macdonald, Introduction
to Commutative Algebra; for the geometric version, §I.7 of Mumford’s
Red Book of Varieties and Schemes. �
Corollary 13.7. Let ϕ : X → Y be a morphism of quasi-projective
varieties with dense image. Then for each point P ∈ Im (ϕ) the fibre
ϕ−1(P ) has dimension at least dimX − dimY .

Proof. Up to replacing Y with an affine open subset containing P , we
may assume that Y is affine and embed it as a closed subvariety in
some Am. Choose a polynomial f1 ∈ k[x1, . . . , xm] vanishing at P but
not on the whole of Y . By Propositions 13.4 and 13.6 an irreducible
component Z of Y ∩ V (f1) passing through P has dimension exactly
s− 1. Replacing Y by an affine open subset containing P and disjoint
from the other components of Y ∩V (f1) we may assume Y ∩V (f1) = Z.
Repeating the procedure with Z and shrinking Y again, after s steps
we arrive at polynomials f1, . . . , fs with Y ∩V (f1, . . . , fs) = {P}. Then
ϕ−1(P ) = {Q ∈ X : ϕ∗f1(Q) = · · · = ϕ∗fs(Q) = 0}. The corollary now
follows from an inductive application of the proposition over an affine
open covering of X. �

We shall see later (Proposition 16.10) that in fact the fibre dimension
is exactly dimX − dimY over a dense open subset of Y . Our assump-
tion that Im (ϕ) is dense in Y was needed only in order to ensure (via
Remark 13.3) that dimX − dimY is a nonnegative integer.

14. Morphisms of projective varieties

We shall now prove the following fundamental theorem.

Theorem 14.1. Let ϕ : X → Y be a morphism of quasi-projective
varieties. If X is projective, then ϕ(X) is Zariski closed in Y .

Here are some immediate corollaries.

Corollary 14.2. If X is irreducible and projective, and Y is affine,
then any morphism X → Y is constant.

Proof. By embedding Y into some affine space we may assume Y = An.
By composing with the natural coordinate projections An → A1 we
reduce to the case n = 1. Composing with the inclusion map A1 → P1

we obtain a morphism ϕ̃ : X → P1 (by Example 12.4 (3) and the
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obvious fact that a composition of two morphisms is a morphism). By

the theorem and the continuity of ϕ̃ the subset ϕ̃(X) ⊂ A1 is a closed
and irreducible subset of P1, hence must be a point. �
Corollary 14.3. Any regular function on an irreducible projective va-
riety is constant.

Proof. This is the special case Y = A1 of the previous corollary. �
The theorem will follow from the following statement:

Theorem 14.4. Let X be a projective, Y a quasi-projective variety.
Then the second projection p2 : X × Y → Y is a closed mapping, i.e.
maps closed subsets to closed subsets.

To see that Theorem 14.4 implies Theorem 14.1, one first proves

Lemma 14.5. If Y is a quasi-projective variety, then the diagonal
subvariety ∆(Y ) ⊂ Y × Y defined by {(P, P ) : P ∈ Y } is closed in
Y × Y .

Proof. By covering Y with affine varieties we may assume Y is affine.
Embedding Y into some An we see that ∆(Y ) = (Y × Y )∩∆(An), so
it is enough to consider the case Y = An which is obvious. �
Proof of Theorem 14.1. Consider the graph Γϕ ⊂ X×Y of ϕ defined by
{(P, ϕ(P )) : P ∈ X}. It is the inverse image of ∆(Y ) by the morphism
(ϕ, id) : X × Y → Y × Y , so it is closed by Lemma 14.5 and the
continuity of (ϕ, id). But ϕ(X) is the image of Γϕ by p2 : X × Y → Y ,
so we conclude by Theorem 14.4.

Remarks 14.6.

(1) The property of Lemma 14.5 is called the separatedness prop-
erty of quasi-projective varieties, and that of Theorem 14.4 the
properness of projective varieties. In older terminology proper
varieties are also called complete.

(2) In classical parlance Theorem 14.4 is called the ‘Main Theorem
of Elimination Theory’. This is because (in the case when Y
is affine) the equations for the image of a closed subset of X ×
Y in Y were found in the old times by an explicit procedure
which may be regarded as a higher degree analogue of Gaussian
elimination. The proof below, due to Grothendieck, will be
nonconstructive but quicker.

Grothendieck’s proof of Theorem 14.4 uses a form of Nakayama’s
Lemma:

Lemma 14.7. Let R be a commutative ring with unit, M ⊂ R a
maximal ideal and N a finitely generated R-module. If MN = N , then
there exists f ∈ R \M with fn = 0 for all n ∈ N .
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Proof. Let n1, . . . , nm be a generating system of N . By assumption for
each 1 ≤ i ≤ m we may find mij ∈ M with ni = Σjmijnj. Let [mij]
be the n × n matrix formed by the mij, and [nj] the column vector
formed by n1, . . . , nm. Then (id− [mij])[nj] = 0, and multiplication by
the adjoint matrix yields det(id− [mij])N = 0 using Cramer’s rule. So
the element f := det(id − [mij]), which lies in 1 +M ⊂ R \M , is a
suitable one. �

Proof of Theorem 14.4. First, by embedding X to some Pn we reduce
to the case when X = Pn. Next, by taking an open covering of Y by
affine varieties (Lemma 12.5) we reduce to the case when Y is affine;
denote by R its coordinate ring. Given a closed subset Z ⊂ Pn× Y , it
is enough to find for all P ∈ Y \ p2(Z) some f ∈ R with f(P ) ̸= 0 but
f(Q) = 0 for Q ∈ p2(Z), because then D(f) is an affine open subset
containing P but disjoint from p2(Z).

Now Pn × Y has an affine open covering by the D+(xi)× Y , which
have coordinate ringRi := R[x0/xi, . . . , xi−1/xi, xi+1/xi, . . . xn/xi]. The
intersection Zi := Z∩(D+(xi)×Y ) is a closed subvariety of D+(xi)×Y .
Write S = R[x0, . . . , xn] and Sd ⊂ S for the R-submodule of homoge-
neous polynomials of degree d. Define

Id := {f ∈ Sd : f(x0/xi, . . . , xi−1/xi, xi+1/xi, . . . xn/xi) ∈ I(Zi) for all i}.

Then I := ⊕dId is a homogeneous ideal in S = ⊕dSd. We show that
for d large enough there is f ∈ R \M with fSd ⊂ Id, where M is the
ideal of P in R. This will do the job, because then fxdi ∈ Id for all i,
which by definition of Id means f ∈ I(Zi) for all i, and hence f as a
function on Pn × Y vanishes on Z, i.e. f as a function on Y vanishes
on p2(Z).

By the above lemma applied to Sd/Id it will be enough to show
that Sd = Id + MSd for d large enough. Since Zi is disjoint from
D+(xi)×{P}, i.e. V (I(Zi))∩V (MRi) = ∅, we have I(Zi)+MRi = Ri

by the Nullstellensatz forD+(xi)×Y . Thus we find fi ∈ I(Zi),mij ∈M
and gij ∈ Ri with 1 = fi + Σmijgij. For d sufficiently large gijx

d
i ∈ Sd

for all i. It will now suffice to show that fix
d
i ∈ Id for d large enough,

for then the equation xdi = fix
d
i + Σmijgijx

d
i will show xdi ∈ Id +MSd,

and therefore for d even larger all degree d monomials in the xi will be
in Id +MSd, and these generate Sd. To find d with fix

d
i ∈ Id, observe

that for d large enough fix
d
i ∈ Sd and it vanishes on Zi = Z ∩D+(xi).

But then fix
d+1
i vanishes on Zi and on V (xi), so on the whole of Z,

and in particular on the other Zj as well. Hence fix
d+1
i ∈ Id+1.

15. The Borel fixed point theorem

Let G be an affine algebraic group, Y a quasi-projective variety. A
(left) action of G on Y is a morphism of varieties G×Y → Y satisfying
the usual axioms for group actions. In particular, for each g ∈ G the
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associated map ϕg : Y → Y is an isomorphism of varieties. The orbit
of P ∈ Y under G is the set {gP : g ∈ G}. An orbit consisting of a
single point is a fixed point.

One way to phrase the Lie-Kolchin theorem is to say that the natural
action of a connected solvable subgroup of GL(V ) on the projective
variety Fl(V ) of complete flags in V has a fixed point. In this section
we prove the following vast generalisation.

Theorem 15.1. (Borel fixed point theorem) An action of a con-
nected solvable affine algebraic group G on a projective variety X has
a fixed point.

The proof below is due to Steinberg. It begins by solving the follow-
ing particular case.

Proposition 15.2. The theorem holds in the case when G ⊂ GL(V )
with a finite-dimensional vector space V , and X ⊂ P(V ) is a closed
subset stabilised by the induced action of G on P(V ).

Proof. The proposition states that the elements of G have a common
eigenvector whose image in P(V ) lies in X. We prove the proposition
by induction on the dimension n of V , the case n = 1 being obvious.
If n = 2, then P(V ) ∼= P1, so there are two cases. Either X is the
whole of P(V ) and we are done by the Lie-Kolchin theorem. Or X
is a finite set of points, but since G is connected, it must fix each of
these points, and we are again finished. Now assume n > 2. By the
Lie-Kolchin theorem the elements of G have a common eigenvector
v ∈ V . We may assume v /∈ X, for otherwise we are done. Then the
restriction of the map P(V ) → P(V/⟨v⟩) to X is a morphism, and
the image X ′ ⊂ P(V/⟨v⟩) of X is closed by Theorem 14.1. Thus by
induction G has a fixed point P in X ′. Let w be a preimage of P in
V , and W = ⟨v, w⟩. By construction W is G-invariant and we have
X ′ ∩P(W ) ̸= ∅, so we are done by the case n = 2. �

The proof in the general case proceeds by reduction to the above
proposition. We need some lemmas that are interesting in their own
right. First a statement from algebraic geometry whose proof is post-
poned to the next section.

Lemma 15.3. Let ϕ : X → Y be a morphism of quasi-projective
varieties with Zariski dense image. Then ϕ(X) contains a nonempty
open subset of Y .

The lemma will be used in the proof of theorem 15.1 via the following
corollaries.

Corollary 15.4. Let G be an affine algebraic group acting on a quasi-
projective variety Y . Each orbit of G is open in its closure.
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Proof. Let OP be the orbit of a point P ∈ Y and Z its Zariski closure.
Assume first G is connected. As OP is the image of the morphism
G→ Z sending g ∈ G to gP ∈ Z, the lemma implies that OP contains
an open subset U ⊂ Z. Since it is the union of the gU for all g ∈ G, it
is open in Z.

In the general case let G◦ be the connected component of identity in
G, and choose g1, . . . , gn ∈ G such that G is the union of the giG

◦. If Z◦

is the closure of the G◦-orbit of P , then Z is the union of the isomorphic
irreducible closed subsets giZ

◦. By the lemma each OP ∩ giZ◦ contains
an open subset Ui ⊂ giZ

◦, and we conclude as before. �

Corollary 15.5. (Closed orbit lemma) If Y is affine or projective1,
an orbit of minimal dimension is closed.

Proof. Let OP be such an orbit, Z its closure. Then Z is the union of
orbits ofG, because ifQ ∈ Z has an open neighbourhood UQ containing
P ′ ∈ OP , then the open neighbourhood gUQ of gQ contains gP ′. By
the lemma Z\OP is a closed subset. It does not contain any irreducible
component of Z, because Z is the union of the closures of the irreducible
components of OP which are themselves irreducible. From Proposition
13.4 applied to each irreducible component of Z we thus get that Z\OP

is a union of orbits of smaller dimension, and hence must be empty. �

Proof of Theorem 15.1. An orbit of G in X that has minimal dimension
is closed by the above corollary, so it is also projective. Thus replacing
X by this orbit we may assume there is a single G-orbit in X. Take
P ∈ X, and let GP ⊂ G be its stabilizer. It is a closed subgroup, being
the preimage of P by the morphism g 7→ gP . Thus by Lemma 4.2
we find a representation of G on some finite-dimensional V with GP

stabilizing a one-dimensional subspace in V , hence fixing a point Q in
the induced action of G on the projective space P(V ). Let Y be the
orbit of Q in P(V ) and Z that of (P,Q) in X ×P(V ) (equipped with
the product action). The natural projections Z → X and Z → Y are
bijective G-morphisms, so it is enough to find a fixed point in Y (which
must then be the whole of Y ). For this it is enough to see that Y is
closed in P(V ), for then we may conclude by Proposition 15.2 applied
to the image of G in GL(V ) (which is again connected and solvable;
it is also closed by Corollary 16.5 below, but this was not used in the
proof of the proposition). Now the closedness of Y follows from that of
Z by Theorem 14.4. To prove the latter fact, observe that any G-orbit
in X ×P(V ) must project onto X by the projection X ×P(V ) → X,
because X is a single G-orbit. Thus the dimension of each G-orbit in
X × P(V ) is at least dimX. But dimX = dimZ (by Corollary 13.7

1This assumption is needed only to ensure that each orbit is a quasi-projective
variety (by virtue of the previous corollary). The statement holds in a more general
setting.
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or Remark 16.4 below), hence Z is an orbit of minimal dimension, and
as such closed by Corollary 15.5.

Remark 15.6. The original proof of the theorem does not use the
Lie-Kolchin theorem (and thus reproves it for connected solvable affine
algebraic groups). It uses, however, some difficult results that we’ll
prove only later, in particular the existence of quotients by closed nor-
mal subgroups.

This proof runs as follows. Observe first that the fixed point set of
any algebraic group G acting on a quasi-projective variety Y is closed.
To see this, it is enough to show that each g ∈ G has a closed fixed point
set Yg ⊂ Y . This holds because Yg is the inverse image of the diagonal
∆(Y ) ⊂ Y × Y (which is closed by Lemma 14.5) by the morphism
y 7→ (y, gy).

Now proceed by induction on dim (G) (or the length of a commutator
series). The subgroup [G,G] is closed and connected (Corollary 16.6
below) and moreover different from G, hence by induction has a fixed
point in X. Let Y ⊂ X be the set of fixed points of [G,G]; it is
nonempty and closed in X, hence projective and also stable by G as
[G,G] is normal in G. We may thus assume Y = X, i.e. all points of X
are fixed by [G,G]. Pick P ∈ X whose orbit Z ⊂ X is closed and hence
projective (Corollary 15.5), and let GP ⊂ G be its stabilizer. Since GP

contains [G,G], it is normal in G and hence G/GP is a connected affine
algebraic group by Theorem 19.4 below. But G/GP

∼= Z as a quasi-
projective variety (this follows from the proof of Theorem 19.3 below)
and Z is projective, so this is only possible if Z = P by Theorem 14.1.
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Chapter 4. Homogeneous Spaces and Quotients

We now arrive at a basic question that cannot be circumvented any
longer: how to put a canonical structure of a quasi-projective variety
on the set of (left) cosets of a closed subgroup H in an affine algebraic
group G? The emphasis is on the adjective ‘canonical’, for if we can
show that under some additional assumption the variety thus obtained
is unique up to unique isomorphism, we have the right to call it ‘the’
quotient of G by H. In the case when H is normal it turns out that
G/H is affine and carries the structure of a linear algebraic group. In
general, however, the quotient will only be a quasi-projective variety.
This construction will use the last dose of foundational inputs from
algebraic geometry that we require in this text.

At the end of the chapter we consider the more general issue of
constructing the quotient of an affine variety by the action of a linear
algebraic group.

16. A generic openness property

Most of this section is devoted to the following technical statement,
which was already used in a weaker form in the previous section (Lemma
15.3).

Proposition 16.1. Let ϕ : X → Y be a morphism of irreducible
quasi-projective varieties with Zariski dense image. Then X contains
a nonempty open subset U such that ϕ|U is an open mapping.

We shall also use the proposition for disjoint unions of irreducible
varieties; the extension of the statement is straightforward.

We start the proof with some lemmas.

Lemma 16.2. If Y is an affine variety, the projection p1 : Y ×A1 → Y
is an open mapping.

Proof. It will be enough to prove that p1(D(f)) is open in Y for each
regular function f ∈ AY×A1

∼= AY [t]. Write f = Σfit
i with fi ∈ AY .

We contend that p1(D(f)) =
∪

D(fi). Indeed, if (P, α) ∈ Y × A1

with f(P, α) ̸= 0, we must have fi(P ) ̸= 0 for some i. Conversely, if
fi(P ) ̸= 0 for some i, then the polynomial Σfi(P )t

i ∈ k[t] is nonzero,
so we find α ∈ k with f(P, α) = Σfi(P )α

i ̸= 0. �

Now recall that when X and Y are affine, a morphism ϕ as in the
proposition induces a homomorphism ϕ∗ : AY → AX which is in fact
injective (because so is the induced morphism on function fields; cf.
Remark 13.3).

