What determines a variety?

János Kollár

with Max Lieblich, Martin Olsson and Will Sawin
April, 2020

Menelaus's theorem, $\sim 70-140$ AD

$$
\frac{A F}{F B} \times \frac{B D}{D C} \times \frac{C E}{E A}=-1
$$

Karl Georg Christian von Staudt, 1798-1867

Veblen-Young theorem (1908)

Given a projective geometry $\mathrm{P}=$ (points, lines) of dim. $n \geq 2$
(with very few axioms), there is a unique field K such that $\mathbf{P} \cong K \mathbb{P}^{n}$.

Recall: a scheme X is a

- topological space $|X|$, and a
- sheaf of rings \mathcal{O}_{X} on the open subsets of $|X|$.

Main question

- How to read off properties of X from $|X|$?
- Does $|X|$ alone determine X ?

Example: $\operatorname{dim} X=$ Krull dimension of $|X|$.

Negative results - easy ones

- For curves C_{K}, we see only the cardinality of K.
- Normalization is frequently homeomorphism.
- Purely inseparable maps are homeomorphisms.
- If K / L finite, then any K-variety X can be viewed as an L-variety with the same $|X|$. To fix this:
- maximal choice $K=H^{0}\left(X, \mathcal{O}_{X}\right)$, equivalently
- X is geometrically irreducible over K.

Negative results - surprising ones

- (Wiegand-Krauter, 1981) $\left|\mathbb{P}_{F}^{2}\right|$ same for all finite fields.
- (K.- Mangolte, 2009)
S_{1}, S_{2} : blow-up of $\mathbb{R} \mathbb{P}^{2}$ in same number of points. Then
every Euclidean-homeo $\Phi: S_{1}(\mathbb{R}) \sim S_{2}(\mathbb{R})$
can be approximated by $\psi: S_{1}(\mathbb{R}) \sim S_{2}(\mathbb{R})$ that are
both Euclidean and Zariski homeomorphisms.
Holds for C^{0} and C^{∞}-approximations.

Theorem (Topology determines sheaf theory)

- K, L fields of char. 0 ,
- X_{K}, Y_{L} normal, projective, geom. irred. varieties,
$-\left|X_{K}\right| \sim\left|Y_{L}\right|$ homeomorphism.
Assume
(1) either $\operatorname{dim} X \geq 4$,
(2) or $\operatorname{dim} X \geq 3$ and K, L are finitely generated $/ \mathbb{Q}$.

Then $K \cong L$ and $X_{K} \cong Y_{L}$.
Will outline the proof of a simpler theorem, its proof has the same basic ideas.

Theorem (Topology determines projective space)

- char $L=0, K$ arbitrary,
- Y_{L} normal, projective, geom. irreducible of dimension $n \geq 2$
- $\left|\mathbb{P}_{K}^{n}\right| \sim\left|Y_{L}\right|$ a homeomorphism. Then
(1) $Y_{L} \cong \mathbb{P}_{L}^{n}$ and
(2) $K \cong L$.

Scip $=$ set-theoretic complete intersection property
X variety, $Z \subset X$ closed subset.

- a divisor $D_{Z} \subset Z$ is $S C I$ iff $D_{Z}=\operatorname{Supp}\left(D_{X} \cap Z\right)$ for some divisor D_{X}.
- Z irreducible: scip iff every divisor $D_{Z} \subset Z$ is SCl .
- $Z=\cup Z_{i}$ reducible: scip iff $\cup_{i} D_{Z_{i}}$ is $S C I$ for all divisors $\emptyset \neq D_{z_{i}} \subset Z_{i}$
- Z is generically scip iff there is a finite set $\Sigma \subset X$ such that scip holds if
- $D_{Z} \cap \Sigma=\emptyset$ (makes it easier)
- then also $D_{X} \cap \Sigma=\emptyset$ (makes it harder).

