
NOTES ON NONCOMMUTATIVE ALGEBRA
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Most of the material in these notes comes from my book with Philippe Gille,
Central Simple Algebras and Galois Cohomology, 2nd ed., Cambridge University Press,
2017. However, sometimes I take a different approach from that of the book.
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1. THE WEDDERBURN–ARTIN THEOREM

Let R be a not necessarily commutative ring with unit. The ring R is simple if it
has no two-sided ideal other than 0 and R.

Example 1.1. Assume D is a ring such that every element x ∈ D has a two-sided
inverse (i.e. y ∈ D such that xy = yx = 1). In this case D is called a division algebra
or a skew field; it is obviously a simple ring. Note that the centre Z(D) of elements
commuting with all elements of D is a nontrivial subring and also a field (indeed,
inverting the relation xy = yx gives y−1x−1 = x−1y−1 for all y ∈ D, x ∈ Z(D)).
Hence D is indeed an algebra over Z(D).

We now give concrete examples of division algebras.

Example 1.2. Let k be a field. For any two elements a, b ∈ k× define the (generalized)
quaternion algebra (a, b) as the 4-dimensional k-algebra with basis 1, i, j, ij, multipli-
cation being determined by

i2 = a, j2 = b, ij = −ji.

One calls the set {1, i, j, ij} a quaternion basis of (a, b).
1
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Given an element q = x+ yi+ zj +wij of the quaternion algebra (a, b), we define
its conjugate by

q = x− yi− zj − wij.
The map (a, b) → (a, b) given by q 7→ q is an anti-automorphism of the k-algebra
(a, b), i.e. it is a k-vector space automorphism of (a, b) satisfying (q1q2) = q2q1.
Moreover, we have q = q; an anti-automorphism with this property is called an
involution in ring theory.

We define the norm of q = x+ yi+ zj + wij by N(q) = qq. A calculation yields

(1) N(q) = x2 − ay2 − bz2 + abw2 ∈ k,

so N : (a, b)→ k is a nondegenerate quadratic form. The computation

N(q1q2) = q1q2q2q1 = q1N(q2)q1 = N(q1)N(q2)

shows that the norm is a multiplicative function. If N(q) 6= 0, then qN(q)−1 is a two-
sided inverse for q. Thus an element q of the quaternion algebra (a, b) is invertible
if and only if it has nonzero norm. Hence (a, b) is a division algebra if and only if
the norm N : (a, b)→ k does not vanish outside 0.

The classical example is that of Hamilton quaternions where k = R and a = b = −1.
In this case N(q) = x2 + y2 + z2 + w2 for all q, so we indeed have a division algebra
over R.

The next example allows us to construct more examples of simple rings.

Example 1.3. IfD is a division algebra over k, the ringMn(D) of n×nmatrices over
D is simple for all n ≥ 1. Checking this is an exercise in matrix theory. Indeed, we
have to show that the two-sided ideal 〈M〉 inMn(D) generated by a nonzero matrix
M is Mn(D) itself. Consider the matrices Eij having 1 as the j-th element of the i-th
row and zero elsewhere. Since each element of Mn(D) is a D-linear combination
of the Eij , it suffices to show that Eij ∈ 〈M〉 for all i, j. But in view of the relation
EkiEijEjl = Ekl we see that it is enough to show Eij ∈ 〈M〉 for some i, j. Now
choose i, j so that the j-th element in the i-th row of M is a nonzero element m.
Then m−1EiiMEjj = Eij , and we are done.

Notice also that, since in a matrix ring the centre can only contain scalar multiples
of the identity matrix, the centre of Mn(D) equals that of D.

The main theorem of this section provides a converse to the above example. Call
a ring Artinian if its left ideals satisfy the descending chain condition.

Theorem 1.4. (Wedderburn–Artin) Let R be a simple Artinian ring. Then there exist an
integer n ≥ 1 and a division algebra D so that R is isomorphic to the matrix ring Mn(D).
Moreover, the division algebra D is uniquely determined up to isomorphism.



NOTES ON NONCOMMUTATIVE ALGEBRA 3

Before embarking on the proof we need a couple of lemmas. First recall some
basic facts from module theory. First, a nonzero R-module M is simple if it has no
R-submodules other than 0 and M .

Example 1.5. Let us describe the simple left modules over Mn(D), where D is a
division algebra. For all 1 ≤ r ≤ n, consider the left ideal Ir ⊂ Mn(D) formed by
matrices M = [mij] with mij = 0 for j 6= r. A simple argument with the matrices
Eij of Example 1.3 shows that the Ir are minimal left ideals with respect to inclusion,
i.e. simple Mn(D)-modules. Moreover, we have Mn(D) =

⊕
Ir and the Ir are all

isomorphic as Mn(D)-modules. Finally, if M is a simple Mn(D)-module, it must
be a quotient of Mn(D), but then the induced map

⊕
Ir → M must induce an

isomorphism with some Ir. Thus all simple left Mn(D)-modules are isomorphic to
(say) I1.

An R-module M is semisimple if it can be written as a direct sum of simple sub-
modules. By the above exampleMn(D) as a module over itself is semisimple; more-
over, in this case the simple components are all isomorphic and the direct sum is
finite.