Lemma 16.3. The proposition holds in the case when X and Y are
affine and ϕ∗ induces an isomorphism AX

∼= AY [f ] with some f ∈ AX .
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Proof. In the case when f is transcendental over k(Y ) we have X ∼=
Y ×A1, and we are done by the previous lemma. So we may assume
f is algebraic over k(Y ). Let F ∈ k(Y )[t] be its minimal polynomial,
and let a ∈ AY be a common denominator of its coefficients. Replacing
Y by the affine open subset D(a) and X by an affine open subset of
its preimage we may assume a = 1, i.e. F ∈ AY [t]. Then AX

∼=
AY [t]/(F ), because if G ∈ AY [t] satisfies G(f) = 0, we find H,R ∈
AY [t] with G = HF + R and deg(R) < deg(f) (observe that F is
monic!), so that R(f) = 0 and hence R = 0 by minimality of deg(F ).
It follows that AX is a free AY -module of rank d = deg(f).

We now show that for the X and Y just obtained ϕ is an open
mapping, i.e. for f ∈ AX the image of the basic open set D(f) by ϕ
is open. Let Φ = td + fd−1t

d−1 + · · ·+ f0 ∈ AY [t] be the characteristic
polynomial of multiplication by f on the free AY -module AX . We

show that ϕ(D(f)) =
∪

D(fi). On the one hand, if P is a maximal

ideal of AX not containing f (this corresponds to a point of D(f)),
then P does not contain all the fi, for otherwise the equation Φ(f) = 0
(Cayley-Hamilton theorem) would imply fd ∈ P and hence f ∈ P by
primeness of P , a contradiction. Conversely, if Q ⊂ AY is a maximal
ideal coming from a point of one of the D(fi), it suffices to show that
the radical R of the ideal QAX does not contain f . Indeed, by the
Nullstellensatz R is the intersection of the maximal ideals containing
it, so we find a maximal ideal P with f /∈ P and P ∩ AY = Q, which
in turn corresponds to a point of D(f) in the preimage of D(fi). To
prove our claim about R, assume f ∈ R, i.e. fm ∈ Q for some m > 0.
But then in the k-vector space AX/Q ∼= (AY /Q)

d ∼= kd the image of f
mod Q defines a nilpotent endomorphism, whereas by assumption its
characteristic polynomial, which is Φ mod Q, is not of the form td, a
contradiction. �
Proof of Proposition 16.1: Let U be an affine open subset (Lemma 12.5)
of Y , and V an affine open subset of ϕ−1(U). By the irreducibility of
X the subset V is dense in ϕ−1(U), hence so is ϕ(V ) in U . Thus we
may assume X and Y are affine by replacing them with V and U ,
respectively. In this case AX is finitely generated as an AY -algebra via
the embedding ϕ∗ : AY → AX (as it is already finitely generated over
k), so we may write AX = AY [f1, . . . , fn] for suitable fi. Now consider
the factorisation of ϕ∗ into the sequence of morphisms

(5) AY → AY [f1] → AY [f1, f2] → · · · → AY [f1, . . . , fn] = AX .

By Proposition 2.5 each intermediate map here corresponds to a mor-
phism of affine varieties, so we obtain a factorisation of ϕ into a com-
posite of morphisms to which the above lemma applies.

Remark 16.4. Using the method of the above proof it is easy to give
an elementary proof of a special case of Corollary 13.7 which will be
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needed later: If ϕ : X → Y is a morphism of quasi-projective varieties
with dense image and finite fibres, then dimX = dimY. Indeed, it is
sufficient to examine a chain as in (5). If one of the fi were transcen-
dental over AY , then one of the intermediate morphisms would have
fibres isomorphic to A1 which are of course infinite.

The full statement of Proposition 16.1 will be used in the next sec-
tion. Here are some other important corollaries which already follow
from the weaker form (Lemma 15.3).

Corollary 16.5. Let ϕ : G → G′ be a morphism of affine algebraic
groups. Then ϕ(G) is a Zariski closed subgroup in G′.

Proof. Let H ⊂ G′ be the Zariski closure of ϕ(G). We first show that
it is a subgroup of G′ (this is in fact true for the closure of a subgroup
in any topological group). Indeed, if x ∈ H and U is an open neighbor-
hood of x containing h ∈ ϕ(G), then h′U is an open neighbourhood of
h′x containing h′h for all h′ ∈ ϕ(G). Thus ϕ(G)H ⊂ H, and continuing
the argument shows that HH ⊂ H. The inclusion H−1 ⊂ H is checked
in a similar way.

Assume now G is connected. By Lemma 15.3 ϕ(G) contains a Zariski
open subset U . Since the open sets ϕ(g)U cover ϕ(G) for g ∈ G, it
follows that ϕ(G) is open and dense in H. If h ∈ H, then hϕ(G)∩ϕ(G)
is an intersection of dense open subsets in the irreducible variety H,
hence nonempty. It follows that h ∈ ϕ(G)ϕ(G)−1 ⊂ ϕ(G).

In the general case write G as a finite union of cosets giG
◦, where

g1, . . . , gn ∈ G and G◦ is the connected component of identity as in
Proposition 2.3. By the connected case ϕ(G◦) is closed in G′. Hence
so is ϕ(G) which is the finite union of the ϕ(giG

◦) = ϕ(gi)ϕ(G
◦). �

Corollary 16.6. Let G be a connected affine algebraic group. Then
[G,G] is closed and connected.

Proof. Let ϕi : G
2i → G be the morphisms considered in the proof of

Lemma 8.3. The union of the Im (ϕi) equals [G,G]. The closures Zi
of the Im (ϕi) are irreducible closed subsets in G whose union H is the
closure of [G,G]; it is again irreducible. The chain Z1 ⊂ Z2 ⊂ · · · must
stabilize for dimension reasons, so we find n such that Zn = H. Lemma
15.3 applied to ϕn : Gn → H shows that Im (ϕn) contains an open
subset U ⊂ H. Given h ∈ H, we have U ∩ hU ̸= ∅ as H is irreducible.
So h ∈ UU−1 ⊂ Im (ϕn)Im (ϕn). This shows H = [G,G]. �

We close this section by two statements needed later that are proven
by a method similar to that of Proposition 16.1. The first of these is:

Proposition 16.7. Let ϕ : X → Y be an injective morphism of ir-
reducible quasi-projective varieties with Zariski dense image. If the
induced field extension k(X)|ϕ∗k(Y ) is separable, then in fact k(X) =
ϕ∗k(Y ).
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Using the arguments of the proof of Proposition 16.1, we see that
the proposition is a consequence of the following lemma.

Lemma 16.8. Assume that ϕ : X → Y is a morphism of irreducible
affine varieties and ϕ∗ induces an isomorphism AX

∼= AY [f ] with f
separable over k(Y ). Then there is an open subset V ⊂ Y such that
each point of V has exactly [k(X) : ϕ∗k(Y )] preimages in X.

Proof. As in the proof of Lemma 16.3 we may assume AX
∼= AY [t]/(F ),

where F ∈ AY [t] is the minimal polynomial of f over k(Y )[t]. The de-
gree of F equals that of the field extension ϕ(X)|ϕ∗k(Y ); let us denote
it by d. As F is a separable polynomial, its derivative F ′ is prime
to F in the ring k(Y )[t]. Hence we find polynomials A,B ∈ k(Y )[t]
satisfying AF + BF ′ = 1. Multiplying with a common denomina-
tor in g ∈ AY of the coefficients of A and B we obtain polynomi-
als C = gA,D = gB ∈ AY [t] with CF + DF ′ = g. We claim that
V = D(g) is a good choice. Assume Q is a maximal ideal in AY with
g /∈ Q. The image F̄ of F in (AY /Q)[t] ∼= k[t] has d distinct roots in
k, for reducing CF + DF ′ = g mod Q we obtain C̄F̄ + D̄F̄ ′ ̸= 0,
so F̄ (α) = 0 implies F̄ ′(α) ̸= 0. Thus F̄ is a product of d dis-
tinct linear factors, and therefore by the Chinese Remainder Theorem
AX/QAX

∼= k[t]/(F̄ ) ∼= kd. In particular, this ring is reduced, so the
ideal QAX equals its radical. Now the preimages of the point of D(g)
defined by Q correspond to the maximal ideals P1, . . . , Pr ⊂ AX con-
taining the radical ideal QAX , so by the Nullstellensatz QAX = ∩Pi
and by the Chinese Remainder Theorem AX/QAX

∼= ⊕(AX/Pi) ∼= kr.
Thus r = d, as required. �
Remarks 16.9.

(1) An analysis of the above proof shows that when the polynomial
F is not necessarily separable, at least one obtains that each
point of Y has at most d = [k(X) : ϕ∗k(Y )] preimages in X.

(2) In the jargon of algebraic geometry the lemma claims that the
morphism ϕ is étale over an open subset of Y , or in other words
it is generically étale. Similarly, in the proof of Lemma 16.3 we
have first proven that ϕ is generically faithfully flat, and then
that a finite flat morphism is an open mapping. Generic faithful
flatness is a key property in the theory of group schemes that is
used for the construction of quotients in a more general setting
than ours.

The second statement we prove by the method of of Proposition 16.1
will not be used until Section 26.

Proposition 16.10. Let ϕ : X → Y be a morphism of irreducible
quasi-projective varieties with Zariski dense image. There exists a
dense open subset U ⊂ Y such that for each P ∈ U the fibre ϕ−1(P )
has dimension dimX − dimY .
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Recall (Corollary 13.7) that each irreducible component of a nonempty
fibre has dimension at least dimX − dimY .

Proof. As in the proof of Proposition 16.1 we reduce to the case when
X and Y are affine and AX

∼= AY [f1, . . . , fn]. We may assume that
f1, . . . , fr are algebraically independent over k(Y ), and fr+1, . . . , fn are
algebraic over k(Y )(f1, . . . , fr). Here we must have r = dimX−dimY ,
because the extension k(X)|k(Y )(f1, . . . , fr) is finite. On the other
hand, Corollary 2.6 implies that ϕ factors as X → Z → Y , where Z
is the variety with coordinate ring AY [f1, . . . , fr]. From the proof of
Lemma 16.3 we see that the map X → Z has finite fibres, whereas the
fibres of Z → Y have dimension r, since Z ∼= Y ×Ar by construction.

�
Corollary 16.11. Given a morphism ϕ : G → G′ of connected alge-
braic groups, we have dimG = dim Im (ϕ) + dimKer (ϕ).

Proof. Using Corollary 16.5 we see that Im (ϕ) is a connected algebraic
group. Since ϕ is a morphism of algebraic groups, each fibre ϕ−1(g) for
g ∈ Im (ϕ) is a coset of Ker (ϕ), hence isomorphic to Ker (ϕ) as a closed
subvariety of G. In particular, they all have the same dimension, and
the corollary follows from the proposition. �

17. Homogeneous spaces

As a first step towards the construction of quotients we study homo-
geneous spaces.

Definition 17.1. A (left) homogeneous space for an algebraic group G
is a quasi-projective variety on which G acts transitively (on the left).

If H ⊂ G is a closed subgroup, then clearly any reasonable definition
of the quotientG/H should include the fact thatG/H is a homogeneous
space for G.

Lemma 17.2. The irreducible components of a homogeneous space are
the same as its connected components. They are all isomorphic as
quasi-projective varieties.

Proof. Same proof as in the special case of G as a homogeneous space
under itself (Proposition 2.3 (1).) �
Lemma 17.3. Let G be an algebraic group, X and Y homogeneous
spaces under G, and ϕ : X → Y a morphism compatible with the
action on G. Then ϕ is an open mapping.

Proof. Assume first X and Y are connected. By Proposition 16.1 there
exists U ⊂ X such that ϕ|U is open. Then for all g ∈ G the restriction
ϕ|gU must be open as well, because x 7→ gx is a homeomorphism of
X onto itself. But the gU for all g ∈ G form an open covering of X,
whence the lemma.
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In the general case ϕ must map each connected component of X in
a connected component of Y and we may apply the above argument
componentwise (after restricting to the stabilizer of the component).

�
The following result will be the key step in the construction of the

quotient of an affine algebraic group by a closed subgroup.

Proposition 17.4. Let G be an affine algebraic group, and H ⊂ G a
closed subgroup. There exists a homogeneous space X for G together
with a point P in X such that H is the stabilizer of P and the fibres of
the natural surjection ρ : G→ X given by g 7→ gP are exactly the left
cosets gH of H.

Proof. By Lemma 4.2 there is a morphism of algebraic groups G →
GL(V ) such that H is the stabilizer of a 1-dimensional subspace ⟨v⟩
in V . Let X be the orbit of P = ⟨v⟩ in the projective space P(V ).
By Corollary 15.4 X is open in its Zariski closure, hence it is a quasi-
projective variety and therefore a homogeneous space for G. It mani-
festly satisfies the other requirements of the proposition. �

The problem with the above construction is that it is not canonically
attached to the pair H ⊂ G. In the next two sections we carry out the
extra work needed for making it canonical.

18. Smoothness of homogeneous spaces

We now bring into play an important local property of varieties.
Recall that the tangent space of a point P on an affine variety X
was defined in Section 9. Using Lemma 9.1 the definition immediately
extends to arbitrary quasi-projective varieties.

Definition 18.1. On an irreducible quasi-projective variety a point
P ∈ X is a smooth point if dimTP (X) = dimX, otherwise it is a
singular point. The variety is smooth if all of its points are smooth,
otherwise it is singular.

The definition obviously extends to finite disjoint unions of irre-
ducible varieties, so in particular to algebraic groups and their ho-
mogeneous spaces.

Proposition 18.2. A homogeneous space under an algebraic group G
is a smooth variety. In particular, G itself is smooth.

Proof. For a homogeneous space X the map x 7→ gx is an isomorphism
of X with itself for each g ∈ G. On the other hand, an isomorphism
takes smooth points to smooth points (this follows e.g. from Lemma
9.1 and the fact that the isomorphism preserves the maximal ideals of
the points). So taking the transitivity of the G-action onX and Lemma
17.2 into account the proposition follows from the lemma below. �
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Lemma 18.3. An irreducible quasi-projective variety has a smooth
point. These form a dense open subset.

Proof. The proof consists of two steps.
Step 1. The lemma is true for an affine hypersurface V (f) ⊂ An

defined by an irreducible polynomial f ∈ k[x1, . . . , xn] with ∂xnf ̸= 0.2

Indeed, we find P ∈ V (f) with ∂xnf(P ) ̸= 0, for otherwise by the
Nullstellensatz the irreducible polynomial f would divide some power
(∂xnf)

m, hence ∂xnf , which is impossible. Then TP (V (f)) is defined
by a single nonzero linear equation and hence has dimension n−1, just
like V (f). This proves Step 1, and moreover shows that all points of
the open subset D(∂xnf) ⊂ V (f) are smooth.

Step 2. An irreducible variety X contains an open subset U isomorphic
to an open subset V ⊂ V (f) for suitable f as above. This will prove the
lemma, for irreducibility of V (f) implies V ∩ D(∂xnf) ̸= ∅. To prove
Step 2 we may assume, by intersecting with some D+(xi), that X is an
open subset of some affine variety X̄ ⊂ Am, and then that X = X̄. By
a general theorem in algebra we find algebraically independent elements
x1, . . . , xn−1 ∈ k(X) so that k(X) = k(x1, . . . , xn−1, xn) with xn sat-
isfying an irreducible polynomial f ∈ k[x1, . . . , xn−1, x] with ∂xf ̸= 0.
In particular, k(X) ∼= k(V (f)). Choosing an open U ⊂ X such that
all xi are regular on X we obtain a morphism U → V (f) defined by
(x1, . . . , xn). In the same way, the restrictions of the coordinate func-
tions y1, . . . , ym of Am to X define a morphism V → X for suitable
V ⊂ V (f). The reader will check that these maps are inverse to each
other whenever both are defined, so after possibly shrinking U and V
we are done. �
Remark 18.4. In the language of algebraic geometry, in Step 2 of the
above proof we have shown that X is birational to the affine hypersur-
face V (f).

Finally, we need for later use the following fact.

Lemma 18.5. If P is a smooth point on a variety X, then the local
ring OX,P is a unique factorisation domain.

Proof. Recall that we have identified TP (X) with the dual k-vector
space of MP/M

2
P , where MP is the maximal ideal of OX,P . It follows

that P is a smooth point if and only if dim kMP/M
2
P = dimX =

dimOX,P . In commutative algebra a local ring with this property is
called a regular local ring, and it is quite generally true that these rings
are UFD’s (see e.g. Matsumura, Commutative ring theory, Theorem
20.3). There is also a direct proof of the special case we need which goes
back to Zariski. It proceeds by comparing OX,P with its completion

2This condition is automatic in characteristic 0, but not in characteristic p > 0:
think of the polynomial xp

1 + · · ·+ xp
n.
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which is a power series ring, hence a UFD; one shows that the UFD
property ‘descends’ from the completion to OX,P . �

The lemma will be used through the following corollary.