Algebraic geometry lemma I

Lemma 1. [Zero sets determine section] Z variety, L line bundle, $s_{i} \in H^{0}\left(Z, L^{n_{i}}\right)$. Equivalent
(1) $s_{1}^{m_{1}}=u \cdot s_{2}^{m_{2}}$ for some $u \in k[Z]^{\times}$,
(2) $\operatorname{Supp}\left(s_{1}=0\right)=\operatorname{Supp}\left(s_{2}=0\right)$,
provided:
(3) zero set is irreducible, and
(1) either Z normal or zero set is disjoint from a certain finite $\Sigma(Z) \subset Z$.

Irreducibility can be guaranteed if
$-\operatorname{dim} Z \geq 2$ (by Bertini),
$-\operatorname{dim} Z \geq 1$ and k is finitely generated (by Hilbert).

Algebraic geometry lemma II

Lemma 2. (Boissière-Gabber-Serman) If X normal, there is a finite $\Sigma^{\text {ncar }} \subset X$ such that every divisor disjoint from $\Sigma^{\text {ncar }}$ is Cartier.

Homework I

HW 1. $\operatorname{dim} X \geq 2$, quasi-proj k-variety. Equivalent:

- Every irreducible curve $C \subset X$ is scip.
$-k$ is locally finite $\left(=\right.$ algebraic over $\left.\mathbb{F}_{p}\right)$.
HW 2. $L_{1}, L_{2} \subset \mathbb{P}^{n}$ linear spaces, meeting at a point.
- Then $L_{1} \cup L_{2}$ is generically scip.
- (line) $\cup($ conic $) \subset \mathbb{P}^{2}$ is not generically scip.

Key observation
$D \subset \mathbb{P}^{n}$ divisor, $C \subset \mathbb{P}^{n}$ geom connected curve.
Assume chark $=0$. Then $D \cup C$ is generically scip iff

- $D=$ hyperplane and $C=$ line.

First special case of Theorem 2

Corollary. Assume char $K=0$. Then $\left|\mathbb{P}_{L}^{n}\right| \sim\left|\mathbb{P}_{K}^{n}\right|$ iff $K \cong L$. Proof. Pick $\Phi:\left|\mathbb{P}_{L}^{n}\right| \sim\left|\mathbb{P}_{K}^{n}\right| . H_{L} \subset \mathbb{P}_{L}^{n}$ hyperplane, $\ell_{L} \subset \mathbb{P}_{L}^{n}$. $\Rightarrow H_{L} \cup \ell_{L}$ is generically scip.
$\Rightarrow \Phi\left(H_{L}\right) \cup \Phi\left(\ell_{L}\right)$ is generically scip.
$\Rightarrow \Phi\left(H_{L}\right) \subset \mathbb{P}_{K}^{n}$ is a hyperplane.
$\Rightarrow \Phi$ (linear space) $\subset \mathbb{P}_{K}^{n}$ is a linear space.
Finish by Veblen-Young.

Key observation, statement

Proposition

X normal, projective, $\rho(X)=1$, chark $=0$.
$Z, W \subset X$ irreducible, $\operatorname{dim}(Z \cap W)=0$.
Assume that $Z \cup W$ is generically scip. Then
(1) $Z \cap W$ is reduced and
(2) either $k[Z \cap W]=k[Z]$ or $k[Z \cap W]=k[W]$.

If Z, W are set-theoretic complete intersections then
(3) $Z \cap W$ is a k-point.

Key observation, proof I

Choose L ample such that

$$
H^{0}(X, L) \rightarrow H^{0}\left(Z \cap W, L_{Z \cap W}\right) \text { is surjective. }
$$

Choose general $s_{Z}, s_{W} \in H^{0}(X, L)$, set

$$
\operatorname{Supp}\left(\left.s_{z}\right|_{z}=0\right)=\cup_{i} A_{i} \text { and } \operatorname{Supp}\left(\left.s_{w}\right|_{w}=0\right)=\cup_{j} B_{j} .
$$

Generically scip $\Rightarrow \exists$ Cartier $D_{i j} \subset X$ such that

$$
\operatorname{Supp}\left(D_{i j} \mid z \cup W\right)=A_{i}+B_{j} \quad(\text { multiplicities }=?)
$$