Lemma 1.6. If M is semisimple, then so is every submodule and quotient of M . More
precisely, ifM ∼= ⊕i∈IMi withMi simple, then every submodule and quotient is isomorphic
to a direct sum of some of the Mi.

Proof. If N ⊂ M is a submodule, we find a subset J ⊂ I such that N ′ := ⊕i∈JMi

satisfies N ∩ N ′ = 0 and J is maximal with this property (for I finite the existence
of J is obvious, otherwise we use Zorn’s lemma). Then M = N ⊕ N ′. Indeed, if
j /∈ J , then (N ′ ⊕Mj) ∩N 6= 0 by maximality of J and thus there is n ∈ N , n′ ∈ N ′

and a nonzero mj ∈ Mj with n = n′ + mj . But then mj ∈ (N + N ′) ∩Mj , so since
Mj is simple, Mj ⊂ N + N ′. As this holds for all j, we get M = N + N ′ and the
sum is direct by construction. Now consider the quotient map M � M/N ′. For
N ′′ := ⊕i∈I\JMi we have N ′′ ∩ N ′ = 0 by definition, so N ′′ maps isomorphically
onto M/N ′ ∼= N . This shows that N ∼= ⊕i∈I\JMi and M/N ∼= N ′ ∼= ⊕i∈JMi, as
required. �

Next, an endomorphism of a leftR-moduleM over a ringR is anR-homomorphism
M →M ; these form a ring EndR(M) where addition is given by the rule (φ+ψ)(x) =

φ(x) + ψ(x) and multiplication by composition of maps. In the case when R is a di-
vision algebra, M is a left vector space over R, so in case it is of finite dimension n,
the usual argument from linear algebra shows that choosing a basis of M induces
an isomorphism EndR(M) ∼= Mn(R).
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Finally, notice that when R = M and φ ∈ EndR(R), then for every r ∈ R we have
φ(r) = φ(r · 1) = rφ(1), so φ is given by right multiplication with φ(1). This shows
that there is an isomorphism EndR(R) ∼= R◦, where R◦ is the opposite ring of R, i.e.
the ring which has the same additive structure as R but in which multiplication is
given by (x, y) 7→ yx.

Lemma 1.7. (Schur) LetM be a simple module over a ringR. Then EndR(M) is a division
algebra.

Proof. The kernel of a nonzero endomorphism M →M is an R-submodule different
from M , hence it is 0. Similarly, its image must be the whole of M . Thus it is an
isomorphism, which means it has an inverse in EndR(M).

Schur’s lemma has the following complement.

Lemma 1.8. For an arbitrary R-module M and an integer n > 0 there is an isomorphism
EndR(Mn) ∼= Mn(D), where D = EndR(M).

Proof. To distinguish components ofMn, writeM = M1⊕M2⊕· · ·⊕Mn withMi = M

for all i. If φ ∈ EndR(Mn) and 1 ≤ i, j ≤ n, consider the composite map Mi →
⊕iMi

φ→ ⊕iMi → Mj where the first map is the natural inclusion and the last one
is the projection. We obtain a map φij : Mi → Mj which may be identified with an
element of D = EndR(M). The n× n matrix of the φij defines an element of Mn(D);
conversely, such a matrix defines an element in EndR(Mn). The reader will check
that this bijection is compatible with the ring operations on both sides.

Proof of Theorem 1.4: As R is Artinian, a descending chain of left ideals must
stabilize. So let L be a minimal left ideal; it is then a simple R-module. We first
show thatR ∼= Ln for some n > 0. Consider all possibleR-module homomorphisms
R→ Lm for some m > 0 and let ρ be one such homomorphism with minimal kernel
(such a ρ exists as R is Artinian). We show ker(ρ) = 0, which will imply the claim
because then R identifies with a submodule of the semisimple module Lm and we
may apply Lemma 1.6. Suppose ker(ρ) 6= 0 and pick a nonzero r0 ∈ ker(ρ). Now
look at Ann(L) := {r ∈ R : rL = 0}. This is a two-sided ideal in R that does not
contain 1, so it is 0 because R is simple. In particular, for r0 we find l0 ∈ L such that
r0l0 6= 0. But then ρ̃ : R → Lm ⊕ L given by r 7→ (ρ(r), rl0) has smaller kernel, a
contradiction.

By Schur’s lemma, D = EndR(L) is a division algebra, and by Lemma 1.8 we
have EndR(R) ∼= EndR(Ln) ∼= Mn(D). But we know EndR(R) ∼= R◦, so finally
R ∼= Mn(D◦).



NOTES ON NONCOMMUTATIVE ALGEBRA 5

For the uniqueness statement, assume that D and D′ are division algebras for
which R ∼= Mn(D) ∼= Mm(D′) with suitable integers n,m. By Example 1.5, the
minimal left ideal L then satisfies Dn ∼= L ∼= D′

m, whence a chain of isomorphisms
D ∼= EndR(Dn) ∼= EndR(L) ∼= EndR(D′

m
) ∼= D′.

Remark 1.9. More generally, a ring R is called semisimple if it is semisimple as an
R-module, i.e. it can be written as a direct sum of minimal left ideals (possibly with
multiplicity). If moreover R is Artinian, the direct sum must be finite and then the
above proof shows that R is isomorphic to a finite direct product of matrix algebras
over division algebras.