Corollary 18.6. Let f be a rational function on a quasi-projective
variety X which is not regular at a smooth point Q ∈ X. Then there
is a point P ∈ X where 1/f is regular and (1/f)(P ) = 0.

Proof. By replacing X with an affine open subset containing Q we may
assume X is affine, and may choose a representation f = g/h with
g, h ∈ AX . Since OX,Q is a UFD which is a localisation of AX , in OX,Q

we may write g = upa11 . . . parr and h = vqb11 . . . qbss with pi, qj irreducible
elements of OX,Q lying in AX and u, v units in OX,Q; moreover, h is
not a unit since f /∈ OX,Q. By unique factorisation we may assume
that there is no equality pi = wqj with w a unit in OX,Q. Now if we
find P with g(P ) ̸= 0 but h(P ) = 0, we are done. Otherwise h(P ) = 0
implies g(P ) = 0 for all P , i.e. g ∈ I(V (h)). By the Nullstellensatz
we thus have gm ∈ (h) for some m > 0, i.e. h divides gm in AX , and
hence in the local ring OX,Q as well. This contradicts our assumptions
that h is not a unit and there is no equation of the form pi = wqj. �

Remarks 18.7.

(1) The corollary is false in general. Consider the function y/x on
the affine plane curve y2 = x3. It is not regular at the singular
point (0, 0), but x/y does not vanish anywhere on the curve.

(2) If dimX = 1, one may choose P = Q in the corollary. Indeed,
in this case the local ring OX,Q is a discrete valuation ring,
and such rings always contain either f or 1/f for an f in their
fraction field. However, for dimX > 1 the ring OX,Q does not
have this property, so the corollary does not hold with P = Q.

19. Quotients of affine groups

We now turn to the canonical construction of quotients.
Let G be an affine algebraic group, and H ⊂ G a closed subgroup.

Consider pairs (X, ρ) consisting of a quasi-projective variety X and a
morphism G→ X that is constant on the left cosets of H.

Definition 19.1. The pair (X, ρ) is the quotient of G by H if for any
other pair (X ′, ρ′) as above there is a morphism ϕ : X → X ′ with
ϕ ◦ ρ = ρ′.

By general abstract nonsense a quotient (X, ρ) is unique up to unique
isomorphism. We’ll use the following criterion:

Lemma 19.2. Assume that (X, ρ) is a pair as above such that

(1) each fibre of ρ is a left coset of H in G;
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(2) for each open set U ⊂ X the map ρ∗ induces an isomorphism of
O(U) with the ring of those f ∈ O(ρ−1(U)) that satisfy f(hP ) =
f(P ) for all h ∈ H and P ∈ ρ−1(U);

(3) X is a homogeneous space of G and ρ : G→ X is a morphism
of homogeneous spaces of G.

Then (X, ρ) is the quotient of G by H.

Proof. Assume given ρ′ : G→ X ′ constant on the left cosets of H. For
P ∈ X define ϕ(P ) := ρ′(g), where g ∈ G is such that ρ(g) = P . The
map ϕ is well-defined by property (1). It is also continuous, because ρ′

is continuous and ρ is open by property (3) and Lemma 17.3. Finally
ϕ is a morphism of quasi-projective varieties by property (2). �

Theorem 19.3. Let G be an affine algebraic group, H ⊂ G a closed
subgroup. Then the quotient of G by H exists. Moreover, it is a homo-
geneous space for G such that H is the stabilizer of a point.

Proof. Let (X, ρ) be the pair constructed in Proposition 17.4. To show
that it is a quotient it remains to check property (2) of Lemma 19.2.
It is enough to check this property for a connected affine open subset
U ⊂ X. Pick f ∈ O(ρ−1(U)) constant on the left cosets of H, and

consider the composite map ρ−1(U)
(ρ,f)−→ U ×A1 → U , where the last

map is the natural projection. Note that ρ−1(U) is a finite disjoint
union of connected open sets, each one dense in a component of G.
Let Z be the closure of Im (ρ, f) in U ×A1; it is an affine variety. Let
V ⊂ Z be a dense open subset contained in Im (ρ, f) (which exists
by Lemma 15.3); it is quasi-projective. We may view the projection
V → A1 as a regular function f̄ on V ; it satisfies f̄ ◦ (ρ, f) = f . We
have to show that f̄ = p∗g for some g ∈ O(U), for then f = ρ∗g. Since
f is constant on H-orbits, the projection p : V → U is injective, and
it has dense image. This implies that we must have dimV = dimU .
Hence the induced field extension [k(V ) : p∗k(U)] is finite; moreover,
it is separable.3 Hence by Proposition 16.7 the map p∗ : k(U) → k(V )
is an isomorphism, so f̄ = p∗g for some g ∈ k(U). It remains to see
that g is regular on U . For this we use Corollary 18.6 (with U in
place of X and g in place of f), which applies by virtue of Proposition
18.2. It shows that if g is not regular, then 1/g vanishes somewhere
on U , but then 1/f = ρ∗(1/g) should vanish somewhere on ρ−1(U), a
contradiction. �

Similarly, one proves starting from Proposition 4.3:

3Separability is automatic in characteristic 0. It also holds in characteristic
p > 0, though it is not obvious to prove; one has to study the induced morphism on
tangent spaces, and use the differential criterion of separability. We omit the details
of the argument, which uses the explicit form of X as constructed in Proposition
17.4.
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Theorem 19.4. In the previous theorem assume moreover that H is
normal. Then G/H is an affine algebraic group, and ρ : G→ G/H is
a morphism of algebraic groups.

Proof. By Proposition 4.3 there is a morphism of algebraic groups ρ :
G → GL(W ) with H = Ker (ρ). By Corollary 16.5 Im (ρ) is a closed
subgroup of GL(W ). The same argument as above shows that the pair
(Im (ρ), ρ) satisfies the assumptions of Lemma 19.2. �

The theorem allows us to give other classical examples of linear al-
gebraic groups.

Example 19.5. If G is an affine algebraic group, then G/Z(G) is also
an affine algebraic group by the theorem. For example, in the case
G = GLn we obtain the projective general linear group PGLn, and for
G = SLn the projective special linear group PSLn.

20. Quotients of varieties by group actions

In the remainder of this chapter, whose results will not be used later,
we consider a more general situation. Suppose G is an affine algebraic
group, and X is an affine variety on which G acts as an algebraic group.
We would like to know whether a quotient Y of X by the action of G
exists as an affine variety.

The following easy example shows that in general one cannot expect
the set of G-orbits to carry the structure of a variety over k.

Example 20.1. Consider the natural action of Gm on A1 given by
(λ, x) 7→ λx. It has two orbits: one closed, namely {0}, and one open,
namelyA1\{0}. But this open orbit can never be a fibre of a morphism
of A1 → Y with some variety Y because it is not closed in A1. (In
fact, the right category in which the quotient A1/Gm makes sense is
that of algebraic stacks.)

Fortunately, for a large class of groups G there exists a quotient
parametrizing closed orbits of G on X. Moreover, the quotient will
satisfy the following universal property generalizing Definition 19.1.

Definition 20.2. (Mumford) Let G be an affine algebraic group act-
ing on a quasi-projective k-variety X. Consider pairs (Y, ρ) consisting
of a quasi-projective variety Y and a morphism ρ : G→ Y constant on
the orbits of G. The pair (Y, ρ) is a categorical quotient of X by G if for
every other such pair (Y ′, ρ′) there is a unique morphism ϕ : Y → Y ′

with ρ′ = ϕ ◦ ρ.

A good class of groups G for which the categorical quotient exists is
that of groups satisfying the following property.

Definition 20.3. An affine algebraic group G is geometrically reduc-
tive if for every finite-dimensional representation G 7→ GL(V ) and each
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fixed vector v0 ∈ V G there exists a homogeneous G-invariant polyno-
mial f on V such that f(v0) ̸= 0.

In the case when f has degree 1, it is an element of the dual space
V ∨; in general it is an element of some symmetric power Symd(V ∨)
(see the proof of Lemma 5.11).

In fact, we can say a bit more about the polynomial f .

Lemma 20.4. Let G→ GL(V ) and v0 be as in the above definition.

(1) If char(k) = 0, one can find f as in the definition with deg(f) = 1.
(2) If char(k) = p > 0, one can find f as in the definition with

deg(f) = pr for an integer r ≥ 0.

Proof. Pick f of degree d as in Definition 20.3, and for λ ∈ k consider
the affine linear map v 7→ λv + v0 on V . Substituting in f we may
develop following λ as

f(λv + v0) =
d∑
i=0

λifi(v)

with homogeneous polynomials fi of degree i. Since v0 and f are G-
invariant, so are the fi. Substituting v = v0 gives

(λ+ 1)df(v0) = f(λv0 + v0) =
d∑
i=0

λifi(v0),

so by comparing coefficients of λi we get(
d

i

)
f(v0) = fi(v0).

In characteristic 0 the binomial coefficients are nonzero, whence f1(v0) ̸= 0.

In characteristic p > 0 write d = prs with (s, p) = 1. Then

(
d

pr

)
is not

divisible by p, and so fpr(v0) ̸= 0. �

Remark 20.5.

(1) If deg(f) = 1 works for all v0, one says that G is linearly re-
ductive. In this case it is not hard to show that every finite-
dimensional representation G 7→ GL(V ) is completely reducible
(i.e. each G-invariant subspace has a G-invariant complement).

(2) In characteristic p > 0 one can show that GLn is geometri-
cally reductive but not linearly reductive. In fact, a theorem
of Nagata says that in characteristic p > 0 the only connected
linearly reductive groups are tori.

(3) Geometrically reductive groups are exactly the reductive groups
of Definition 23.9 below. That reductive groups are geometri-
cally reductive can be proven using some Lie algebra theory in
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characteristic 0 and is a difficult theorem of Haboush in char-
acteristic p > 0 (formerly a conjecture by Mumford). The con-
verse is not hard to show in characteristic 0; see Remark 20.9
below for the general case.

We can now state:

Theorem 20.6. Let G be a geometrically reductive affine algebraic
group acting on an affine variety X. A categorical quotient ρ : X → Y
of X by G exists. Moreover, Y is an affine variety and each fibre of ρ
contains exactly one (nonempty) closed G-orbit on X.

Remark 20.7. We thus see that the points of Y correspond bijectively
to the closed G-orbits on X. Moreover, the theorem implies that in the
case when all G-orbits on X are closed, the fibres of ρ are exactly the
G-orbits. A categorical quotient with this property is called a geometric
quotient.

The following theorem contains the key algebraic ingredient in the
proof of the theorem above. First some terminology: an action of a
group G on a k-algebra A is locally finite if every finite-dimensional k-
subspace of A is contained in a finite-dimensional G-invariant subspace.
By Remark 3.4 this is the case for the G-action on AX coming from
the action of an affine group G on an affine variety X.

Theorem 20.8. (Hilbert, Nagata) Let A be a finitely generated k-
algebra equipped with a locally finite action of a geometrically reductive
group G. Then AG is also a finitely generated k-algebra.

Remarks 20.9.

(1) The subalgebra AG may not be finitely generated in general,
even when A is the coordinate ring of an affine variety on which
an affine group G acts. Indeed, there is a famous example of
Nagata exhibiting an action of a direct powerGr

a of the additive
group on some affine space An such that k[x1, . . . , xn]

Gr
a is not

a finitely generated k-algebra.
(2) One can show that if AG is finitely generated for all A, then

G is reductive. The idea is that if G is not reductive (i.e. has
a nontrivial connected unipotent normal subgroup), one can
construct an A with AG not finitely generated by performing
a fibre product construction starting from Nagata’s example.
Together with Theorem 20.8, this shows that geometrically re-
ductive groups are reductive.

21. Proof of the Hilbert-Nagata theorem

We start the proof of Theorem 20.8 with the following lemma.

Lemma 21.1. Let A be a k-algebra equipped with a locally finite ac-
tion of a geometrically reductive group G. If I ⊂ A is a G-invariant
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ideal, then the the natural map AG → (A/I)G induces an integral ring
extension AG/IG ⊂ (A/I)G.

Recall that a ring extension A ⊂ B is integral if for every b ∈ B
satisfies a monic polynomial equation over A; this is equivalent to the
A-algebra A[b] ⊂ B being finitely generated as an A-module.

Proof. Pick an element ā ∈ (A/I)G and lift it to a ∈ A. Since the action
of G on A is locally finite, the G-orbit of a spans a finite-dimensional
G-invariant subspace V ⊂ A. Moreover, by the choice of a we have
σ(a)− a ∈ I ∩ V for all σ ∈ V , so there is a direct sum decomposition
V = ⟨a⟩⊕(I∩V ). It also follows that the linear form λ ∈ V ∨ which is 0
on I ∩V and 1 on a is G-invariant. Therefore by geometric reductivity
there is some f ∈ Symd(V ∨∨)G = Symd(V )G with f(λ) = 1. Choose a
k-basis v2, . . . , vn of I ∩ V . We may view the vectors a = v1, v2, . . . , vn
as coordinate functions on V ∨, so that λ becomes the point with co-
ordinates (1, 0, . . . , 0). The relation f(λ) = 1 then means that f as a
homogeneous polynomial in the vi defines an element of AG of the form
vd1+ terms lying in I. But then f maps to ād in A/I, which implies
ād ∈ AG/IG. In particular ā is integral over AG/IG. �
Corollary 21.2. In the situation of the lemma assume moreover that
(A/I)G is a finitely generated k-algebra. Then so is AG/IG.

Proof. Let a1, . . . , an be a system of generators of the k-algebra (A/I)G.
By the lemma, each ai satisfies a monic polynomial equation fi over
AG/IG; let A0 ⊂ AG/IG be the k-subalgebra generated by the finitely
many coefficients of the fi. This is a Noetherian ring, and AG/IG is an
A0-submodule of the finitely generated A0-module (A/I)G. Hence it is
also a finitely generated A0-module, and therefore a finitely generated
k-algebra. �

The following corollary will serve in the proof of Theorem 20.6.

Corollary 21.3. For G and A as in the lemma, let I1, I2 ⊂ A be G-
invariant ideals. If a ∈ (I1 + I2)

G, then ad ∈ IG1 + IG2 for some d > 0.
In particular, if moreover I1+ I2 = A, we find f1 ∈ IG1 , f2 ∈ IG2 with

f1 + f2 = 1.

Proof. Only the first statement requires a proof. Write a = a1 + a2
with ai ∈ Ii (i = 1, 2). Note that for σ ∈ G we have

σ(a1)− a1 = a2 − σ(a2) ∈ I1 ∩ I2,
so if we write Ā := A/I1∩I2 and āi := ai mod I1∩I2, we conclude that
āi ∈ ĀG. By the (proof of the) lemma applied to the ideal I1 ∩ I2 ⊂ A,
we therefore find d > 0 with ādi ∈ IGi /(I1 ∩ I2)G for i = 1, 2, i.e. adi ∈
IGi + (I1 ∩ I2)G ⊂ IGi . According to Lemma 20.4, in characteristic 0 we
may take d = 1 and hence a = a1+a2 ∈ IG1 +IG2 ; in characteristic p > 0

we may take d = pr and ap
r

= (a1 + a2)
pr = ap

r

1 + ap
r

2 ∈ IG1 + IG2 . �
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Proof of Theorem 20.8. The proof is in several steps.

Step 1: We may assume that (A/I)G is finitely generated for every
nonzero G-invariant ideal I ⊂ A. This is the principle of Noetherian
induction. Assume AG is not finitely generated, and consider the set
of G-invariant ideals J ⊂ A such that (A/J)G is not finitely gener-
ated, partially ordered with respect to inclusion. As A is Noetherian,
this set has (possibly several) maximal elements; let J̄ be such an el-
ement. Then Ā := A/J̄ has the property above, and if we obtain a
contradiction for Ā, we get a contradiction for A as well.

Step 2: We may assume that AG has no zero-divisors. Assume f ∈ AG

is a zero-divisor, and set I := Ann(f) = {a ∈ A : af = 0}. The
ideals fA and I are G-invariant, so by Step 1 the k-algebras (A/fA)G

and (A/I)G are finitely generated. Hence so are the k-subalgebras
Ā1 := AG/(fA ∩ AG) and Ā2 := AG/IG by Corollary 21.2. Thus
there is a finitely generated k-subalgebra B ⊂ AG mapping surjectively
onto both Ā1 and Ā2. On the other hand, by Lemma 21.1 the finitely
generated k-algebra (A/I)G is integral over Ā2 and hence over B. Thus
it is a finitely generated B-module, and we find a finitely generated B-
submodule B[c1, . . . , cn] ⊂ A mapping surjectively onto (A/I)G. Here
for all σ ∈ G we have σ(cj) = cj + ij for some ij ∈ I, so since I =
Ann(f) and f ∈ AG, we get fcj ∈ AG for all j. We contend that
AG = B[fc1, . . . , fcn], which will imply the finite generation of AG

over k. Since B surjects onto Ā1, for each a ∈ AG we find b ∈ B so
that the element a − b is G-invariant and moreover a − b = fc with
some c ∈ A. The image of f in A/I is G-invariant and a non-zerodivisor
(again since I = Ann(f)), whence the image of c in A/I must also be
G-invariant. This shows c ∈ B[c1, . . . , cn], as required.