Linear algebra $\Rightarrow \exists D$ such that

$$
\left.D\right|_{z}=m_{Z}\left(\left.s_{z}\right|_{z}=0\right) \text { and }\left.D\right|_{w}=m_{W}\left(\left.s_{W}\right|_{w}=0\right) .
$$

Since $\rho(X)=1, D=(s=0)$ for $s \in H^{0}\left(X, L^{m}\right)$. By Lem 1

$$
\begin{array}{lll}
\left.s^{r}\right|_{Z}=\left.u_{Z} \cdot s_{Z}^{m}\right|_{Z} & \text { for some } & u_{Z} \in k[Z]^{\times}, \\
\left.s^{r}\right|_{W}=\left.u_{W} \cdot s_{W}^{m}\right|_{W} & \text { for some } & u_{W} \in k[W]^{\times} .
\end{array}
$$

Key observation, proof II

$$
\begin{array}{lll}
\left.s^{r}\right|_{z}=\left.u_{Z} \cdot s_{Z}^{m}\right|_{Z} & \text { for some } & u_{z} \in k[Z]^{\times} \\
\left.s^{r}\right|_{W}=\left.u_{W} \cdot s_{W}^{m}\right|_{W} & \text { for some } & u_{W} \in k[W]^{\times}
\end{array}
$$

hence $\left.\left(s_{Z} / s_{W}\right)^{m}\right|_{Z \cap W}=\left.\left.u_{W}\right|_{Z \cap W} \cdot u_{Z}^{-1}\right|_{Z \cap W}$ is in image of: $k[W]^{\times} \times k[Z]^{\times} \rightarrow k[Z \cap W]^{\times}$.

We can arrange s_{Z} / s_{W} to be an arbitrary element of $k[Z \cap W]^{\times}$, hence

$$
k[Z \cap W]^{\times} / k[W]^{\times} \times k[Z]^{\times} \text {is a torsion group. }
$$

Key observation, proof III

$$
k[Z \cap W]^{\times} / k[W]^{\times} \times k[Z]^{\times} \text {is a torsion group. }
$$

Apply next to $A=k[Z \cap W], L_{1}=k[W], L_{2}=k[Z]$.
HW 3, Algebra lemma. A Artin k-algebra, chark $=0$.
$L_{1}, L_{2} \subset A$ subfields. Equivalent
(1) $A^{\times} / L_{1}^{\times} \cdot L_{2}^{\times}$is torsion,
(2) $A^{\times} / L_{1}^{\times} \cdot L_{2}^{\times}$has finite rank,
(3) either $A=L_{1}$ or $A=L_{2}$.

Note. Key case: A is a field.
I would like to see a simple proof.

Topology determines \mathbb{P}^{n}, proof

Recall Thm: If $\Phi:\left|\mathbb{P}_{K}^{n}\right| \sim\left|Y_{L}\right|$ homeomorphism, then

$$
Y_{L} \cong \mathbb{P}_{L}^{n} \text { and } K \cong L
$$

Assume: $\rho(Y)=1$.
Pick $H \cup \ell \subset \mathbb{P}_{K}^{n}$ generically scip.
$\Rightarrow \Phi(H) \cup \Phi(\ell) \subset Y_{L}$ generically scip,
$\Rightarrow(\Phi(H) \cdot \Phi(\ell))=1$,
$\Rightarrow\left\{\Phi(H): H \in\left|\mathcal{O}_{\mathbb{P}^{n}}(1)\right|\right\}$ is a linear system.
(Needs more argument, mainly if $\rho(Y)>1$.)
\Rightarrow It gives $Y_{L} \cong \mathbb{P}_{L}^{n}$.
We already proved that then $K \cong L$.
HW 4. K perfect, infinite and $\Phi:\left|\mathbb{P}_{K}^{n}\right| \sim\left|\mathbb{P}_{K}^{n}\right|$ homeo.
If Φ identity on K-points, then identity.
$\sim=$ linear equivalence
$\sim_{\mathrm{s}}=$ linear similarity: $m_{1} D_{1} \sim m_{2} D_{2}$ for some $m_{1}, m_{2} \neq 0$. $\sim_{\text {sa }}=$ linear similarity $+D_{1}, D_{2}$ ample and irreducible.