Now suppose k is a field. A central simple k-algebra is a finite dimensional simple
k-algebra whose centre is k. By finite dimensionality such a k-algebra is necessar-
ily an Artinian ring. Theorem 1.4 for central simple algebras is the case originally
proven by Wedderburn, so we’ll frequently refer to the statement as Wedderburn’s
theorem.

Corollary 1.10. If k is algebraically closed, every central simple k-algebra is isomorphic to
Mn(k) for some n ≥ 1.

Proof. By the theorem it is enough to see that there is no finite dimensional division
algebra D ⊃ k other than k. For this, let d be an element of D \ k. As D is finite
dimensional over k, the powers {1, d, d2, . . . } are linearly dependent, so there is a
polynomial f ∈ k[x] with f(d) = 0. AsD is a division algebra, it has no zero divisors
and we may assume f irreducible. This means there is a k-algebra homomorphism
k[x]/(f) → D which realises the field k(d) as a k-subalgebra of D. But k being
algebraically closed, we have k[x]/(f) ∼= k, so k(d) = k.

2. SPLITTING FIELDS AND THE BRAUER GROUP

The last corollary enables one to give an alternative characterization of central
simple algebras.

Theorem 2.1. Let k be a field and A a finite dimensional k-algebra. Then A is a central
simple algebra if and only if there exist an integer n > 0 and a finite field extension K|k so
that A⊗k K is isomorphic to the matrix ring Mn(K).

We first prove:

Lemma 2.2. Let A be a finite dimensional k-algebra, and K|k an algebraic field extension.
The algebra A is central simple over k if and only if A⊗k K is central simple over K.
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Proof. If I is a nontrivial (two-sided) ideal of A, then I ⊗k K is a nontrivial ideal of
A ⊗k K (e.g. for dimension reasons); similarly, if A is not central, then neither is
A⊗k K. Thus if A⊗k K is central simple, then so is A.

To prove the converse, we first reduce to the case of a finite extension K|k. For
this, we writeK|k as a union of its finite subextensionsK ′|K and observe that every
ideal I ⊂ A ⊗k K is the union of the ideals I ∩ K ′ ⊂ A ⊗k K ′; moreover, we have
Z(A ⊗k K) ⊂ Z(A ⊗k K ′) for any K ′. Next, using Wedderburn’s theorem we may
assume that A = D is a division algebra. Under this assumption, if w1, . . . , wn is a
k-basis of K, then 1 ⊗ w1, . . . , 1 ⊗ wn yields a D-basis of D ⊗k K as a left D-vector
space. Given an element x =

∑
αi(1 ⊗ wi) in the centre of D ⊗k K, for all d ∈ D

the relation x = (d−1 ⊗ 1)x(d ⊗ 1) =
∑

(d−1αid)(1 ⊗ wi) implies d−1αid = αi by
the linear independence of the 1 ⊗ wi. As D is central over k, the αi must lie in k,
so D ⊗k K is central over K. Now if J is a nonzero ideal in D ⊗k K generated by
elements z1, . . . , zr, we may assume the zi to be D-linearly independent and extend
them to aD-basis ofD⊗kK by adjoining some of the 1⊗wi, say 1⊗wr+1, . . . , 1⊗wn.
Thus for 1 ≤ i ≤ r we may write

1⊗ wi =
n∑

j=r+1

αij(1⊗ wj) + yi,

where yi is some D-linear combination of the zi and hence an element of J . Here
y1, . . . , yr areD-linearly independent (because so are 1⊗w1, . . . , 1⊗wr), so they form
a D-basis of J . As J is a two-sided ideal, for all d ∈ D we must have d−1yid ∈ J for
1 ≤ i ≤ r, so there exist βil ∈ D with d−1yid =

∑
βilyl. We may rewrite this relation

as

(1⊗ wi)−
n∑

j=r+1

(d−1αijd)(1⊗ wj) =
r∑
l=1

βil(1⊗ wl)−
r∑
l=1

βil

n∑
j=r+1

αlj(1⊗ wj),

from which we get as above, using the independence of the 1 ⊗ wj , that βii = 1,
βil = 0 for l 6= i and d−1αijd = αij , i.e. αij ∈ k as D is central. This means that
J can be generated by elements of K (viewed as a k-subalgebra of D ⊗k K via the
embedding w 7→ 1⊗ w). As K is a field, we must have J ∩K = K, so J = D ⊗k K.
This shows that D ⊗k K is simple.

Proof of Theorem 2.1: Sufficiency follows from the above lemma and Example 1.3.
For necessity, note first that denoting by k an algebraic closure of k, the lemma
together with Corollary 1.10 imply that A ⊗k k ∼= Mn(k) for some n. Now observe
that for every finite field extension K of k contained in k, the inclusion K ⊂ k

induces an injective map A ⊗k K → A ⊗k k and A ⊗k k arises as the union of the
A ⊗k K in this way. Hence for a sufficiently large finite extension K|k contained
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in k the algebra A ⊗k K contains the elements e1, . . . , en2 ∈ A ⊗k k corresponding
to the standard basis elements of Mn(k) via the isomorphism A ⊗k k ∼= Mn(k), and
moreover the elements aij occurring in the relations eiej =

∑
aijlel defining the

product operation are also contained in K. Mapping the ei to the standard basis
elements of Mn(K) then induces a K-isomorphism A⊗k K ∼= Mn(K).

