Lecture on Mochizuki’s anabeloids

Motivation: Assume k = C, X is a hyperbolic curve over C (smooth
of genus g with r deleted points such that 2g — 2 +r > 0.

Consider the universal covering space X — X. Itis known that X = HI,
the upper half plane.

Thus there is an embedding

Iy = m°"(X) — Aut (H) = PSLy(R) =: T".

Two subgroups Hy, Hy C T' are commensurable if [H; : Hy N Hy] < oo

for i = 1,2. Given a subgroup H C I, its commensurator is

Cr(H):={y €T : v 'Hy is commensurable with H}

Fact: If X = H/IIx is not isogenous to a Shimura curve, then [Cr(Ilx) :

Here two curves X,Y are called isogenous if there exist finite étale
morphisms X < 7 — Y.
In this case, consider C' := H/Cr(Ilx) (it may only exist as an orbifold).
Since [Cr(Ilx) : IIx] < oo, we have a finite étale morphism X — C.

Now assume that Y is a hyperbolic curve isogenous to X. That is,
we have finite étale maps X < Z — Y, corresponding to subgroups
IIxy DIl CIly in T
Lemma. We have Iy C Cr(Ily).

Indeed, we may assume Z — Y is Galois, hence II; C Ily is normal.
Now if vy € ITy, we have Iy Ny 'TIxy D II; Ny 'TIzy = IIz, hence it
is of finite index in ITx. Applying the same argument with v~ shows
the lemma.

By the lemma, we have a commutative diagram of finite étale mor-

phisms
Z — Y

Lo

X — C.

Thus if we denote by Loc(X) the category of hyperbolic (orbi)curves
isogenous to X, with morphisms finite étale morphisms (not necessarily
over X), then C'is a terminal object in this category. It is called a core
of X. Its existence depends crucially on the assumption that X is not
isogenous to a Shimura curve.



Mochizuki used the existence of a core (+ Riemann-Hurwitz and the
finite generation of Il¢) to prove that for X as above there are only
finitely many Y of given g and r isogenous to X.

Moreover, he proved that for generic X (corresponding to a dense
open subset in the moduli space), in fact X is its own core. Thus every
finite étale Z — X, and even every Y isogenous to X corresponds to

a canonically defined subgroup in Iy, once an embedding IIx C I" =

PSLy(R) is fixed.

Now assume k is a field of characteristic 0, X a hyperbolic k-curve.
Define Loc(X) as above with morphisms k-morphisms, and call a ter-
minal object, if exists, a k-core.
Proposition.

(1) If k = k, base change to another algebraically closed field K D k
induces an equivalence of categories Locg(X) = Lock (Xg).

(2) If k is not algebraically closed, then there is a k-core in Loc(X)
if and only if there is a k-core in Locg(X7). [Galois descent.]

Recall now Grothendieck’s theory of the fundamental group from SGAT.

Let X be a connected scheme equipped with a geometric base point
Z: Spec () = X.

For a finite étale cover Y — X we consider Fibz := Y X x Spec () as
a set.

Y — Fibz(Y) is a set-valued exact functor on the category of finite
étale covers of X (preserves finite limits and colimits).

Grothendieck’s definition: (X, z) := Aut Fib;.

By definition an automorphism of Fib; induces an automorphism
of the set Fibz(Y) for each finite étale cover Y — X in this way we
obtain a natural left action of 71 (X, Z) on the set Fibz(Y).

Theorem.

(1) The group m (X, z) is profinite, and its action on Fibz(Y) is
continuous for every finite étale cover ¥ — X.

(2) The functor Fib; induces an equivalence of the category of finite
étale covers of S with the category of finite continuous left (X, Z)-
sets.

Here the functor Fibz is pro-representable: there exists a (filtered)
inverse system P = (P,, ¢ap) of finite étale covers and a functorial



isomorphism
lim Hom(P,,Y) = Fibz(Y).
—
Here Aut (P,|X) is finite for all o, and m (X, Z) = lim Aut (P,|X)°P;
(—
this explains its profiniteness.
In fact, Grothendieck showed that one may choose as a pro-representing

system the system of all Galois covers P, — X, rigidified by choosing
Do € Fibz(P,) for each «.

Any two fibre functors on the category of finite étale X-schemes are
(non-canonically) isomorphic. One way to prove this is to use pro-
representability of the fibre functor.

Now to Mochizuki’s interpretation.

Definition. A connected anabeloid X is a category equivalent to some
B(G) := {finite sets with a continuous G-action}

for a profinite group G. Example: the category of finite étale covers of
a connected scheme.

A morphism ¢ : X — Y of connected anabeloids is an exact functor
" Y — X. We say that X and )Y are isomorphic if there is a
morphism X — ) inducing an equivalence of categories.

An anabeloid is a finite product of connected anabeloids. The con-
nected components can be recovered from the category structure of the

anabeloid.

Notice that for the trivial group 1 the anabeloid B(1) is just the cate-
gory of finite sets. A base point of X is a morphism B(1) — X. The

isomorphism class of its automorphism group is the fundamental group
[Ty of X. Of course, for ¥ = B(G) we have [Iy = G.

Proposition (Mochizuki). Assume X = B(G) and Y = B(H) are
connected anabeloids. We have an equivalence of categories

Mor(X,Y) = Hom (G, H).
Here on the left is the category of morphisms X — ), on the right the

category whose objects are continuous homomorphisms G — H, and
morphisms ¢ — ¢ are elements h € H such that 1(g) = h™'¢(g)h for
all g € G.