Step 3: We may assume that A is a polynomial ring and the G-action
preserves the homogeneous components of A. Let a1, . . . , an be gen-
erators of A over k. Since the action of G is locally finite, we find
a G-invariant subspace V ⊂ G containing the ai. Changing the ai if
necessary, we may assume that they form a k-basis of V . For σ ∈ G
we have σ(ai) = Σjαijσaj with some αijσ ∈ k. Now define a G-action
on the polynomial ring S := k[x1, . . . , xn] via σ(xi) = Σjαijσxj and a
G-homomorphism ϕ : S → A induced by ϕ(xi) := ai. The kernel I of ϕ
is a G-invariant ideal in S, and we have a G-isomorphism A ∼= S/I. If
SG is a finitely generated k-algebra, so is C := SG/IG. So it will suffice
to show that AG is a finitely generated C-module. For this, notice first
that both of these rings are integral domains by Step 2, and the fraction
field L of AG is a finite extension of C. Indeed, L|K is an algebraic
extension since AG is integral over C by Lemma 21.1. On the other
hand, L is finitely generated over K. This is obvious if A is a domain,
for then L is a subfield of its fraction field which is finitely generated
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over k. Otherwise localize A by the set T of its non-zerodivisors. Ev-
ery maximal ideal M of AT consists of zero-divisors, so AG ∩M = 0.
Hence the natural inclusion AG ⊂ AT induces an inclusion of fields
L ⊂ AT/M . But AT/M is the fraction field of A/A ∩M , and as such
finitely generated over k.

Finally, since C is a finitely generated k-algebra and L|K is a finite
extension, a theorem from commutative algebra says that the integral

closure C̃ of C in L is a finitely generated C-module. As AG is integral

over C, it is a C-submodule of C̃, and hence also finitely generated
because C is Noetherian.

Step 4: The case where A is a polynomial ring and the G-action pre-
serves the homogeneous components of A. Denote by Ad ⊂ A the
homogeneous component of degree d and by A+ the direct sum of the
Ad for d > 0. We contend that AG+ = AG ∩ A+ is a finitely generated

ideal in AG. We may assume AG+ ̸= 0 (otherwise we are done), and pick

a homogeneous f ∈ AG+. By Step 1 the k-algebra (A/fA)G is finitely

generated, hence so is AG/(fA)G by Corollary 21.2. But (fA)G = fAG

since f is a G-invariant non-zerodivisor (same argument as in Step 2),
so AG/fAG is finitely generated over k. In particular, it is Noetherian
and therefore the image of AG+ in AG/fAG is finitely generated. Hence

so is AG+ (add f to a system of lifts of generators).

Let f = f1, . . . , fr be a system of homogeneous generators of AG+,
and set di := deg(fi). For d > max di we have

AGd =
⊕
i

AGd−difi.

It follows that AG is generated as a k-algebra by the fi and the AGr for
r ≤ max di. But each Ar is a finite-dimensional k-vector space and we
are done.

22. Construction of categorical quotients

Now we can prove Theorem 20.6. As already remarked, if G and
X are as in the theorem, the induced action of G on AX is locally
finite, hence AG

X is finitely generated as a k-algebra by Theorem 20.8.
Now fix an affine variety Y with AY

∼= AG
X and consider the morphism

ρ : X → Y corresponding to the inclusion AG
X → AX via Proposition

2.5.4 Note that ρ is constant on the orbits of G.

Lemma 22.1.

(1) If Z ⊂ X is a G-invariant closed subvariety, then ρ(X) ⊂ Y is
also closed.

4Since we are using the elementary Proposition 2.5, we have to choose objects
and morphisms in an isomorphism class. This ambiguity disappears when one works
with affine schemes instead.
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(2) IfW ⊂ X is another G-invariant closed subvariety with Z ∩W = ∅,
then ρ(Z) ∩ ρ(W ) = ∅.

Proof. For (1), pick an arbitrary Q ∈ Y \ ρ(Z). Then W := ρ−1(Q) is
a G-invariant closed subset with Z ∩W = ∅. Applying Corollary 21.3
to the ideals of Z and W in AX , we find f, g ∈ AG

X with f + g = 1 and
f |Z = 0, g|W = 0. Viewing f as a regular function on Y , it satisfies
f |ρ(Z) = 0 and f(Q) = 1. This implies that Q cannot be in the closure
of ρ(Z), and therefore ρ(Z) is closed.

The same argument for an arbitrary G-invariantW shows that there
is f ∈ AY with f |ρ(Z) = 0 and f |ρ(W ) = 1, whence statement (2). �

Proof of Theorem 20.6. Let ρ : X → Y be the above morphism, and
consider another morphism ρ′ : X → Y ′ that is constant on the G-
orbits. We have to show that ρ′ factors through ρ. This is very easy
if Y ′ is affine: in that case ρ′ corresponds to a morphism AY ′ → AX

whose image must lie in AG
X
∼= AY as ρ′ is constant on G-orbits.

In the general case we use an affine open covering {U ′
i} of Y ′, and

set Vi := ρ′−1(U ′
i). This is a G-stable open subset in X, so its comple-

ment Zi is a G-stable closed subset. Lemma 22.1 (1) then implies that
Ui := Y \ρ(Zi) is open in Y , and an iterated application of Lemma 22.1
(2) shows that the Ui form an open covering of Y . Given a basic affine
open set D(f) ⊂ Ui, the function ρ

∗f is an element of AG
X that does not

vanish on Zi. Thus the restriction of ρ′ to D(ρ∗f) induces a ring homo-
morphism AU ′

i
→ AD(ρ∗f) = Aρ∗f with image in (Aρ∗f )

G, again since

ρ′ is constant on G-orbits. But we have (Aρ∗f )
G ∼= (AG)f = AD(f),

whence a morphism D(f) → U ′
i compatible with ρ′|D(ρ∗f). One checks

that for another basic open set D(g) ⊂ Ui the morphisms thus obtained
coincide on D(f) ∩ D(g) = D(fg), and similarly for basic opens con-
tained in the intersections Ui ∩ Uj. We thus obtain the required map
by patching.

Finally, by the Closed Orbit Lemma (Corollary 15.5) for each Q ∈ Y
the fibre ρ−1(Q) contains a closed G-orbit Z. That there is only one
such Z follows from Lemma 22.1 (2).

Example 22.2. Consider GLn acting on the space Mn(k) of n × n
matrices via conjugation, and define the geometric structure on Mn(k)

by identifying its elements with points of the affine space An2

k .
For each A ∈ Mn(k) consider its characteristic polynomial fA(t) =

tn + (−1)n−1an−1t
n−1 + · · ·+ (−1)a1t+ a0. The map ρ : Mn(k) → An

k

sending A to (an−1, . . . , a0) is a morphism of affine varieties constant
on GLn-orbits. We claim that (An, ρ) is the categorical quotient of
Mn(k) by the above action of GLn. Assume first ρ′ : Mn(k) → Y
is a morphism of affine varieties constant on GLn-orbits. For a point
of An

k corresponding to a polynomial f let D be a diagonal matrix
with characteristic polynomial f , and set ϕ(f) := ρ′(D). This does
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not depend on the choice of D since D is determined up to permuta-
tion of its diagonal entries, and such a permutation is conjugation by
an element of GLn. On the other hand, the coefficients of f are the
elementary symmetric polynomials in the entries of D, so since ρ′ is
given by symmetric polynomials in the entries of D (again by permu-
tation invariance), it factors through ρ by the fundamental theorem of
symmetric polynomials. The case of general Y reduces to the affine
case by taking an affine open cover and using the defining property of
categorical quotients (for not necessarily affine varieties).

One can check that the closed orbit in each fibre of ρ is that of
diagonalizable matrices. But for non-separable f there exist non-
diagonalizable matrices with characteristic polynomial f , so the fibre
of ρ over f contains several orbits.
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Chapter 5. Borel Subgroups and Maximal Tori

We can now harvest the fruits of our labours in the previous two
chapters, and prove the remaining general structural results for affine
algebraic groups. These concern Borel subgroups, i.e. maximal closed
connected solvable subgroups, and maximal tori, i.e. tori embedded as
closed subgroups that are maximal with respect to this property. The
main theorems state that in a connected group all Borel subgroups
(resp. maximal tori) are conjugate.

23. Borel subgroups and parabolic subgroups

In the remaining part of these notes, G will always denote a connected
affine algebraic group.

Definition 23.1. A Borel subgroup is a maximal connected solvable
closed subgroup in G.

Here ‘maximal’ means a maximal element in the set of connected
closed solvable subgroups partially ordered by inclusion. Such elements
exist by dimension reasons.

Theorem 23.2. Any two Borel subgroups of G are conjugate.

For the proof we need a key lemma.

Lemma 23.3. If H ⊂ G is a closed subgroup such that G/H is a
projective variety and B is a Borel subgroup in G, then H contains a
conjugate of B.

Proof. There is a natural left action of G on the projective variety G/H
given by (g, g′H) 7→ gg′H. Restricting to B we get a left action on
G/H to which the Borel fixed point theorem (Theorem 15.1) applies.
It yields g ∈ G with BgH = gH. In particular Bg ⊂ gH, so that
g−1Bg ⊂ H. �
Proof of Theorem 23.2. Embed G in some GL(V ) and consider the
action of G on the projective variety Fl(V ) of complete flags of V (cp.
Proposition 11.4). Pick a point F ∈ Fl(V ) whose orbit under the
action of G has minimal dimension; it is a closed orbit by Corollary
15.5. Denote by H the stabilizer of F . If B is a Borel subgroup in
G, then H contains a conjugate gBg−1 of B by Lemma 23.3. But B
is connected, so gBg−1 is contained in the connected component H◦

of H. But H◦ is connected and solvable (since it stabilizes a complete
flag), so we must have gBg−1 = H◦ by maximality of B. This shows
that H◦ is a Borel subgroup and all Borel subgroups are conjugate to
H◦.

It is worth isolating the key property of the above subgroup H in a
definition.



LECTURES ON LINEAR ALGEBRAIC GROUPS 61

Definition 23.4. A parabolic subgroup is a closed subgroup P ⊂ G
with G/P a projective variety.

Proposition 23.5. A Borel subgroup is parabolic.

Proof. Given a Borel subgroup B ⊂ G, choose an embedding G ⊂
GL(V ) such that B is the stabilizer of a 1-dimensional subspace V1 ⊂ V
(Lemma 4.2). Applying the Lie-Kolchin theorem to V/V1 we see that
B stabilizes a complete flag F in V/V1, so it is exactly the stabilizer of
the preimage F of F in V viewed as a point of Fl(V ). Now let H ⊂ G
be a subgroup as in the previous proof. Then B = g−1H◦g for some
g ∈ G. For Hg := g−1Hg there is thus a natural surjection of quasi-
projective varieties G/B → G/Hg whose fibres are finite since B has
finite index in Hg. But then dimG/B = dimG/Hg by Corollary 13.7
or Remark 16.4, so G/B, identified with the G-orbit of F in Fl(V ), is
also an orbit of minimal dimension. Therefore G/B is projective by
Corollary 15.5. �
Corollary 23.6. A closed subgroup P ⊂ G is parabolic if and only if
it contains a Borel subgroup.

Proof. Since a conjugate of a Borel subgroup is again a Borel subgroup,
the ‘only if’ part follows from Lemma 23.3. For the ‘if’ part let P is
a closed subgroup containing a Borel subgroup B, inducing a natural
surjective morphism G/B → G/P . Embed G/P into some Pn as a
quasi-projective variety. By Theorem 14.1 the composite map G/B →
G/P → Pn has closed image as G/B is projective, but the image is
G/P , which is thus projective as well. �

Observe that the corollary characterizes Borel subgroups by a geo-
metric and not a group-theoretic property: they are the minimal para-
bolic subgroups. Another formulation is that the Borel subgroups are
exactly the solvable parabolic subgroups.

Examples 23.7.

(1) In the case G = GLn the Borel subgroups are the conjugates
of the subgroup Tn of upper triangular matrices (by the Lie-
Kolchin theorem). The quotient GLn/Tn is the variety of com-
plete flags constructed in Section 10. For this reason for general
G and B the projective variety G/B is often called a (gener-
alised) flag variety. Examples of non-solvable parabolic sub-
groups in GLn are given by stabilizers of non-complete flags
(cp. Remark 11.5).

(2) In the case G = SLn the Borel subgroups are the conjugates of
the subgroup SLn∩Tn of upper triangular matrices of determi-
nant 1, again by the Lie-Kolchin theorem.

(3) It can be shown using the theory of quadratic forms that the
Borel subgroups in SOn are the stabilizers of those flags of sub-
spaces V0 ⊂ V1 ⊂ · · · ⊂ kn that are maximal with respect to
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the property that the restriction of the quadratic form to each
Vi is trivial (these flags have length [n/2]).

Here is an important consequence.

Corollary 23.8. The identity component R(G) of the intersection of
the Borel subgroups in G is the largest closed connected solvable normal
subgroup in G.

Proof. By Theorem 23.2 R(G) is a normal subgroup; it is also closed,
connected and solvable by construction. On the other hand, a closed
connected solvable normal subgroup N must be contained in a Borel
subgroup by the definition of Borel subgroups, hence in all of them by
Theorem 23.2 and the normality of N . By connectedness it is then
contained in R(G). �
Definition 23.9. The subgroup R(G) of the last corollary is called the
radical of G. The group G is semisimple if R(G) = {1}, and it is
reductive if R(G) is a torus.

Example 23.10. The group GLn is reductive. To see this, observe that
the group Tn of upper triangular matrices is a Borel subgroup, and so
is its transpose Ln of lower triangular matrices. Their intersection is
the diagonal subgroup Dn, so R(G) is diagonalizable and hence a torus.
In fact, the radical of GLn is Z(GLn) ∼= Gm by an easy lemma from
linear algebra: a diagonal matrix not of the form λ · Id has a conjugate
which is not diagonal.

By Example 23.7 (2) every Borel subgroup of SLn is of the form
B ∩ SLn for a Borel subgroup of GLn, and hence R(SLn) ⊂ R(GLn) ∼=
Gm. Now a matrix of the form λ · Id lies in SLn if and only if λ ∈ µn,
and therefore R(SLn) identifies with a subgroup of µn. Since R(SLn)
is connected, it must be trivial, and so SLn is semisimple.

Finally, we use the theory of Borel subgroups to establish some basic
properties of low-dimensional groups.

Proposition 23.11. A connected affine algebraic group G of dimen-
sion ≤ 2 is solvable.

The proof uses a lemma.

Lemma 23.12. Let G be a connected affine algebraic group, and B ⊂ G
a Borel subgroup. If B is nilpotent, then G = B.

Proof. We use induction on the dimension of B. If dimB = 0, then
G = G/B is at the same time projective, affine and connected, hence
it must be a point. For dimB > 0 the identity component Z◦ of the
center Z(B) is nontrivial. Indeed, since B is nilpotent by assumption,
there is a largest i for which the element Bi of the upper central series
is nontrivial. This Bi is closed and connected (same argument as for
Corollary 16.6) and by definition it is contained in Z(B).
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Now given z ∈ Z◦, the inner automorphism g 7→ zgz−1 of G is trivial
on B, hence induces a morphism of varieties G/B → G. Such a map
is constant, because G is affine connected and G/B is projective, so z
is central in G. Thus Z◦ ⊂ Z(G), and hence Z◦ is normal in G. The
quotient B/Z◦ is a Borel subgroup in G/Z◦, because it is connected,
solvable and (G/Z◦)/(B/Z◦) ∼= G/B is projective. By the inductive
assumption G/Z◦ = B/Z◦, so G = B. �
Proof of Proposition 23.11. Let B be a Borel subgroup. If B = G,
we are done. If B ̸= G, then dimB ≤ 1, so there are two cases.
Either Bu ̸= {1}, in which case it is a nontrivial closed subgroup in B
by Corollary 8.4, and hence B = Bu by dimension reasons. Otherwise
Bu = 1, and therefore B is a torus (embed it in Tn ⊂ GLn using the Lie-
Kolchin theorem, and observe that the composite map B → Tn → Dn

is injective, where Dn is the diagonal subgroup). In either case B is
nilpotent, which contradicts the proposition.