Corollary 2.3. If A is a central simple k-algebra, its dimension over k is a square.

Definition 2.4. A field extension K|k over which A ⊗k K is isomorphic to Mn(K)

for suitable n is called a splitting field for A. We shall also employ the terminology
A splits over K or K splits A.

The integer
√

dim kA is called the degree of A.

Example 2.5. Every quaternion algebra over a field k is a central simple algebra of
degree 2. To see this, we first show that the matrix algebra M2(k) is isomorphic to a
quaternion algebra over k. Indeed, for every b ∈ k× the assignment

i 7→ I :=

[
1 0

0 −1

]
, j 7→ J :=

[
0 b

1 0

]
defines an isomorphism (1, b) ∼= M2(k), because the matrices

(2) Id =

[
1 0

0 1

]
, I =

[
1 0

0 −1

]
, J =

[
0 b

1 0

]
and IJ =

[
0 b

−1 0

]
generate M2(k) as a k-vector space, and they satisfy the relations

I2 = Id, J2 = b Id, IJ = −JI.

Next, notice that for any a, b, u ∈ k× we have an isomorphism (a, b) ∼= (u2a, u2b)

induced by the substitutions i 7→ ui, j 7→ uj. So if a ∈ k×2, then (a, b) ∼= (1, a−1b) ∼=
M2(k). But if a /∈ k×2, we at least have a ∈ k(

√
a)×2, so (a, b)⊗k k(

√
a) ∼= M2(k(

√
a))

and (a, b) is a central simple algebra by Theorem 2.1.
Moreover, Wedderburn’s theorem implies that (a, b) is either split or a division

algebra.

Given Theorem 2.1, we can easily prove:

Lemma 2.6. If A and B are central simple k-algebras split by K, then so is A⊗k B.

Proof. In view of the isomorphism (A ⊗k K) ⊗K (B ⊗k K) ∼= (A ⊗k B) ⊗k K and
Theorem 2.1, it is enough to verify the isomorphism of matrix algebras Mn(K) ⊗K
Mm(K) ∼= Mnm(K). Perhaps the simplest argument for this is to note that given
K-endomorphisms φ ∈ EndK(Kn) and ψ ∈ EndK(Km), the pair (φ, ψ) induces an
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element φ⊗ ψ of EndK(Kn ⊗K Km). The resulting map EndK(Kn)⊗ EndK(Km)→
EndK(Kn ⊗K Km) is obviously injective, and it is surjective e.g. by dimension rea-
sons.

Recall that the opposite algebra A◦ of a k-algebra A is the k-algebra with the same
underlying k-vector space as A, but in which the product of two elements x, y is
given by the element yx with respect to the product in A. If A is central simple over
k, then so is A◦. By the lemma, their tensor product is again central simple, but
more is true:

Proposition 2.7. There is a canonical isomorphism A⊗k A◦
∼→ Endk(A) of k-algebras.

Consequently, A ⊗k A◦ is isomorphic to the matrix algebra Mn2(k), where n is the degree
of A.

Proof. Define a k-linear mapA⊗kA◦ → Endk(A) by sending
∑

ai⊗bi to the k-linear

map x 7→
∑

aixbi. This map is manifestly nonzero, and hence injective, because
A⊗k A◦ is simple by Lemma 2.6. Thus it is an isomorphism for dimension reasons.

Consider now the following construction.

Construction 2.8. Two central simple k-algebras A and A′ are called Brauer equiv-
alent or similar if A ⊗k Mm(k) ∼= A′ ⊗k Mm′(k) for some m,m′ > 0. This defines an
equivalence relation on the family of central simple k-algebras split by a fixed finite
extension K|k. We denote the set of equivalence classes by Br(K|k) and the union
of the sets Br(K|k) for all finite Galois extensions by Br(k).

Remarks 2.9. Brauer equivalence enjoys the following basic properties.

(1) One sees from the definition that each Brauer equivalence class contains
(up to isomorphism) a unique division algebra. Thus we can also say that
Br(K|k) classifies division algebras split by K.

(2) It follows from Wedderburn’s theorem and the previous remark that ifA and
B are two Brauer equivalent k-algebras of the same dimension, then A ∼= B.

The set Br(K|k) (and hence also Br(k)) is equipped with a product operation in-
duced by the tensor product of central simple k-algebras; indeed, the tensor product
preserves Brauer equivalence.

Proposition 2.10. The sets Br(K|k) and Br(k) equipped with the above product operation
are abelian groups.
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Proof. Basic properties of the tensor product imply that the product operation is
commutative and associative. If A represents a class in Br(K|k), the class of the
opposite algebra A◦ yields an inverse in view of Proposition 2.7.

Definition 2.11. We call Br(K|k) equipped with the above product operation the
Brauer group of k relative to K and Br(k) the Brauer group of k.

To study the Brauer group we need the following crucial theorem.

Theorem 2.12. Every central division algebra D of degree n over an infinite field k is split
by a separable extension K|k of degree n. Moreover, such a K may be found among the
k-subalgebras of D.