Passing to isomorphism classes of objects we obtain a bijection of
sets

Mor(X,Y) = Hom® (G, H).
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where on the left we consider isomorphism classes of morphisms X — )
and on the right outer homomorphisms.

We recover the usual Hom-set Hom(G, H) by choosing base points
of X, YV and considering base point preserving morphisms.

These equivalences are induced by the obvious map sending a ho-
momorphism G — H to the induced pullback functor B(H) — B(G).

Checking the equivalences is a nontrivial exercise.

Slimness: A profinite group is slim if every open subgroup has trivial
centralizer. A morphism G — H of profinite groups is relatively slim if
the image of every open subgroup of GG has trivial centralizer in H. By
passing to B(G) we transfer these notions to (connected) anabeloids.

Example: If K is a p-adic field or a number field, then Galg is
slim (consequence of local class field theory, resp. a theorem of F.
K. Schmidt). The anabeloid of finite étale covers of a hyperbolic curve
over an algebraically closed field of char. 0, or over a p-adic field or
number field is slim.

The importance of slimness is that if X — ) is a morphism of con-
nected slim anabeloids whose induced morphism on 7;’s has open im-
age, then Aut (X — )) is trivial.

Given an anabeloid X and an object S € X, consider the full subcat-
egory Xg of objects over S. A morphism Y — X is finite étale if it
factors as a composite of an isomorphism ) = X5 and the natural map
Xs — X for some S (the latter is given by base change).

Now assume X is slim, and consider the category Ety of finite étale
covers of X. This is a priori a 2-category, but by the consequence of
slimness recalled above, we may pass to the associated 1-category with-
out losing information (diagrams commute up to unique isomorphism).
Fact: the functor X — Ety given by S +— (Xs — X) is an equivalence

of categories.

Henceforth we assume our anabeloids are slim, and use the above equiv-

alence.

Now that we have defined finite étale covers, we can define isogenies for
anabeloids, and also the categories Loc(X') and Loc(X) for an anabeloid
X. In the first, objects are finite étale J — X', with morphisms finite
étale morphisms not necessarily over X'. In the second, objects are
anabeloids isogenous to X', and morphisms similar.



A core for X is a terminal object in this category, if it exists.

Note: If X comes from a hyperbolic k-curve having a k-core, it will
not give rise to a core for X, only to a relative notion with respect
to the morphism of anabeloids X — B(Galy) (the latter is slim over
arithmetic fields). We need an absolute notion:

Definition. A quasi-core for X is a relatively slim morphism of (slim)
anabeloids X — Q such that the natural forgetful functor Locg(X) —
Loc(&X) is an equivalence. (In Locg(&) morphisms are over Q but
not necessarily over X.) The quasi-core is faithful if the associated
homomorphism Iy — Ilg is injective.

Fundamental example. Assume K is a number field or a p-adic
field, and X a hyperbolic (orbi)curve over K. Assume that X¢ is
not isogenous to a Shimura curve. Then X has a K-core X — C.
The étale fundamental group Il of C% is isomorphic to the abstract
profinite group

= (a1,b1,...,a4,bg,c1,...,crllar,b1] - [ag, bglcy -+ ¢, = 1)

where g is the genus of C' and r the number of points at infinity. This
group is slim, in particular it has trivial center.
The étale fundamental group Il of C' sits in an exact sequence

1 = Ilg = Ile — Galg — 1.

Choosing an isomorphism A : Iz = I, the inner action of I on I

induces a homomorphism
®: e — Aut (II).

The corresponding outer homomorphism is independent of \.
Denote the anabeloids associated with X, C' by X, C, respectively.
The composite map

X = C — Q := B(Aut (II))

is a quasi-core for X (this follows from the defining property of the
K-core).

Moreover, it is faithful because ® is injective. This follows from a
deep result of Hoshi and Mochizuki (proven earlier for affine curves
over number fields by Matsumoto and generalizing the classical result
of Belyi for P\ {0,1,00}): the outer representation Galgx — Out(II)
associated to the hyperbolic K-curve C' s faithful.



Thus in the commutative exact diagram

1 > Ha > I E— GalK — 1
1 y 11 s Aut(Il) —— Out(Il) — 1

the middle arrow is injective.

Application. Since I is topologically finitely generated, it is known
that Aut (II) is countably topologically generated. Thus there exists a

descending sequence
Aut(@) =Hy > H D HyD -
of open normal subgroups with trivial intersection. The inverse system
Q=0Qp« Q1+ Qo< -

of the anabeloids Q,, := B(H,,) plays the role of a universal cover of Q
and thus the analogue of the upper half plane H in the complex case.

Fix a coherent system (X)) of connected components of X xg Q,.
The fact that Q is a quasi-core implies that every automorphism of A,
induces a well-defined automorphism of Q,, over @. Whence an outer

homomorphism
lim Aut (X,|X) — lim Aut (Q,|Q) =: Ilg
— —

which is injective as Q is faithful. Thus it gives rise to a subgroup
Hy/o C g (well-defined up to conjugacy). The construction is func-
torial in X', thus each element of Loc(X') and even Loc(X) corresponds
to a subgroup of Ilg. This gives a canonical construction for the fun-
damental groups of curves isogenous to X.

The dependence on the choice of the system (H,,) can be eliminated

by some group-theoretic considerations.