Corollary 23.13. If dimG = 1, then G is commutative.

Proof. In any case G is solvable, so its closed commutator subgroup
[G,G] cannot equal G. Hence [G,G]=1 by dimension reasons. �
Remark 23.14. In fact, one can say more: a connected affine algebraic
group of dimension 1 is isomorphic either to Gm or to Ga. Part of this
theorem is easily proven: by dimension reasons we must have G = Gs

or G = Gu. In the first case G is a torus, and thus must be Gm by
dimension reasons. It then remains to be shown that in the second
case G is isomorphic to Ga. In characteristic 0 we shall prove this later
(see Remark 25.4 (1) below). The positive characteristic case is much
more difficult, however: either one has to develop some analogue of
the logarithm in positive characteristic (see Humphreys or Springer),
or one has to use some facts about automorphisms of algebraic curves
(see Borel).

24. Interlude on 1-cocycles

In this section we collect some very basic facts from the cohomology
of groups that will be used in the next section. All groups are abstract
groups.

If G is a group, by a G-module we mean an abelian group A equipped
with a (left) action by G. It is equivalent to giving a left module over
the group ring Z[G].

Definition 24.1. A 1-cocycle of G with values in A is a map ϕ : G→ A
(of sets) satisfying ϕ(στ) = ϕ(σ) + σϕ(τ) for all σ, τ ∈ G. These
form an abelian group Z1(G,A) under the natural addition. A map
ϕ : G → A is a 1-coboundary if it is of the form ϕ(σ) = a − σ(a)
for a fixed a ∈ A. These form a subgroup B1(G,A) ⊂ Z1(G,A), and
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the quotient H1(G,A) := Z1(G,A)/B1(G,A) is the first cohomology
group of G with values in A.

We shall be interested in 1-cocycles because of the following basic
example.

Example 24.2. Assume given an extension 1 → A → E
p→ G → 1 of

G by the abelian group A, i.e. a surjective homomorphism p : E → G
with kernel A. In this situation we can give A the structure of a G-
module by σ(a) := σ̃aσ̃−1, where σ̃ ∈ E is any element with p(σ̃) = σ.
Since A is abelian and normal in G, this action is well defined.

A section of p is a homomorphism s : G → E with p ◦ s = idG.
Giving a section is equivalent to giving a subgroup H ⊂ E that is
mapped isomorphically onto G by p (set H = s(G)).

Now given two sections s1, s2 : G → E, the map σ 7→ s1(σ)s2(σ)
−1

has values in A by definition. Moreover, it is a 1-cocycle because of the
calculation

s1(στ)s2(στ)
−1 = s1(σ)s1(τ)s2(τ)

−1s2(σ)
−1

= s1(σ)s2(σ)
−1(s2(σ)s1(τ)s2(τ)

−1s2(σ)
−1)

= s1(σ)s2(σ)
−1σ(s1(τ)s2(τ)

−1),

where we have used that p(s2(σ)) = σ.
Assume now that this cocycle is a 1-coboundary, i.e. there is an a ∈

A with s1(σ)s2(σ)
−1 = aσ(a)−1. By the equality σ(a) = s2(σ)as2(σ)

−1

this holds if and only if s1(σ) = as2(σ)a
−1, so that s1s

−1
2 is a 1-cobound-

ary if and only if the si are conjugate. It follows that under the as-
sumption H1(G,A)=0 any two sections are conjugate.

We finally derive sufficient conditions for the vanishing of H1(G,A).

Lemma 24.3. If G is a finite group of order n, then nH1(G,A) = 0
for all G-modules A.

Proof. Let ϕ be a 1-coycle with values in A. Fix τ ∈ G and consider
the map ϕτ : σ 7→ ϕ(στ)−ϕ(τ). By the cocycle relation ϕ(στ)−ϕ(τ)−
ϕ(σ) = σϕ(τ)−ϕ(τ), so ϕτ differs from ϕ by a 1-coboundary. Therefore
it is a 1-cocycle cohomologous to ϕ. Now for all σ ∈ G∑

τ∈G

ϕτ (σ) =
∑
τ∈G

ϕ(στ)−
∑
τ∈G

ϕ(τ) = 0,

i.e. the sum of the ϕτ over all τ ∈ G is 0. But this sum is cohomologous
to nϕ, which proves the lemma. �
Corollary 24.4. Let G be a finite group of order n, and A a G-module
that is either

• a Q-vector space; or
• a group of finite exponent prime to n.

Then H1(G,A) = 0.
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Proof. By definition of 1-cohomology for each m > 0 the multiplication
by m map on A induces multiplication by m on H1(G,A). In the case
of a Q-vector space this map is an isomorphism on A and hence on
H1(G,A), but for m = n it is the zero map by the lemma, whence the
statement in this case. In the second case we obtain that H1(G,A) is
annihilated both by n and the exponent of A which is prime to n, so
it is trivial again. �

25. Maximal tori

A maximal torus in a connected algebraic group G is a torus of
maximal dimension contained as a closed subgroup in G. Such a torus
exists by dimension reasons.

Example 25.1. In GLn the maximal tori are the conjugates of the di-
agonal subgroup Dn. In SLn they are the conjugates of of the subgroup
Dn ∩ SLn, which is the kernel of the determinant map on Dn. Both
of these facts follow from the Lie-Kolchin theorem. Thus for GLn the
maximal tori have dimension n, and for SLn they have dimension n−1.

However, it is not a priori clear in general that a maximal torus is
a nontrivial subgroup. In any case, it must be contained in a Borel
subgroup since it is connected and solvable, so to prove nontriviality it
suffices to discuss the case when G is solvable. Recall from Corollary
8.4 (and its proof) that in this case we have a commutative diagram
with exact rows and injective vertical maps

1 −−−→ Gu −−−→ Gy y
1 −−−→ Un −−−→ Tn −−−→ Dn −−−→ 1

where Gu ⊂ G is the closed subgroup of unipotent elements. Now that
we have constructed quotients, we can deduce that the quotient G/Gu

embeds as a closed subgroup into Dn. Hence it is a torus, because G
is connected and hence so is G/Gu.

Theorem 25.2. Let G be a connected solvable affine algebraic group.
There exists a torus T contained as a closed subgroup in G that maps
isomorphically onto G/Gu via the natural projection G→ G/Gu.

The proof below is that of Grothendieck ([2], exposé on 10/12/1956),
which contains several improvements with respect to Borel’s original
proof. It uses two lemmas.

Lemma 25.3. Let G be a commutative unipotent algebraic group. If
k is of characteristic 0, then G as an abelian group is isomorphic to
a Q-vector space. In characteristic p > 0 its elements have p-power
order.
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Proof. The group Un of unipotent matrices in GLn has a composition
series N1 ⊃ N2 ⊃ . . . obtained as follows: first we set a12 to 0, then a23,
and so on until an−1,n, then a1,3, and so on; each successive quotient
is isomorphic to Ga. From this one infers in characteristic p > 0 that
each element of Un itself has p-power order. Assume now we are in
characteristic 0. Note first that a closed subgroup G ⊂ Un must be
connected, for G/G◦ is a finite unipotent group (by Proposition 2.3 and
Corollary 5.12) and hence must be trivial (a nontrivial element would
have an eigenvalue that is a root of unity different from 1). Now one sees
that either Ni ∩G = Ni+1 ∩G or (Ni ∩G)/(Ni+1 ∩G) ∼= Ga. Indeed,
each Ni ∩ G is closed in Un, hence connected. Therefore so are their
quotients, but the only closed connected subgroups of the 1-dimensional
group Ga are the trivial subgroup or Ga itself. We thus obtain that
G as an abstract group has a chain of normal subgroups with the
successive quotients Q-vector spaces. If moreover G is commutative, it
is a Q-vector space, because an abelian group that is an extension of
Q-vector spaces is itself a Q-vector space. �
Remarks 25.4.

(1) In characteristic 0 the above proof shows that a unipotent group
of dimension 1 must be isomorphic to Ga and that an arbitrary
unipotent group of dimension n is isomorphic toAn as a variety.
In characteristic p > 0 the first fact still holds but is much more
difficult to prove (as mentioned earlier), but if one accepts this
fact, the second one follows by a similar argument.

(2) In characteristic 0 one can in fact show that a commutative
unipotent group is isomorphic to a direct power of Ga. This
isomorphism is realised using the formal exponential and loga-
rithm series (which are polynomials for nilpotent, resp. unipo-
tent elements).

Lemma 25.5. Let s ∈ G be a semisimple element, Z ⊂ G its central-
izer, and U ⊂ G a closed normal unipotent subgroup. Then the image
of the composite map Z → G → G/U is exactly the centralizer of the
image of s in G/U .

Proof. We first reduce to the case when U is commutative using induc-
tion on the length of the commutator series of the unipotent (hence
solvable) group U . (Note that its terms are closed characteristic sub-
groups in U , hence normal subgroups in G.) Let U (n) be the smallest
nontrivial term. It is commutative, so we may assume the lemma holds
for it. The statement for U then follows from the inductive hypothesis
applied to G/U (n).

So assume U is commutative, and let S ⊂ G be the closure of the
subgroup generated by s. It is a closed commutative subgroup, hence
its subset Ss of semisimple elements is a closed subgroup by Theorem
7.2. But then we must have Ss = S by construction, whence S is
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diagonalizable by Lemma 7.1. By Theorem 7.8 it is thus a product of
a torus and a finite abelian group, therefore it is the Zariski closure
of the union of its n-torsion subgroups Sn for n > 0 (because so is
Gm). Let Zn be the centralizer of Sn; it is a closed subset because
the commutation relation with each s ∈ Sn gives equations for the
entries of the matrices in Zn. Thus the intersection of the Zn is Z, it
is therefore enough to prove the statement for Sn in place of s and Zn
in place of Z.

Let g be an element whose mod U image commutes with the mod
U image of Sn. This means that for each σ ∈ Sn there is a unique
ϕ(σ) ∈ U with σgσ−1 = gϕ(σ). The map σ 7→ ϕ(σ) is a 1-cocycle of Sn
with values in the abelian group U (endowed with the Sn-action given
by conjugation), because

ϕ(στ) = g−1στgτ−1σ−1 = (g−1σgσ−1)σ(g−1τgτ−1)σ−1 = ϕ(σ)σϕ(τ)σ−1.

Now Lemma 25.3 says that in characteristic 0 U as an abelian group
is a Q-vector space, and in characteristic p > 0 its elements have p-
power order. Thus Corollary 24.4 shows that H1(Sn, U) = 0 (noting
that in characteristic p > 0 S has no p-torsion). It follows that ϕ(σ) =
u(σuσ−1)−1 for some u ∈ U , so that σguσ−1 = gu for all σ ∈ Sn, i.e.
gu ∈ Zn, and moreover gu is in the same mod U coset as g. This proves
the lemma. �

Proof of Theorem 25.2. Assume first that each s ∈ Gs centralizes the
elements of Gu. If Gu is commutative, then G is a central extension
of the torus G/Gu by Gu, hence it is nilpotent and we are done by
Theorem 8.5. Otherwise we again use induction on the length of the
commutator series of Gu. If G(n)

u is the smallest nontrivial term, it is
commutative and by induction there is a torus T ⊂ G/G(n)

u mapping
isomorphically onto G/Gu. The preimage of T in G is a central exten-
sion of T by G(n)

u . Hence it is nilpotent and isomorphic to T × G(n)
u ,

again by Theorem 8.5. This concludes the proof in this case.
Assume now there is an element s ∈ Gs that does not commute with

all elements of Gu; in particular, its centralizer Z is not the whole of G.
We then use induction on dim (G), the case of dimension 0 being trivial.
The subgroup Z is closed inG (same argument as in the previous proof)
and it is also solvable, being a subgroup of G. As G/Gu is commutative,
the natural map Z → G/Gu is surjective by the above lemma. Hence
so is the map Z◦ → G/Gu for the identity component Z◦ ⊂ Z, because
G/Gu is connected. Applying the inductive hypothesis to Z◦ we obtain
the result, because Z◦

u = Gu ∩ Z◦.

Corollary 25.6. A torus T as in the theorem is a maximal torus and
G is a semidirect product of Gu by T .

Proof. Since T∩Gu = {1}, this follows from Jordan decomposition. �
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Theorem 25.7. Any two maximal tori in a connected affine algebraic
group are conjugate.

Proof. By the remarks at the beginning of this section and the conju-
gacy of Borel subgroups we may assume G is solvable. Then by the
previous theorem it is the semidirect product of a maximal torus T
by Gu. We first show that we may assume that Gu is commutative.
This is done by a similar induction as in Lemma 25.5: let S be an-
other maximal torus, and let U (n) be the smallest nontrivial term of
the commutator series of Gu. By induction applied to G/U (n) we ob-
tain an element g ∈ G with gSg−1 ⊂ TU (n). But U (n) is commutative
and TU (n) is the semidirect product of T with U (n), so if we know the
theorem in the commutative case, we may conjugate gSg−1 into T .

So assume henceforth that Gu is commutative. As in the proof of
Lemma 25.5 we may write S as the Zariski closure of an increasing
chain of finite subgroups Sn. For each n > 0 put

Cn := {u ∈ Gu : uSnu
−1 ⊂ T}.

This is a decreasing chain of closed subsets of Gu whose intersection
C∞ is the set of u ∈ Gu with uSu−1 ⊂ T . The chain must stabilize
for dimension reasons, i.e. Cn = C∞ for n large enough. Thus to
prove the theorem it is enough to show that Cn ̸= ∅ for all n. Put
Gn := SnGu; it is a semidirect product. The intersection Tn := T ∩Gn

maps isomorphically onto Gn/Gu by construction, so Gn is also the
semidirect product of Gu by Tn. But H1(Sn, Gu) = 0 as in the proof
of Lemma 25.5, so Sn and Tn are conjugate, i.e. Cn ̸= ∅. �
Remark 25.8. For solvable G the above proof did not use the fact that
S is actually a torus; the argument works more generally for any com-
mutative subgroup S ⊂ G consisting of semisimple elements. Indeed,
the closure S of such a subgroup is always diagonalizable by the same
argument as in the proof of Lemma 25.5, so the above argument works
for S, and we obtain that some conjugate of S (hence of S) lies in T .
In particular, we may choose S to be the cyclic subgroup generated by
a semisimple element, and obtain: In a connected solvable group each
semisimple element is contained in a maximal torus.

The theorem also yields characterisations of nilpotent algebraic groups.

Corollary 25.9. The following are equivalent for a connected affine
algebraic group G.

(1) G is nilpotent.
(2) All maximal tori are contained in the center of G.
(3) G has a unique maximal torus.

Proof. By Lemma 23.12 we may assume that G is solvable. Then we
have seen (1) ⇒ (2) in the proof of Theorem 8.5, and (2) ⇒ (3) follows
from the above theorem. To show (3) ⇒ (1), observe first that by the
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theorem the unique maximal torus T is stable by conjugation, hence so
is its n-torsion subgroup Tn for each n. But Tn is finite, so each t ∈ Tn
has finite conjugacy class. As in the proof of the Lie-Kolchin theorem,
the connectedness of G implies that Tn is contained in the center Z(G)
of G. Hence T ⊂ Z(G), because T is the closure of the union of the Tn
and Z(G) is closed. But since Gu ⊂ G is also a closed normal subgroup
(Corollary 8.4), we have G ∼= Gu × T , and therefore G is nilpotent by
Corollary 6.3. �

Finally, we use the conjugacy of maximal tori to define a fundamental
invariant of a connected affine algebraic group G.

Definition 25.10. Let T be a maximal torus in G, NG(T ) its nor-
malizer in G and ZG(T ) its centralizer. The quotient W (G, T ) :=
NG(T )/ZG(T ) is the Weyl group of G.

By the conjugacy of maximal tori the isomorphism class of W (G, T )
does not depend on T , hence it is indeed an invariant of G.

Proposition 25.11. Given any torus S contained as a closed subgroup
in G we have an equality of identity components NG(S)

◦ = ZG(S)
◦. In

particular, the Weyl group W (G, T ) is finite.

The proof is based on the following very useful lemma.

Lemma 25.12. (Rigidity Lemma) Let S and T be diagonalizable
groups, V a connected variety, and ϕ : V × S → T a morphism of
varieties. If the morphism ϕP : S → T given by s 7→ ϕ(P, s) is a
morphism of algebraic groups for each P ∈ V , then the map P 7→ ϕP
is constant.