Remark 2.13. We shall prove in Example 4.13 below that over a finite field every
central simple algebra is split. Without using this result, we can still make a s-
traightforward remark: since a finite field is perfect, every central simple algebra
over it is split by a finite separable extension.

Theorem 2.12 is an immediate consequence of Propositions 2.14 and 2.15 below
that are interesting in their own right.

Proposition 2.14. If a central simple k-algebra A of degree n contains a k-subalgebra K
which is a degree n field extension of k, then A splits over K.

Proof. Let A◦ be the opposite algebra to A. By Proposition 2.7 we have an isomor-
phism A⊗k A◦ ∼= Endk(A). If K is as above, the inclusion K ⊂ A induces an inclu-
sionK ⊂ A◦ by commutativity ofK, whence also an injection ι : A⊗kK → Endk(A).
Viewing A as a K-vector space with K acting via right multiplication, the construc-
tion of the map A ⊗k A◦ → Endk(A) in the proof of Proposition 2.7 shows that the
image of ι lies in EndK(A). By definition, we have EndK(A) ∼= Mn(K); in partic-
ular, it has dimension n2 over K. On the other hand, we have dimK(A ⊗k K) =

dim k(A) = n2, so the map ι : A⊗k K → EndK(A) is an isomorphism.

Proposition 2.15. If D is as in the theorem, then D contains an element a ∈ D such that
the field extension k(a)|k is separable of degree n.

Proof. By Corollary 1.10 there is an isomorphism φ : D⊗k k ∼= Md(k). Identify Md(k)

with points of the affine space Ad2

k
via the standard basis, and consider the subset U

of matrices with separable characteristic polynomial. These form a Zariski open set
because if we identify the set of degree d monic polynomials in k[x] with points of
Ad
k

via xd+ad−1x
d−1+· · ·+a0 7→ (ad−1, . . . , a0) the separable polynomials correspond

to the Zariski open set given by the nonvanishing of the discriminant; the set U is
the preimage of this open set by the morphism Ad2

k
→ Ad

k
sending a matrix to
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its characteristic polynomial, modulo the above identifications. Now identify the
elements of D ⊗k k with the points of Ad2

k
in such a way that the elements of D

correspond to the k-points of the affine space Ad2

k . As k is infinite, the open subset
φ−1(U) ⊂ Ad2

k
contains a k-rational point of Ad2 (this fact holds for every nonempty

Zariski open subset and is promptly verified by reducing to the case d = 1). This
point in turn corresponds to an element a ∈ D. By construction, over k it yields a
matrix M = φ(a⊗ 1) whose characteristic polynomial P has distinct roots, hence P
is also the minimal polynomial of M . This minimal polynomial is the same as that
of the k-linear extension LM of the left multiplication map La : D → D, x 7→ ax

to Md(k) via φ, as LM is given via left multiplication by the block diagonal matrix
diag(M, . . . ,M). But the minimal polynomial does not change by base extension
(see e.g. S. Lang, Algebra, Chapter XIV, Corollary 2.2), so the k-linear map La also
has the separable polynomial P as its minimal polynomial; in particular, P has
coefficients in k. Finally, the minimal polynomial of the map La is the same as the
minimal polynomial of a ∈ D over k, which is irreducible asD is a division algebra.
So the homomorphism k[x] → D sending x to d induces the required embedding
k(d) ↪→ D.

Corollary 2.16. (Noether, Köthe) A central simple k-algebra has a splitting field that is
finite and separable over k.

Proof. Combine Theorem 2.12 (and Remark 2.13) with Wedderburn’s theorem.

Corollary 2.17. A finite dimensional k-algebra A is a central simple algebra if and only
if there exist an integer n > 0 and a finite Galois field extension K|k so that A ⊗k K is
isomorphic to the matrix ring Mn(K).

Proof. The ‘if’ part is contained in Theorem 2.1. The ‘only if’ part follows from the
previous corollary together with the well-known fact from Galois theory according
to which every finite separable field extension embeds in a finite Galois extension.

Remarks 2.18.

(1) It is important to bear in mind that ifA is a central simple k-algebra of degree
n which does not split over k but splits over a finite Galois extension K|k
with group G, then the isomorphism A ⊗k K ∼= Mn(K) is not G-equivariant
if we equip Mn(K) with the usual action of G coming from its action on
K. Indeed, were it so, we would get an isomorphism A ∼= Mn(k) by taking
G-invariants.
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(2) It is not always possible to realize a Galois splitting field as a k-subalgebra in
a central simple algebra, as shown by a famous counterexample by Amitsur.
Central simple algebras containing a Galois splitting field are called crossed
products in the literature.

3. GALOIS DESCENT

Corollary 2.17 makes it possible to classify central simple algebras using methods
of Galois theory. Here we present such a method, known as Galois descent.

We shall work in a more general context, that of vector spaces V equipped with a
tensor Φ of type (p, q). By definition, Φ is an element of the tensor product V ⊗p ⊗k
(V ∗)⊗q, where p, q ≥ 0 are integers and V ∗ is the dual space Homk(V, k). Note the
natural isomorphism

V ⊗p ⊗k (V ∗)⊗q ∼= Homk(V
⊗q, V ⊗p)

coming from the general formula Homk(V, k)⊗k W ∼= Homk(V,W ).