Main steps of the proof of Theorem 1
Step 1. $|X|$ determines $\sim_{\text {sa }}$. Step 2. $\left(|X|, \sim_{\text {sa }}\right)$ determines \sim.
Step 3. (Lieblich-Olsson) $(|X|, \sim)$ determines X.

Toward Step 1: Ampleness criterion

HW 5. X normal, projective, $\operatorname{dim} X \geq 3$.
Then an irreducible divisor H is \mathbb{Q}-Cartier and ample iff (*) For every divisor $D \subset X$ and closed points $p, q \in X \backslash D$, there is a divisor $H(p, q) \subset X$ such that
(1) $H \cap D=H(p, q) \cap D$,
(2) $p \notin H(p, q)$ and $q \in H(p, q)$.

Toward Step 1: Linear similarity

HW 6. X normal, projective, $\operatorname{dim} X \geq 3$, H_{1}, H_{2} irreducible, \mathbb{Q}-Cartier, ample.
Then $H_{1} \sim_{s a} H_{2}$ iff
${ }^{*}$) Let $C_{1}, C_{2} \subset X$ be any 2 disjoint, irred curves.
Then there is a \mathbb{Q}-Cartier, ample H^{\prime} such that $\operatorname{Supp}\left(H^{\prime} \cap C_{i}\right)=\operatorname{Supp}\left(H_{i} \cap C_{i}\right)$ for $i=1,2$.

Toward Step 2: Linking $=$ Liaison

Variant of scip. Fix L ample.
Defn. L-linking is free on $Z \cup W$ if given $H_{Z} \sim_{\text {sa }} L, H_{W} \sim_{\text {sa }} L$, there is $H \sim_{\text {sa }} L$ such that $H \cap(Z \cup W)=\left(H_{Z} \cap Z\right) \cup\left(H_{W} \cap W\right)$.

Toward Step 2: Residue fields of points.

Proposition

$\operatorname{dim} X \geq 4$ and chark $=0$.
For $p, q \in X$ equivalent:
(1) There is a $k(p) \hookrightarrow k(q)$.
(2) There are irreducible subvarieties Z, W such that
(1) $\operatorname{dim} Z=1, \operatorname{dim} W=2$,
(2) $\operatorname{Supp}(Z \cap W)=\{p\}$,
(3) $q \in Z$,
(9) W is SCl , and
(5) L-linking is free on $Z \cup W$.

Toward Step 2: Isomorphism of zero-cycles

Corollary

$\left(|X|, \sim_{\text {sa }}\right)$ determines isomorphism of
O-dimensional reduced subschemes.
HW 7. X normal, chark $=0, Z$ a zero-cycle of degree 0 .
Then Z is rationally equivalent to a zero-cycle

$$
\sum\left[p_{i}-q_{i}\right] \text { where } k\left(p_{i}\right) \cong k\left(q_{i}\right) \forall i .
$$

Some questions I ran into

Conjecture

C_{k} smooth, projective curve, genus $\geq 1, k$ not locally finite. L very ample. For $s \in H^{0}\left(C_{k}, L\right)$ write $(s=0)=:\left\{p_{i}(s): i \in I\right\}$ and $(s=0)_{\bar{k}}=:\left\{\bar{p}_{i}(s): i \in \bar{l}\right\}$.
Then, for 'most' sections,
$-\left[p_{i}(s)\right] \in \operatorname{Pic}\left(C_{k}\right)$ are linearly independent (weak form).
$-\left[\bar{p}_{i}(s)\right] \in \operatorname{Pic}\left(C_{\bar{k}}\right)$ are linearly independent (strong form).

Conjecture

C smooth, projective curve over $\overline{\mathbb{Q}}$.
Then for 'most' ample line bundles L,
every section of L^{m} has at least $g(C)$ zeros for every $m \geq 1$.
Notes.

- not sure what 'most' means.
- true for nodal rational curves.