Proof. If s ∈ S is a fixed element of finite order m, the morphism
ϕs : P 7→ ϕ(P, s) has finite image, because T has only finitely many
elements of order dividing m. Hence ϕs is constant, because V is con-
nected. In other words, we have ϕP (s) = ϕP ′(s) for all P, P ′ ∈ V .
We now use again a trick seen in the proof of Lemma 25.5: S is the
Zariski closure of the subgroup of finite order elements, so by continuity
ϕP = ϕP ′ on the whole of S. �

Proof of Proposition 25.11. The first statement implies the second since
the identity component has finite index in any group. To prove the
first statement it is enough to show NG(S)

◦ ⊂ ZG(S) as the inclusion
ZG(S)

◦ ⊂ NG(S)
◦ is obvious. In other words, we have to see that

the homomorphism s → nsn−1 is the identity for each n ∈ NG(S)
◦.

This follows from Lemma 25.12 applied with V = NG(S)
◦, S = T and

ϕ(n, s) = nsn−1 since ϕ(1, s) is the identity.

Remark 25.13. Note also that W (G, T ) identifies with a (finite) sub-
group of Aut(T ) in a natural way. Indeed, every element n ∈ NG(T )
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induces an inner automorphism of T which is trivial if and only if
n ∈ ZG(T ).

26. The union of all Borel subgroups

In this section we prove the following theorem of Borel.

Theorem 26.1. Each element of a connected affine algebraic group is
contained in a Borel subgroup.

In view of Theorem 23.2 an equivalent phrasing of the theorem is
that if B is a Borel subgroup in a connected group G, then the union
of the conjugates gBg−1 for all g ∈ G is the whole of G. In particular:

Corollary 26.2. If a Borel subgroup B is normal in G, then B = G.

Unfortunately, it is not obvious at all to construct ‘by hand’ a con-
nected solvable subgroup containing a given element of G. The problem
is with the semisimple elements. Still, for those contained in a (max-
imal) torus one may proceed as follows. If T is a maximal torus, the
only maximal torus in the identity component of the centralizer ZG(T )
is T (by Theorem 25.7), hence ZG(T )

◦ is nilpotent by Corollary 25.9.
Thus ZG(T )

◦ is a connected solvable subgroup containing T . (Note
that once we have proven Theorem 26.1, we’ll be able to invoke Re-
mark 25.8 and conclude that in fact every semisimple element of G is
contained in a maximal torus. But we are not allowed to use this fact
for the moment.)

The main point in the proof Theorem 26.1 will be that the union
of the conjugates of ZG(T )

◦ is already dense in G; the rest will then
follow rather easily. We begin with the following general lemma.

Lemma 26.3. Let G be a connected algebraic group, and H a closed
connected subgroup. Denote by X the union of all conjugates gHg−1

in G.

(1) If H is parabolic, then X is a Zariski closed subset.
(2) Assume that H contains an element whose natural left action

on G/H has finitely many fixed points. Then X is dense in G.

Proof. We may view X as the image of the composite morphism p2◦ϕ :
G×G→ G, where ϕ : G×H → G×G is given by ϕ(g, h) = (g, ghg−1),
and p2 : G × G → G is the second projection. Let Y be the image
of Im (ϕ) by the quotient map π : G × G → G × G/(H × {1}) ∼=
(G/H)×G. Since π is an open surjective mapping (Lemma 17.3) and
Im (ϕ) is closed in G × G (Corollary 16.5), we get that Y is closed in
(G/H) × G. On the other hand, its image by the second projection
p̄2 : (G/H)×G→ G is stillX by construction. Hence if H is parabolic,
X must be closed by Theorem 14.4.

We prove (2) by a dimension count. By Proposition 13.4 it suffices to
show that the dimension of the Zariski closure X equals that of G. The
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assumption in (2) means that there is an element h ∈ H over which
the fibre of p̄2 is finite, i.e. of dimension 0. Hence by Corollary 13.7
we must have dimY = dimX. On the other hand, the first projection
p̄1 : (G/H)×G→ G/H maps Y onto G/H, and the fibre over a coset
gH is isomorphic to gHg−1, so it is of dimension dimH. Thus from
Proposition 16.10 we obtain dimY = dimH + dimG/H = dimG, as
required. �

The following proposition verifies condition (2) of the lemma for the
identity component of the centralizer of a maximal torus.

Proposition 26.4. Let T be a maximal torus in G, and C = ZG(T )
its centralizer. There is an element t ∈ T whose natural left action on
G/C◦ has finitely many fixed points.

In fact, we shall show in the next section that C = C◦, but the proof
will use Theorem 26.1, so we are not allowed to use this. Before proving
the proposition let us first show how it implies Theorem 26.1.

Proof of Theorem 26.1. Applying statement (2) of Lemma 26.3 to the
subgroup C◦ of the proposition we see that its conjugates are dense
in G. As remarked at the beginning of this section, C◦ is nilpotent.
Hence it is solvable, and as such is contained in a Borel subgroup B.
The union of the conjugates of B is therefore dense in G, and it remains
to apply statement (1) of Lemma 26.3 to B.

It remains to prove the proposition. We need the following elemen-
tary lemma.

Lemma 26.5. If T is a torus embedded as a closed subgroup in a
connected group G, there is an element t ∈ T with ZG(T ) = ZG(t).

The proof will in fact show that the t having the required property
form a dense open subset in T .

Proof. Choose a closed embedding of G into some GLn. Up to compos-
ing with an inner automorphism of GLn, we may assume using Lemma
7.1 that the elements of T map to diagonal matrices. A calculation
shows that in GLn the centralizer of a diagonal matrix diag (di) consists
of those matrices [cij] where cij = 0 if di ̸= dj and cij is arbitrary oth-
erwise. It follows that we may choose t as any diagonal matrix diag (ti)
where ti ̸= tj for all i ̸= j, unless si = sj for all s = diag (si) ∈ T . �
Proof of Proposition 26.4. By the previous lemma we find t ∈ T with
C = ZG(t). Now observe that the class gC◦ ∈ G/C◦ is a fixed point
for t if and only if g−1tg ∈ C◦. But g−1tg is a semisimple element
(by Corollary 5.12), so g−1tg ∈ T , as T is the semisimple part of the
nilpotent group C◦ (by the remarks at the beginning of this section
and Theorem 8.5). Hence T ⊂ ZG(g

−1tg)◦ = g−1ZG(t)
◦g = g−1C◦g, so

that gTg−1 ⊂ C◦. Since T is the only maximal torus in C◦, this forces
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gTg−1 = T , i.e. g ∈ NG(T ). But NG(T )
◦ = C◦ by Proposition 25.11

(and its proof), which leaves finitely many possibilities for gC◦.

Finally, we record that, as noted above, Theorem 26.1 together with
Remark 25.8 yields:

Corollary 26.6. In a connected affine algebraic group each semisimple
element is contained in a maximal torus.

27. Connectedness of centralizers

We now turn to the proof of the following theorem.

Theorem 27.1. For a torus S contained as a closed subgroup in a
connected algebraic group G the centralizer ZG(S) is connected.

The first reduction is:

Lemma 27.2. If the theorem holds for connected solvable groups, it
holds for arbitrary connected groups.

Proof. We shall prove that given G and S as in the theorem, for z ∈
ZG(S) there is a Borel subgroup B containing both z and S. Since
ZB(S)

◦ ⊂ ZG(S)
◦ and by the solvable case z is contained in ZB(S)

◦ =
ZB(S), the theorem will follow for G. Choose a Borel subgroup B0

containing z. Then B = gB0g
−1 will be a good choice provided zg ⊂

gB0 and sg ⊂ gB0 for all s ∈ S. This is equivalent to saying that the
coset gB0 is a common fixed point under the natural left actions of z
and S on the projective variety G/B0. Consider the subset X ⊂ G/B0

of fixed points under the action of z. This is a nonempty subset of
G/B0 (as z ∈ B0), and it is closed, being the preimage of the graph
of the multiplication-by-z map by the diagonal morphism G/B0 →
(G/B0) × (G/B0). Thus it is a projective variety. Since z centralizes
S, the natural left action of S on G/B0 preserves X, so it has a fixed
point in X by the Borel fixed point theorem. �

The key lemma is the following one.

Lemma 27.3. Let G be a connected algebraic group, U ⊂ G a con-
nected commutative normal unipotent subgroup and s ∈ G a semisimple
element. Then ZG(s) ∩ U is connected.

Proof. Consider the map γs : U → U given by u 7→ usu−1s−1. Since
U is commutative and normal, this is a group homomorphism, and its
kernel C equals ZG(s)∩U . Observe now that C∩γs(U) = {1}. Indeed,
assume u ∈ C and v ∈ U are such that u = γs(v), or in other words
us = vsv−1. Here s is semisimple, u is unipotent and commutes with
s, so this must be the Jordan decomposition of vsv−1. But vsv−1 is
also semisimple (by Corollary 5.12), which forces u = 1.

By the above property the multiplication map m : C × γs(U) →
U is injective. But here dimC + dim γs(U) = dimU by Corollary
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16.10, so by the same corollary the image of the multiplication map
C◦ × γs(U) → U must be the whole of U . Therefore there exists a
projection of U onto C◦ which must map C isomorphically onto C◦

since C ∩ γs(U) = {1}. The connectedness of C follows. �

The following lemma is much simpler.

Lemma 27.4. Let 1 → G′ → G
ϕ→ G′′ → 1 be an exact sequence of

algebraic groups. If G′ and G′′ are connected, then so is G.

Proof. By assumption, G◦ surjects onto G′′, so for each g ∈ G we find
g◦ ∈ G◦ with ϕ(g) = ϕ(g◦). But then g◦g−1 ∈ G′ ⊂ G◦, so g ∈ G◦. �

Corollary 27.5. If G is a connected solvable group, then its unipotent
subgroup Gu is connected as well.

Proof. Since G/Gu is diagonalizable, hence in particular commutative,
Gu must contain [G,G], which is connected by Lemma 8.3. The quo-
tient Gu/[G,G] is the unipotent subgroup of the commutative group
Gab := G/[G,G] (by Corollary 5.12), so it is connected, being a direct
factor of Gab in view of Theorem 7.2. The corollary now follows from
the lemma. �

Proof of Theorem 27.1. Using Lemma 26.5 it will suffice to prove that
the centralizer of a semisimple element s ∈ G is connected. Moreover,
by Lemma 27.2 we may assume G is solvable. Then Gu is a closed nor-
mal subgroup in G, and moreover connected by the previous corollary.
We use induction on the length of the commutator series of Gu, the case
Gu = {1} being obvious. Let U be the smallest nontrivial term in the
series; it is closed, commutative and normal in G. It is also connected
by an iterated application of Lemma 8.3, so Lemma 27.3 applies and
yields the connectedness of ZG(s)∩U . On the other hand, the image of
ZG(s) in G/U is exactly the centralizer of s mod U in G/U according
to Lemma 25.5, so it is connected by the inductive assumption. The
connectedness of ZG(s) now follows from lemma 27.4.

.

28. The normalizer of a Borel subgroup

We now prove the last important structural result concerning Borel
subgroups, which is due to Chevalley. Its proof will use all the major
results proven earlier in this chapter.

Theorem 28.1. Let B be a Borel subgroup in a connecetd affine alge-
braic group G. Then NG(B) = B, i.e. B equals its own normalizer.

For the proof we need the following proposition which is interesting
in its own right.
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Proposition 28.2. Let S be a torus contained as a closed subgroup in
G, and B a Borel subgroup of G. Then ZG(S)∩B is a Borel subgroup
in ZG(S).

Note that the centralizer ZG(S) is a connected affine algebraic group
by Theorem 27.1.

Proof. We have ZG(S)∩B = ZB(S), so it is connected by (the solvable
case of) Theorem 27.1. It is also solvable, so by Corollary 23.6 it
is enough to see that it is parabolic in ZG(S). The composite map
ZG(S) → G → G/B factors through ZG(S)/(ZG(S) ∩ B), and maps
it isomorphically onto the image of ZG(S) in G/B. We show that this
image is a closed subset of the projective variety G/B. In any case,
it is the same as the image of the subgroup Y = ZG(S)B in G/B, so
since the projection G → G/B is surjective and open (Lemma 17.3),
it is enough to show that Y is closed in G. It is certainly connected
(being the image of the multiplication map ZG(S)×B → G), hence so
is its Zariski closure Y .

Pick now ȳ ∈ Y ; we show that it lies in Y . To do so, we shall
find b ∈ B such that ȳb−1 centralizes S. In any case, we know that
ȳ−1Sȳ ⊂ B, because the elements of Y have this property by definition,
hence so does ȳ by continuity. Now write T = B/Bu (where Bu ⊂ B is
the unipotent subgroup), and apply Lemma 25.12 to the map Y ×S →
T sending a pair (y, s) to the image of y−1sy in T . It says that for
each y and s the image of y−1sy in T equals that of s. In particular,
ȳ−1Sȳ ⊂ SBu. But S and ȳ−1Sȳ are maximal tori in the connected
solvable group SBu, so by Theorem 25.7 we have ȳ−1Sȳ = b−1Sb for
some b ∈ Bu. But then ȳb

−1 ∈ ZG(S), as required. �

Proof of Theorem 28.1. We use induction on the dimension of G, the
case of dimension 1 being trivial by Corollary 23.13. Fix a maximal
torus T ⊂ B and an element x ∈ NG(B). We shall show that x ∈ B.
Conjugation by x maps T onto another maximal torus in B which is of
the form yTy−1 for some y ∈ B by Theorem 25.7. Hence up to replacing
x by y−1x (which is allowed) we may assume that xTx−1 = T . Now
consider the endomorphism ρx : T → T given by t 7→ xtx−1t−1. We
distinguish two cases.

Case 1: ρx is not surjective. Then Im (ρx) is a proper closed subgroup
of T , whence it follows (for example by a dimension count using Corol-
lary 16.11) that the identity component S of Ker (ρx) is a nontrivial
torus. By construction, x lies in the centralizer ZG(S) of S. On the
other hand, B ∩ ZG(S) is a Borel subgroup in the connected group
ZG(S) by the proposition above, and since x ∈ NG(B), it normalizes
B ∩ ZG(S). Thus if ZG(S) ̸= G, the inductive hypothesis applies to
ZG(S) and shows that x ∈ B. Otherwise S is central in G and hence
it is a normal subgroup. But then we may conclude by applying the



LECTURES ON LINEAR ALGEBRAIC GROUPS 75

inductive hypothesis to G/S (which has lower dimension by Corollary
16.11).

Case 2: ρx is surjective. This assumption implies that T is contained
in the commutator subgroup [NG(B), NG(B)]. We now use the always
handy Lemma 4.2 to find a finite-dimensional vector space V and a
morphism G → GL(V ) such that the stabilizer of a 1-dimensional
subspace L ⊂ V is exactly NG(B). The action of NG(B) on L is given
by a morphism NG(B) → GL(L) ∼= Gm. Since Gm is commutative and
semisimple, it follows that both [NG(B), NG(B)] and the unipotent part
Bu of B act trivially on L. But T ⊂ [NG(B), NG(B)] and B = TBu

(Theorem 25.2), so B acts trivially on L. Therefore if v ∈ L, the map
G→ V given by g 7→ gv factors through G/B. But this is a morphism
of the irreducible projective variety G/B into V viewed an as affine
space, so it is constant by Corollary 14.2. In particular, the whole of
G stabilizes L, so G = NG(B), i.e. B is normal in G. But then G = B
by Corollary 26.2, and the statement to be proven is obvious.

Corollary 28.3. The map g 7→ gBg−1 induces a bijection between the
points of the flag variety G/B and the set B of Borel subgroups in G.

Proof. The map certainly factors through G/B and it is surjective by
Theorem 23.2. Theorem 28.1 now says that its kernel is exactly B. �

Because of the corollary above the set B carries the structure of a
projective variety. It is called the variety of Borel subgroups in G. The
natural left action of G on G/B corresponds to the conjugation action
of G on B.

The study of this variety as a homogeneous space for G is extremely
important. For instance, one has the following difficult theorem, which
is one form of the Bruhat decomposition:

Theorem 28.4. Let T be a maximal torus in B. In the natural left
action of B on G/B each B-orbit contains a unique fixed point by the
action of T .

A further study of the B-orbits reveals that each of them is locally
closed in G/B (i.e. each point has an open neighbourhood on which
the trace of the orbit is closed), and moreover isomorphic to some affine
space. In this way one obtains a cellular decomposition of G/B.

29. The Borel subgroups containing a given maximal
torus

Suppose now T ⊂ G is a maximal torus. We may restrict the G-
action on the variety B of Borel subgroups to NG(T ). This action
stabilizes the subset BT ⊂ B of Borel subgroups containing T . We
shall shortly see that this subset is finite.
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Lemma 29.1. The centralizer ZG(T ) acts trivially on BT . Conse-
quently, the action of NG(T ) on BT induces an action of the Weyl
group W =W (G, T ).