Examples 3.1. Some of the most important special cases are:

• The trivial case Φ = 0 (with any p, q). This is just V with no additional
structure.
• p = 1, q = 1. In this case Φ is given by a k-linear endomorphism of V .
• p = 0, q = 2. Then Φ is a sum of tensor products of k-linear functions, i.e. a
k-bilinear form V ⊗k V → k.
• p = 1, q = 2. This case corresponds to a k-bilinear map V ⊗k V → V .

Note that the theory of associative algebras is contained in the last example, for
the multiplication in such an algebra A is given by a k-bilinear map A ⊗k A → A

satisfying the associativity condition.

So consider pairs (V,Φ) of k-vector spaces equipped with a tensor of fixed type
(p, q) as above. A k-isomorphism between two such objects (V,Φ) and (W,Ψ) is
given by a k-isomorphism f : V

∼→W of k-vector spaces such that f⊗q ⊗ (f ∗−1)⊗q :

V ⊗p ⊗k (V ∗)⊗q → W⊗p ⊗k (W ∗)⊗q maps Φ to Ψ. Here f ∗ : W ∗ ∼→ V ∗ is the k-
isomorphism induced by f .

Now fix a finite Galois extensionK|k with Galois groupG = Gal(K|k). Denote by
VK theK-vector space V ⊗kK and by ΦK the tensor induced on VK by Φ. In this way
we associate with (V,Φ) a K-object (VK ,ΦK). We say that (V,Φ) and (W,Ψ) become
isomorphic over K if there exists a K-isomorphism between (VK ,ΦK) and (WK ,ΨK).
In this situation, (W,Ψ) is also called a (K|k)-twisted form of (V,Φ) or a twisted form
for short.
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Now Galois theory enables one to classify k-isomorphism classes of twisted form-
s as follows. Given a k-automorphism σ : K → K, tensoring by V gives a k-
automorphism VK → VK which we again denote by σ. Each K-linear map f :

VK → WK induces a map σ(f) : VK → WK defined by σ(f) = σ ◦ f ◦ σ−1. If f is a
K-isomorphism from (VK ,ΦK) to (WK ,ΨK), then so is σ(f). The map f → σ(f) p-
reserves composition of automorphisms, hence we get a left action of G = Gal(K|k)

on the group AutK(Φ) of K-automorphisms of (VK ,ΦK). Moreover, given two k-
objects (V,Φ) and (W,Ψ) as well as a K-isomorphism g : (VK ,ΦK)

∼→ (WK ,ΨK),
one gets a map G → AutK(Φ) associating aσ = g−1 ◦ σ(g) to σ ∈ G. The map aσ
satisfies the fundamental relation

(3) aστ = aσ · σ(aτ ) for all σ, τ ∈ G.

Indeed, we compute

aστ = g−1 ◦ σ(τ(g)) = g−1 ◦ σ(g) ◦ σ(g−1) ◦ σ(τ(g)) = aσ · σ(aτ ).

Next, let h : (VK ,ΦK)
∼→ (WK ,ΨK) be another K-isomorphism, defining bσ :=

h−1 ◦ σ(h) for σ ∈ G. Then aσ and bσ are related by

(4) aσ = c−1bσσ(c),

where c is the K-automorphism h−1 ◦ g. We abstract this in a general definition:

Definition 3.2. Let G be a group and A another (not necessarily commutative)
group on which G acts on the left, i.e. there is a map G × A → A sending a pair
(σ, a) ∈ G×A to σ(a) ∈ A so that the equalities σ(ab) = σ(a)σ(b) and στ(a) = σ(τ(a))

hold for all σ, τ ∈ G and a, b ∈ A. Then a 1-cocycle of G with values in A is a map
σ 7→ aσ from G to A satisfying the relation (3) above. Two 1-cocycles aσ and bσ are
called equivalent or cohomologous if there exists c ∈ A such that the relation (4) holds.

One defines the first cohomology set H1(G,A) of G with values in A as the quotient
of the set of 1-cocycles by the equivalence relation (4). It is a pointed set, i.e. a
set equipped with a distinguished element coming from the trivial cocycle σ 7→ 1,
where 1 is the identity element of A. We call this element the base point.

In our concrete situation, we see that the class [aσ] in H1(G,AutK(Φ)) of the 1-
cocycle aσ associated with the K-isomorphism g : (VK ,ΦK)

∼→ (WK ,ΨK) depends
only on (W,Ψ) but not on the map g. This enables us to state the main theorem of
this section.

Theorem 3.3. For a k-object (V,Φ) consider the pointed set TFK(V,Φ) of twisted (K|k)-
forms of (V,Φ), the base point being given by (V,Φ). Then the map (W,Ψ)→ [aσ] defined
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above yields a base point preserving bijection

TFK(V,Φ)↔ H1(G,AutK(Φ)).

Here is a crucial special case.

Example 3.4. (Hilbert’s Theorem 90) Consider the case when V has dimension n

over k and Φ is the trivial tensor. Then AutK(Φ) is just the group GLn(K) of invert-
ible n× n matrices. On the other hand, two n-dimensional vector k-spaces that are
isomorphic over K are isomorphic already over k, so we get:

(5) H1(G,GLn(K)) = {1}.

This statement is due to Speiser. The case n = 1 is usually called Hilbert’s Theorem
90 in the literature, though Hilbert only considered the case when K|k is a cyclic
extension of degree n.

To prove Theorem 3.3, we construct an inverse to the map (W,Ψ) 7→ [aσ]. This is
based on the following general construction.

Construction 3.5. Let A be a group equipped with a left action by another group
G. Suppose further that X is a set on which both G and A act in a compatible way,
i.e. we have σ(a(x)) = (σ(a))(σ(x)) for all x ∈ X , a ∈ A and σ ∈ G. Assume finally
given a 1-cocycle σ 7→ aσ of G with values in A. Then we define the twisted action of
G on X by the cocycle aσ via the rule

(σ, x) 7→ aσ(σ(x)).

This is indeed a G-action, for the cocycle relation yields

aστ (στ(x)) = aσσ(aτ )(στ(x)) = aσσ(aττ(x)).

If X is equipped with some algebraic structure (e.g. it is a group or a vector space),
and G and A act on it by automorphisms, then the twisted action is also by auto-
morphisms. The notation aX will mean X equipped with the twisted G-action by
the cocycle aσ.

Remark 3.6. Readers should be warned that the above construction can only be
carried out on the level of cocycles and not on that of cohomology classes: equiv-
alent cocycles give rise to different twisted actions in general. For instance, take
G = Gal(K|k), A = X = GLn(K), acting on itself by inner automorphisms. Then
twisting the usual G-action on GLn(K) by the trivial cocycle σ 7→ 1 does not change
anything, whereas if σ 7→ aσ is a 1-cocycle with aσ a noncentral element for some
σ, then a−1

σ σ(x)aσ 6= σ(x) for a noncentral x, so the twisted action is different. But a
1-cocycle G→ GLn(K) is equivalent to the trivial cocycle by Example 3.4.
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We now prove the special case considered in Example 3.4. The idea is to show
that for a k-vector space V if we equip VK with a twisted G-action and take G-
invariants for the twisted action, we obtain a twisted form of V (which must be
then k-isomorphic to V ) The statement to be checked follows from:

Lemma 3.7 (Speiser). Let K|k be a finite Galois extension with group G, and W a K-
vector space equipped with a semi-linear G-action, i.e. a G-action satisfying

σ(λw) = σ(λ)σ(w) for all σ ∈ G, w ∈ W and λ ∈ K.

Then the natural map

λ : WG ⊗k K → W

is an isomorphism, where the superscript G denotes invariants under G.

Lemma 3.8 (Dedekind). The elements ofG are linearly independent in theK-vector space
of functions K → K.

Proof. Let σ1, . . . , σn be the elements of G and assume there is a nontrivial relation∑
i

biσi = 0 with bi ∈ K. Here we may assume the relation is of minimal length

and b1, b2 6= 0. Moreover, we may pick a nonzero x ∈ K such that σ1(x) 6= σ2(x).
For every y ∈ K we have

∑
i

biσi(xy) =
∑
i

biσi(x)σi(y) = 0. Thus
∑
i

biσi(x)σi = 0;

on the other hand
∑
i

biσ1(x)σi = 0 by multiplying the original relation by σ1(x).

Since σ1(x) 6= σ2(x) and b2 6= 0, it follows that
∑
i

bi(σi(x)− σ1(x))σi = 0 is a shorter

nontrivial relation, contradiction.

Proof of Speiser’s Lemma. For surjectivity we show that the elements of WG generate
W as a K-vector space. This will follow if we show that every K-linear function
φ : W → K whose restriction to WG is 0 is in fact 0. With notation as above for fixed
w ∈ W the element wx :=

∑
i

σi(x)σi(w) lies in WG for every x ∈ K, so φ(wx) = 0.

But φ(wx) =
∑
i

σi(x)φ(σi(w)) for every x, so φ(σi(w)) = 0 for all i by Dedekind’s

lemma. In particular, since one of the σi is the identity map, we get φ(w) = 0 as
required.

For injectivity, assume w1 ⊗ b1 + · · · + wr ⊗ br ∈ WG ⊗k K is a nonzero element
such that b1w1 + · · · brwr = 0 in W . We may assume that this is a relation of minimal
length; in particular, thewi are k-linearly independent inWG. Furthermore, we may
assume b1 = 1 after multiplying by b−1

1 . Since the wi are k-linearly independent, one
of the bi, say b2, is not in K, so σ(b2) 6= b2 for some σ ∈ G. But then w1 + σ(b2) +
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· · ·σ(br)wr = 0 since wi ∈ WG and (σ(b2)−b2)w2 + · · ·+(σ(br)−br)wr = 0 is a shorter
nontrivial relation, a contradiction. �

Proof of Theorem 3.3: As indicated above, we take a 1-cocycle aσ representing
some cohomology class in H1(G,AutK(Φ)) and apply Construction 3.5 with G =