Proof. The subgroup ZG(T ) is connected by Theorem 27.1 and nilpo-
tent by Theorem 8.5 (since T is central in B). Therefore it is con-
tained in a Borel subgroup B ∈ BT . If B′ = gBg−1 is another Borel
subgroup containing T , then T and gTg−1 are maximal tori in B′,
and as such are conjugate. This means that T = hgTg−1h−1 for some
h ∈ B′, and hence hg ∈ NG(T ). But NG(T ) ⊂ NG(ZG(T )), because if
n ∈ NG(T ), t ∈ T , then ntn−1 ∈ T , so if moreover z ∈ ZG(T ), we have
zntn−1 = ntn−1z, whence n−1znt = tn−1zn, i.e. n−1zn ∈ ZG(T ). So
finally

ZG(T ) = hgZG(T )g
−1h−1 ⊂ h(gBg−1)h−1 ⊂ B′,

i.e. ZG(T ) fixes B
′. �

Proposition 29.2. The action of the Weyl group W on BT is simply
transitive. Consequently, BT is finite of cardinality equal to the order
of W .

Proof. For transitivity, let B,B′ = gBg−1 ∈ BT . As above, we have
hg ∈ NG(T ) for some h ∈ B′, so B is mapped to B′ by the class of hg
in W . For simple transitivity, assume n ∈ NG(T ) satisfies nBn

−1 = B.
Since NG(B) = B, we have n ∈ B, and therefore n ∈ NB(T ). But
B is a connected solvable group and T ⊂ B is a maximal torus, and
hence the composite map T ↪→ B → B/Bu is an isomorphism. If now
n ∈ NB(T ) and t ∈ T , then the elements ntn−1, t ∈ T have the same
image in the commutative group B/Bu, so we must have ntn−1 = t,
i.e. n ∈ ZG(T ). �

We now use a geometric method to give a lower bound for the order
of W . Consider the following situation. Let V be a finite-dimensional
vector space equipped with a linear action of Gm. There is an induced
action of Gm on the associated projective space P(V ) where a fixed
point of Gm corresponds to a common eigenvector of Gm in V .

Lemma 29.3. Assume Gm acts on P(V ) as above. If P is not a fixed
point, the Zariski closure of its Gm-orbit in P(V ) contains two fixed
points.

Proof. Consider the morphism ϕP : Gm → P(V ) given by α 7→ αP .
Considering Gm as an open subset of P1, a general fact from algebraic
geometry says that ϕP extends to a morphism ϕ̄P : P1 → P(V ). Its
image is closed by Theorem 14.1, hence it is the closure of the orbit of
P . The complement ϕ̄P (P

1) \ ϕP (Gm) consists of at most two points,
ϕ̄P (0) and ϕ̄P (∞). Since ϕ̄P (P

1)\ϕP (Gm) is a union of Gm-orbits and
Gm is connected, these must be fixed points.
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It remains to see that ϕ̄P (0) ̸= ϕ̄P (∞). For this we give an explicit
construction of ϕ̄P . As Gm is commutative, there is a basis v1, . . . , vn
of V consisting of common eigenvectors of Gm. The action of Gm on

each vi is given by a character of Gm; since Ĝm = Z, the action is of
the form α 7→ αmivi for an integer mi ∈ Z. We may order the mi so
that m1 is maximal and mn is minimal.

Choosing a preimage v ∈ V of P , we have v = λ1v1 + · · · + λnvn
with some λi ∈ k, so P has homogeneous coordinates (λ1, . . . , λn). We
may assume λi ̸= 0 for all i; otherwise we replace V by the subspace
generated by the vi for which λi ̸= 0. By the above, the map ϕP :
Gm → P(V ) is given by α 7→ (αm1λ1, . . . , α

mnλn). Here we are free
to multiply the coordinates by a fixed λ ∈ k×; in particular, α 7→
(αm1−mnλ1, . . . , α

mn−mnλn) defines the same map. But this makes sense
also for α = 0, so we have an extension of ϕP to a morphism A1 →
P(V ). Similarly, α 7→ (αm1−m1λ1, . . . , α

mn−m1λn) gives an extension to
a morphism P1 \ {0} → P(V ). Putting the two maps together gives
the required map ϕ̄P . Now ϕ̄P (0) = ϕ̄P (∞) would mean that all the
mi are equal, but then v would be a common eigenvector of Gm, which
it is not by assumption. �

Proposition 29.4. If moreover X ⊂ P(V ) is an irreducible projec-
tive variety of positive dimension stable by the action of Gm, then it
contains at least two fixed points.

If dimX ≥ 2, it contains at least three fixed points.

Proof. If X is pointwise fixed by Gm, there is nothing to prove. Oth-
erwise we may take the closure of the orbit of some P ∈ X not fixed
by Gm and apply the lemma to get the first statement.

For the second statement let again P ∈ X be a point not fixed byGm,
coming from v ∈ V . As in the previous proof, choose a basis v1, . . . , vn
of V , with Gm acting on vi via α 7→ αmivi. Again we may assume
m1 is maximal among the mi, and set W := ⟨v2, . . . , vn⟩; note that
this is a Gm-invariant subspace. Then v /∈ W and hence X ̸⊂ P(W ).
The intersection X ∩ P(W ) has finitely many irreducible components
permuted by Gm; as Gm is connected, each component must be stable
by Gm. Moreover, each component must be of dimension ≥ 1 by (the
projective version of) Theorem 13.6 and hence it contains at least two
fixed points by the first part. On the other hand, by the construction of
the previous proof one of the fixed points in the closure of the orbit of P ,
namely ϕ̄P (∞), has a v1-component and hence lies outside P(W ). �

Now we generalize the above statements to torus actions. The key
lemma is the following.

Lemma 29.5. Let T be an algebraic torus acting linearly on a finite-
dimensional vector space V . There is a cocharacter λ : Gm → T such
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that the action of T on P(V ) has the same fixed points as the induced
action of Gm obtained by composition with λ.

Proof. Again V has a basis consisting of common eigenvectors vi of T ,
with T acting on vi via a character χi of T . for λ : Gm → T the
composite χi ◦ λ is a character of Gm, hence of the form α 7→ αmi .
Since the pairing Hom(Gm, T ) × Hom(T,Gm) → Hom(Gm,Gm) ∼= Z
can be identified with the pairing Hom(Zr,Z) × Hom(Z,Zr) → Z via
Theorem 7.8, it is a perfect pairing of free abelian groups. Therefore we
may choose λ so that the mi corresponding to different χi are different.
Then the eigenspaces of V for the action of T and its composite with
λ are the same. �
Corollary 29.6. Proposition 29.4 holds more generally for the action
of an algebraic torus T on P(V ).

We now apply the corollary in a concrete situation.

Corollary 29.7. Let G be a connected nonsolvable algebraic group,
B ⊂ G a Borel subgroup, and T ⊂ G a maximal torus with associated
Weyl group W .

Then W has order ≥ 2, with equality if and only if dimG/B = 1.

Proof. As in the construction of quotients, identify G/B with the orbit
of a suitable point in a projective space P(V ), where P(V ) carries
a G-action. By Corollary 29.6, the restriction of the natural left G-
action on G/B to T has at least two fixed points, with equality if and
only if dimG/B = 1. This means that T is contained in at least two
Borel subgroups, or equivalently that W has order ≥ 2, by Proposition
29.2. �

As an application, we obtain (part of) a structure theorem for certain
semisimple groups. First some terminology: the rank of a connected
linear algebraic group G is the dimension of a maximal torus. The
semisimple rank of G is the rank of G/R(G).

Proposition 29.8. Let G be a connected linear algebraic group of
semisimple rank 1. There exists a surjective morphism ρ : G →
PGL2(k) with Ker (ρ)◦ = R(G). In particular, the kernel is finite for
semisimple G.

The proof will use two basic facts from the theory of algebraic curves.
First, if X is a smooth irreducible quasi-projective curve, every mor-
phism U → Pn from an open subset U ⊂ X to projective space extends
to a morphism X → Pn. For a proof see e.g. [7], §1.6. Consequently,
if two irreducible projective curves have isomorphic open subsets, they
are isomorphic.

Second, the automorphism group of P1 as a projective variety is
isomorphic to PGL2(k). For an elementary proof, see [11], §I.1.
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Proof. Let T be a maximal torus in G. We first prove that there are
exactly two Borel subgroups containing T . Indeed, since R(G) is con-
tained in every Borel subgroup of G, the Borel subgroups of G and
Ḡ := G/R(G) correspond bijectively. Moreover, by the theory of max-
imal tori in connected solvable groups, if a Borel subgroup B contains
T , then T̄ := T/T ∩ R(G) is a maximal torus in B/B ∩ R(G), and as
such is isomorphic to Gm by assumption. Thus the Borel subgroups of
G containing T correspond bijectively to those of Ḡ containing T̄ , and
their number equals the order of W̄ := W (Ḡ, T̄ ) by Proposition 29.2.
Now Ḡ is not solvable (otherwise G would be solvable too and we would
have G = R(G)), hence W̄ has order at least 2 by Corollary 29.7. On
the other hand, W̄ is a subgroup of Aut(T̄ ) = Aut(Gm) = Z/2Z by
Remark 25.13 so it indeed has order 2.

Applying Corollary 29.7 again, we obtain dimG/B = 1 for a Borel
subgroup B. As in the previous proof we embed G/B in some projec-
tive space P(V ) equipped with a G-action. The action of T on G/B has
two fixed points; in particular it is nontrivial. Therefore by choosing
a suitable cocharacter Gm → T we can define a Gm-action on P(V )
such that G/B contains a nontrivial Gm-orbit. In other word, there is
a nonconstant morphism ϕ : Gm → G/B that extends to a morphism
ϕ̄ : P1 → P(V ) as in the proof of Lemma 29.3. As the image of ϕ̄ is the
closure of Im (ϕ) by Theorem 14.1, it is contained in the closed subva-
riety G/B, hence it is equal to G/B by dimension reasons. But G/B
is a smooth projective curve, and therefore ϕ̄ must be an isomorphism
by the first fact recalled above. We obtain an isomorphism G/B ∼= P1.

Finally, the natural action of G on G/B induces a homomorphism
of algebraic groups ρ : G → Aut(P1) ∼= PGL2(k). Its kernel is the
intersection of all Borel subgroups in G, whence Ker (ρ)◦ = R(G) as
required. As remarked before, G/R(G) is not solvable and therefore
must be of dimension ≥ 3 by Proposition 23.11. Therefore ρ must
be surjective for dimension reasons (using that Im (ρ) ⊂ PGL2(k) is
closed). �

We shall need the following more precise statement in the case of
reductive G.

Proposition 29.9. Let G be a reductive group of semisimple rank 1.
Then the kernel of the morphism ρ : G → PGL2(k) above is of multi-
plicative type.

Proof. Fix a maximal torus T ⊂ G. By the previous proof there are
exactly two Borel subgroups B+, B− containing T . We may assume
that the morphism ρ is constructed using the action of G on G/B+.
We show that Ker (ρ) ⊂ T , which implies the statement. As Ker (ρ)
is the intersection of all Borel subgroups of G, it will suffice to show
B+ ∩B− = T .
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The group PGL2(k) has dimension 3, and Borel subgroups B ⊂
PGL2(k) are conjugate to the image of the upper triangular subgroup
of GL2(k). Hence they are of dimension 2, with unipotent part of
dimension 1. On the other hand, the unipotent part B+

u ⊂ B+ is
nontrivial (otherwise B+ would be a torus, which would contradict
Lemma 23.12 for our noncommutative G). Since Ker (ρ)◦ = R(G)
by the previous proposition and R(G)u = 1 by assumption, it follows
that ρ(B+

u ) ⊂ PGL2(k) is the unipotent part of a Borel subgroup in
PGL2(k) and moreover the map ρ : B+

u → ρ(B+
u ) has finite kernel. In

particular, B+
u has dimension 1, and as such is isomorphic to Ga by

Remark 23.14. Therefore the conjugation action of T on B+
u (coming

from the conjugation action on B+ which must preserve unipotents) is
via a character T → Gm. Similarly, T acts on B−

u , and hence the above
Gm-action on B+

u preserves B+
u ∩ B−

u . In other words, B+
u ∩ B−

u is a
Gm-stable proper closed subgroup of Ga, and hence must be trivial.
But then B+∩B− = T (B+

u ∩B−) = T (B+
u ∩B−

u ) = T , as claimed. �
Remark 29.10. In Chapter 21 of [9] it is shown that actually the
scheme-theoretic kernel of ρ is of multiplicative type, which is a some-
what more difficult result.

Remark 29.11. An isogeny G̃→ G of algebraic groups is a surjective
morphism with finite kernel; it is a multiplicative isogeny if moreover
the kernel is of multiplicative type (=diagonalizable). We call G simply

connected if every multiplicative isogeny G̃→ G is an isomorphism. If
G is a semisimple linear algebraic group, it can be shown that there
exists a multiplicative isogeny π : Gsc → G such that Gsc is semisimple
simply connected and moreover for every multiplicative isogeny ρ :

G̃→ G there exists λ : Gsc → G̃ with π = ρ ◦ λ.
For G = PGL2(k) we have Gsc = SL2(k) with π the natural pro-

jection. Thus Proposition 29.9 implies that every semisimple group of
rank 1 is isomorphic to SL2(k) or PGL2(k).

The proof of these results is not very hard, but requires inputs from
algebraic geometry beyond the scope of these notes. See e.g. §20 of [9]
from where we borrowed the terminology ‘multiplicative isogeny’.
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Chapter 6. Reductive Groups and Root Data: A Brief
Introduction

In the classification of reductive groups one associates with each
group an object of combinatorial nature called its root datum. It de-
termines the group up to isomorphism, and hence the classification is
reduced to a purely combinatorial problem. In this chapter we quickly
explain the construction the root datum but do not discuss the clas-
sification itself. Our main goal is to clarify how the general structure
theory of the previous chapter is exploited during the construction of
the root datum.

30. Structural results for reductive groups

Before beginning the study of roots we collect together some conse-
quences of the general structure theory for reductive groups. Through-
out the whole section G denotes a reductive (in particular connected)
linear algebraic group.

Proposition 30.1. We have an equality R(G) = Z(G)◦.

Proof. As Z(G)◦ is connected, commutative and normal, it is contained
in R(G) by its very definition. Also, since R(G) is a normal subgroup
of the connected group G, we have G = NG(R(G)) = NG(R(G))

◦.
But G is reductive, hence R(G) is a torus, and therefore NG(R(G))

◦ =
ZG(R(G))

◦ by (the proof of) Proposition 25.11. This proves the inclu-
sion R(G) = Z(G)◦. �
Proposition 30.2. The intersection [G,G] ∩R(G) is finite.
Proof. Embed G in some GL(V ). Since R(G) is a torus, its image
in GL(V ) is diagonalizable, so we may decompose V as a direct sum
V = V1 ⊕ · · · ⊕ Vr of common eigenspaces of R(G). As R(G) is central
in G, each Vi is a G-invariant subspace. If g ∈ [G,G], it restricts to
an element of determinant 1 in GL(Vi). If g ∈ R(G), it restricts to an
element of the form λi · idVi . Hence for g ∈ [G,G] ∩ R(G) there are
finitely many possibilities for g|Vi for each i = 1, . . . , r. �
Corollary 30.3. The commutator subgroup [G,G] is semisimple.

Proof. By definition, every Borel subgroup of [G,G] is contained in a
Borel subgroup of G. Taking their intersection, we obtain

R([G,G]) ⊂ (R(G) ∩ [G,G])◦ = {1}
by the proposition. �
Remark 30.4. It can be shown that every semisimple group is perfect,
i.e. it equals its commutator subgroup. In the case of SLn (n > 1) and
its quotients this is a classical fact proven by matrix computations; see
e.g. Lang, Algebra, Chapter XIII. We shall only use this case in what
follows.
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It follows that if G is reductive, then G/R(G)[G,G] is both abelian
(as a quotient of G/[G,G]) and perfect (as a quotient of the semisimple
group G/R(G)). Therefore G = R(G)[G,G], and thus by Proposition
30.2 the composite map [G,G] → G → G/R(G) is surjective with
finite kernel contained in Z(G). Therefore the natural projection G→
G/R(G) is ‘almost split’.

Finally, we record the following consequence of the general results
concerning centralizers of tori.

Proposition 30.5. If G is a reductive group and S ⊂ G is a torus,
then ZG(S) is also reductive. If T is a maximal torus, then ZG(T ) = T .

Proof. By Theorem 27.1 ZG(S) is connected. Moreover, every Borel
subgroup of ZG(S) is contained in a Borel subgroup of G, so by Propo-
sition 28.2 the Borel subgroups of ZG(S) are exactly the subgroups of
the form ZG(S) ∩ B for a Borel subgroup B ⊂ G. Taking identity
components of intersections we obtain R(ZG(S)) ⊂ R(G). Therefore if
R(G) is a torus, so is R(ZG(S)). Finally, if T ⊂ G is a maximal torus, it
is also a maximal torus in ZG(T ) and it is central by definition. Hence
ZG(T ) is nilpotent by Corollary 25.9, but its radical must be a torus.
It follows that ZG(T ) = T . �

31. The concept of a root datum

Here is the basic definition.

Definition 31.1. (Demazure) A root datum Ψ = (X,X∨, R,R∨)
consists of:

• a pair (X,X∨) of lattices (i.e. finitely generated free abelian
groups) that are dual to each other via a perfect bilinear pairing
⟨ , ⟩ : X ×X∨ → Z;

• a finite subset R ⊂ X together with a map α 7→ α∨ onto a finite
subset R∨ ⊂ X∨.

For each α ∈ R the following axioms are imposed.

(RD1) ⟨α, α∨⟩ = 2.
(RD2) sα(R) ⊂ R, sα∨(R∨) ⊂ R∨, where

sα(x) := x− ⟨x, α∨⟩α, sα∨(y) := y − ⟨α, y⟩α∨

for x ∈ X, y ∈ X∨.

The root datum is reduced if moreover

(RD3) If α ∈ R and c ∈ Q, then cα ∈ R if and only if c = ±1.

The elements ofR (resp. R∨) are called roots (resp. coroots). An easy
calculation using axioms (RD1) and (RD2) shows that all sα satisfy
sα ◦ sα = id and sα(α) = −α. In particular, the sα are automorphisms
of order 2 of X.
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Definition 31.2. The (abstract) Weyl group W (Ψ) of Ψ is the sub-
group of AutZ(X) generated by the sα.

Remarks 31.3.

(1) It is not hard to check that the subgroup of AutZ(X
∨) gener-

ated by the sα∨ is canonically isomorphic to W (Ψ) (this is not
surprising in view of Lemma 31.4 below). Thus the definition
of W (Ψ) is symmetric.

(2) By axiom (RD2) the Weyl group W (Ψ) acts on the set R of
roots. It can be shown by linear algebra calculations starting
from the axioms that this action is faithful, and hence W (Ψ) is
finite (as so is R). We omit this direct argument here, but in
the case of root data coming from reductive groups these facts
will follow from Theorem 33.3 below.

We shall need the following important property.

Lemma 31.4. If α, β ∈ R are such that ⟨x, α∨⟩ = ⟨x, β∨⟩ for all
x ∈ X, then α = β. Consequently, the map α 7→ α∨ is a bijection.

Proof. Using the formulas

sα(α) = −α, sα(β) = β − 2α, sβ(α) = α− 2β

we compute

sβsα(α) = 2β −α = α+2(β −α), sβsα(β −α) = sβ(β −α) = β −α,

whence for all n > 0

(sβsα)
n(α) = α+ 2n(β − α).

But these elements are in R by axiom (RD2) and R is finite. This is
only possible if α = β. �

In the next two sections we shall associate with each connected affine
algebraic group G and maximal torus T ⊂ G a reduced root datum
Ψ(G, T ) whose abstract Weyl group is isomorphic to the Weyl group
W (G, T ). The lattices X and X∨ will be defined as the group of char-
acters

X∗(T ) = Hom(T,Gm)

and cocharacters
X∗(T ) = Hom(Gm, T )

for a maximal torus T ⊂ G. Note there is a natural duality pairing

X∗(T )×X∗(T ) → Z

obtained from the composition of characters and cocharacters and us-
ing Hom(Gm,Gm) ∼= Z. By Theorem 25.2 different T give rise to
isomorphic pairs of lattices.

The roots are also easy to define. They come from the adjoint rep-
resentation

Ad : G→ Aut(Lie(G))
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which sends g ∈ G to the automorphism of Lie(G) induced by the
inner automorphism x 7→ gxg−1. In fact, every automorphism of the
algebraic group G induces an automorphism of the tangent space at 1.
It can be checked that Ad preserves the Lie algebra structure but in
fact for our purpose here it is enough to consider it as a representation
of G on the underlying vector space L of Lie(G).

The maximal torus T maps via Ad to a commutative subgroup of
semisimple elements in GL(L), so it is diagonalizable: there is a basis
of L consisting of simultaneous eigenvectors of T . If v is such a basis
element, we have tv = χ(t)v for a constant χ(t) ∈ k×; in fact t 7→ χ(t)
defines a character χ ∈ X∗(T ).

Definition 31.5. The roots of (G, T ) are the finitely many nontrivial
characters of T arising in this way.

Note that if G is reductive, the roots of G can be identified with
those of the semisimple group G/R(G) because R(G) is a central torus
in G by Proposition 30.1.

The remaining task is the definition of the coroots in a way that they
satisfy the axioms above. This we carry out in two steps.

32. Construction of the root datum: rank 1 case

We first construct the root datum in the key special case of semisim-
ple groups of rank 1. By Remark 29.11 we know that these are isomor-
phic to SL2 or PGL2.

Example 32.1. In SL2, a maximal torus is given by the diagonal
subgroup of matrices of the form T = diag(t, t−1) with t ∈ k×. Its
character group is isomorphic to Z, generated by the character χ :
diag(t, t−1) 7→ t.

The Lie algebra is that of 2× 2 matrices of trace 0. The conjugation
action is given by[

t 0

0 t−1

][
a b

c −a

][
t−1 0

0 t

]
=

[
a t2b

t−2c −a

]
.

Therefore matrices with a = c = 0 form an eigenspace on which T acts
with character χ2, and matrices with a = b = 0 form an eigenspace on
which T acts with character χ−2. In other words, after the identification
X∗(T ) = Z the roots are 2,−2. The corresponding coroots are 1,−1,
i.e. the cocharacters t 7→ diag(t, t−1), t 7→ diag(t−1, t).

Example 32.2. For G = PGL2 the maximal torus is the image of
the diagonal subgroup of GL2; it is isomorphic to G2

m/Gm, with Gm

embedded diagonally. If χ1 : (t1, t2) 7→ t1 and χ1 : (t1, t2) 7→ t2 are the

standard generators of Ĝ2
m, we may identify a generator Ĝ2

m/Gm
∼= Z

with the character χ := χ1χ
−1
2 trivial on the diagonal image of Gm.
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The Lie algebra of G = PGL2 is that of 2×2 matrices modulo scalar
matrices, and the conjugation action is induced by[

t1 0

0 t2

][
a b

c d

][
t−1
1 0

0 t−1
2

]
=

[
a t1t

−1
2 b

t−1
1 t2c d

]
.

Therefore, after the identification Ĝ2
m/Gm

∼= Z sending χ to 1, the
roots become 1,−1 and the coroots 2,−2.

Construction 32.3. If now G is a reductive group of semisimple rank
1, then [G,G] is semisimple of rank 1 surjecting onto G/R(G) by Re-
mark 30.4. By Remark 29.11, the kernel of this surjection is trivial or
isomorphic to µ2; the latter case arises only when [G,G] ∼= SL2(k)
and G/R(G) ∼= PGL2(k). The two explicit examples above then
show that in both cases a root α of G/R(G) induces a root of [G,G],
whence a coroot α∨ of [G,G] yielding a coroot of G via the composition
Gm → T ∩ [G,G] → T . The pair (α, α∨) attached to G still satisfies
the axioms for root data.

Finally, if G is semisimple of rank 1 and T ⊂ G is a maximal torus,
then we have seen during the proof of Proposition 29.8 that the Weyl
group W (G, T ) has order 2. If now G is reductive of semisimple rank
one, then R(G) is a central torus with T/R(G) ∼= Gm, so the same
holds for W (G, T ) = W (G/R(G), T/R(G)). It permutes the two roots
of (G, T ).

33. Construction of the root datum: general case

We now construct the root datum associated with an arbitrary re-
ductive group G and maximal torus T ⊂ G.

Construction 33.1. Let α : T → Gm be a root. Put Sα := Ker (α)◦

and Gα := ZG(Sα). Since T centralizes Sα, it is contained in Gα and
hence it is one of its maximal tori. Moreover, Sα is central in Gα by
construction, and so by the conjugacy of Borel subgroups it is contained
in the radical R(Gα). It follows that T/Sα is a maximal torus in the
semisimple group Gα/R(Gα). This group is of rank 1 because Sα is of
codimension 1 in T . Furthermore, Gα is reductive by Proposition 30.5,
hence the theory of the previous section applies to Gα and furnishes a
coroot α∨ ∈ X∗(T ).

Put X = X∗(T ), X∨ = X∗(T ) and denote by R and R∨ the set of
roots and coroots, respectively. Note that W (G, T ) acts on X and X∨

via its conjugation action on T , and also that W (Gα, T ) ⊂ W (G, T )
because NGα(T ) ⊂ NG(T ) and ZG(T ) ⊂ ZG(Sα) = Gα. Recall that
W (Gα, T ) has order 2.
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Lemma 33.2. Let wα be the nontrivial element of W (Gα, T ) viewed
as an element of W (G, T ). Its action on X is given by

(6) wα(x) := x− ⟨x, α∨⟩α

so that the lattice automorphism of X induced by wα is given by the
element sα defined in (RD2).

Similarly, the lattice automorphism of X∨ induced by wα is given by
the element sα∨.

Proof. Consider a Z-basis β1, . . . , βr of the free Z-module X∗(Sα). To-
gether with α they yield a basis of the Q-vector space V = X ⊗Z Q.
By definition, wα induces the endomorphism of V sending α to −α
and fixing the βi (because Sα ⊂ Z(Gα)). But sα also sends α to
−α by its defining formula. To see that it also fixes the βi, identify
V ∨ := X∨ ⊗Z Q with HomQ(V,Q), and denote by W ⊂ V the sub-
space generated by the βi. By construction the element α∨ is in the
image of the map HomQ(V/W,Q) → HomQ(V,Q). Indeed, the map
ϕ : T ∩ [G,G] → T involved in the construction of α∨ in the previous
section yields an ‘almost splitting’ of the projection T → T/Sα in Gα

and it is ϕ that induces the projection V → V/W splitting the inclusion
⟨α⟩ ⊂ V by Remark 30.4. Thus ⟨βi, α∨⟩ = 0 for all i, and therefore wα
and sα coincide on V and hence also on X. The proof of the second
statement is similar. �

In the proof below we shall need the following observations. Consider
the finite-dimensional R-vector space V := X ⊗Z R, and fix a positive
definite inner product [ , ] on it. Since W (G, T ) is finite, the formula

(x, y) :=
∑

w∈W (G,T )

[wx,wy]

again defines a positive definite inner product on V that is moreover
W (G, T )-invariant. In particular, the elements wα considered in the
above lemma are orthogonal linear transformations of the inner product
space (V, ( , )). Moreover, formula (6) shows that they are reflections:
they fix the hyperplane Hα ⊂ V of equation ⟨x, α∨⟩ = 0 and satisfy
wα(α) = −α. For y ∈ Hα the calculation (α, y) = (wαα,wαy) =
−(α, y) shows that we have an orthogonal direct sum decomposition
V = ⟨α⟩ ⊕Hα with respect to ( , ), and then we may compute

(7) wα(x) = x− 2(α, α)−1(x, α)α

for general x ∈ V . Comparing with formula (6) shows the relation
⟨x, α∨⟩ = 2(α, α)−1(x, α).

Theorem 33.3. The system Ψ = (X,X∨, R,R∨) is a reduced root
datum, and W (G, T ) = W (Ψ) as subgroups of AutZ(X).
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Recall here that sending x ∈ NG(T ) to the map t 7→ xtx−1 identifies
W (G, T ) = NG(T )/ZG(T ) with a subgroup of the automorphism group
of the torus T , and the latter identifies with AutZ(X) via Theorem 7.8.

Proof. Axiom (RD1) follows from the construction of α∨ in the pre-
vious section, and so does (RD3) because Gcα = Gα for all c ∈ Q×.
Axiom (RD2) follows from Lemma 33.2 because W (G, T ) acts on T by
conjugation and hence permutes the roots and coroots by definition of
the adjoint representation.

To show the equality of Weyl groups, it suffices to see by definition
of W (Ψ) that the elements wα ∈ W (G, T ) considered in Lemma 33.2
generate W (G, T ). This we do by induction on dimG. Consider an
arbitrary w ∈ W (G, T ), and represent it by x ∈ NG(T ). The map
ψw : t 7→ xtx−1t−1 is an endomorphism of the torus T ; it depends only
on w.

Assume first ψw is not surjective. Then Tw := Ker (ψw)
◦ ⊂ T is a

nontrivial subtorus. Denote by Zw its centralizer in G and note that
Zw ⊃ T . Moreover, Zw is reductive by Proposition 30.5. If Zw = G,
then Tw is a nontrivial central subtorus of T and as such carries a trivial
action of W (G, T ). Thus we may apply induction to T/Tw ⊂ G/Tw
and conclude. Otherwise Zw ⊂ G is a proper closed subgroup and
w ∈ W (Zw, T ) ⊂ W (G, T ), so we again conclude by induction.

Suppose now ψw is surjective. The induced endomorphism y 7→
wy − y of the character group X = T̂ must then be injective. After
tensoring by R we obtain an automorphism of the finite-dimensional
R-vector space V = X ⊗Z R. If α0 ∈ R is a root, we thus find y ∈ V
with wy − y = α. Using the above W (G, T )-invariant scalar product,
we compute

(y, y) = (wy,wy) = (y + α0, y + α0) = (y, y) + 2(y, α0) + (α0, α0)

whence 2(α0, α0)
−1(y, α0) = −1. But then wα0(y) = y + α0 = wy by

formula (7), so that w−1
α0
w has a fixed vector in V . It follows that

ψw−1
α0
w cannot be surjective, hence by the previous case w−1

α0
w is in the

subgroup generated by all the wα’s. This concludes the proof. �
We can now state the main structural results concerning reductive

groups. First, note that there is an obvious notion of isomorphism
between root data Ψ1 = (X1, X

∨
1 , R1, R

∨
1 ) and Ψ2 = (X2, X

∨
2 , R2, R

∨
2 ):

it is a pair of isomorphisms X1
∼= X2 , X∨

1
∼= X∨

2 compatible with the
duality pairings, and preserving roots and coroots.

Theorem 33.4. Let G, G′ be reductive groups and T ⊂ G′, T ⊂ G′

maximal tori. Each isomorphism λΨ : Ψ(G, T )
∼→ Ψ(G′, T ′) of root

data arises from a unique isomorphism λ : G
∼→ G′ mapping T onto

T ′. Moreover, λ is uniquely determined up to an inner automorphism
of G.
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Theorem 33.5. For each reduced root datum Ψ there exists a reductive
group G and a maximal torus T ⊂ G with Ψ = Ψ(G, T ).

The proofs of these theorems are long and rather technical. They
can be found in Chapters 9 and 10 of [12].

The theorems reduce the classification of reductive groups to that
of root data, which is fairly classical. More precisely, it is classical in
the important case where the set of roots R spans the R-vector space
V := X⊗ZR; it can be shown that these are the root data arising from
semisimple groups. Under this assumption the pair (V,R) is classically
called a root system which means that it satisfies the following axioms:

(RS1) The α ∈ R generate V , and 0 /∈ R;
(RS2) For each α ∈ R there exists α∨ in the dual vector space V ∗ such
that ⟨α, α∨⟩ = 2 and (with the above notation) sα(R) ⊂ R;
(RS3) For each α ∈ R the function α∨ satisfies α∨(R) ⊂ Z.5

Conversely, it is not hard to show that each root system (V,R) gives
rise to a root datum Ψ = (X,X∨, R,R∨) where R generates X ⊗Z R.

Root systems have first arisen in the theory of complex semisimple
Lie algebras, and their classification has been known for more than a
hundred years. One first decomposes them into a finite direct sum of
irreducible root systems (the notion of a direct sum of root systems
being the obvious one) and then classifies the irreducibles by means of
a finite graph, the Dynkin diagram. One obtains three infinite families
traditionally labelled An, Bn and Dn (one diagram for each n ≥ 1),
and five exceptional diagrams denoted by G2, F4, E6, E7 and E8, re-
spectively. The connection with Lie algebras is not surprising, since it
is known (see e.g. [8], §13) that in characteristic 0 the correspondence
G 7→ Lie (G) induces an equivalence between the category of semisim-
ple algebraic groups and that of semisimple Lie algebras. It is more
surprising that there is no difference in the classification of semisimple
groups in positive characteristic. (For the classification of root sys-
tems and semisimple Lie algebras, see e.g. the first chapters of [1].)
The proof of Theorem 33.5 for arbitrary reductive groups proceeds by
reduction to the semisimple case.

5In the works following the conventions of Bourbaki, one imposes instead of
(RS2) and (RS3) the existence of order 2 automorphisms sα of V that preserve R
and have the property that for all α, β ∈ R there is m ∈ Z with sα(β) − β = mα.
The two definitions are equivalent.
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