Gal(K|k), A = AutK(Φ) and X = VK . As before, denote the invariant subspace by
(aVK)G. Next observe that σ(ΦK) = ΦK for all σ ∈ G (as ΦK comes from the k-tensor
Φ) and also aσ(ΦK) = ΦK for all σ ∈ G (as aσ ∈ AutK(Φ)). Hence aσσ(ΦK) = ΦK

for all σ ∈ G, which means that ΦK comes from a k-tensor on (aVK)G. Denoting this
tensor by aΦ, we have defined a k-object ((aVK)G, aΦ). Speiser’s lemma yields an
isomorphism (aVK)G ⊗k K ∼= VK , and by construction this isomorphism identifies
ΨK with ΦK . Thus ((aVK)G, aΦ) is indeed a twisted form of (V,Φ). If aσ = c−1bσσ(c)

with some 1-cocycle σ 7→ bσ and c ∈ AutK(Φ), we get from the definitions (bVK)G =

c((aVK)G), which is a k-vector space isomorphic to (aVK)G. To sum up, we have a
well-defined map H1(G,AutK(Φ)) → TFK(V,Φ). The kind reader will check that
this map is the inverse of the map (W,Ψ) 7→ [aσ] of the theorem.

Now we come to the classification of central simple algebras. First we recall a
well-known fact about matrix rings:

Lemma 3.9. Over a field K all automorphisms of the matrix ring Mn(K) are inner, i.e.
given by M 7→ CMC−1 for some invertible matrix C.

Proof. Consider the minimal left ideal I1 of Mn(K) described in Example 1.5, and
take an automorphism λ ∈ Aut(Mn(K)). Give I1 a new left Mn(K)-module struc-
ture by (M,x) 7→ λ(M)x. We denote this Mn(K)-module by Iλ1 . Since Iλ1 is fi-
nite dimensional over K, it is a quotient of some finitely generated free Mn(K)-
module Mn(K)m ∼= Imn1 . As I1 is a simple Mn(K)-module, the composite maps
I1 → Imn1 → Iλ1 must be trivial or injective for each component. Thus there is an
injection I1 → Iλ1 for some component which must then be an Mn(K)-module iso-
morphism c : I1

∼→ Iλ1 for dimension reasons. In particular, for every M ∈ Mn(K)

and x ∈ I1 we have c(M(x)) = M(c(x)) = λ(M)(c(x)). Now consider c as a K-
vector space automorphism of I1

∼= Kn corresponding to an invertible matrix C.
We get CM = λ(M)C, so λ(M) = CMC−1 as claimed.

Corollary 3.10. The automorphism group of Mn(K) is the projective general linear group
PGLn(K).

Proof. There is a natural homomorphism GLn(K) → Aut(Mn(K)) mapping C ∈
GLn(K) to the automorphism M 7→ CMC−1. It is surjective by the lemma, and its
kernel consists of the centre of GLn(K), i.e. the subgroup of scalar matrices.
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Now take a finite Galois extension K|k as before, and let CSAK(n) denote the set
of k-isomorphism classes of central simple k-algebras of degree n split by K. We
regard it as a pointed set, the base point being the class of the matrix algebra Mn(k).

Theorem 3.11. There is a base point preserving bijection

CSAK(n)↔ H1(G,PGLn(K)).

Proof. By Corollary 2.17 the central simple k-algebras of degree n are precisely the
twisted forms of the matrix algebra Mn(k). To see this, note that as explained in
Example 3.1, an n2-dimensional k-algebra can be considered as an n2-dimensional
k-vector space equipped with a tensor of type (1,2) satisfying the associativity con-
dition. But on a twisted form of Mn(k) the tensor defining the multiplication au-
tomatically satisfies the associativity condition. Hence Theorem 3.3 applies and
yields a bijection of pointed sets CSAK(n) ↔ H1(G,Aut(Mn(K)). The theorem
now follows by Corollary 3.10.

Our next goal is to classify all central simple k-algebras split by K by means
of a single cohomology set. It should carry a product operation, since by virtue
of Lemma 2.6 the tensor product induces a natural commutative and associative
product operation

(6) CSAK(n)× CSAK(m)→ CSAK(mn).

Via the bijection of Theorem 3.11 we obtain a corresponding product operation

(7) H1(G,PGLn(K))×H1(G,PGLm(K))→ H1(G,PGLnm(K))

on cohomology sets. To define this product directly, note that the map

EndK(Kn)⊗ EndK(Km)→ EndK(Kn ⊗Km)

given by (φ, ψ) 7→ φ⊗ ψ restricts to a product operation

GLn(K)×GLm(K)→ GLnm(K)

on invertible matrices which preserves scalar matrices, whence a product

PGLn(K)× PGLm(K)→ PGLnm(K).

This induces a natural product on cocycles, whence the required product operation
(7).

Next observe that for all n,m > 0 there are natural injective maps GLn(K) →
GLnm(K) mapping a matrix M ∈ GLn(K) to the block matrix given by m copies
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of M placed along the diagonal and zeros elsewhere. As usual, these pass to the
quotient modulo scalar matrices and finally induce maps

λmn : H1(G,PGLm(K))→ H1(G,PGLmn(K))

on cohomology. Via the bijection of Theorem 3.11, the class of a central simple
algebra A in H1(G,PGLm(K)) is mapped to the class of A⊗k Mn(k) by λmn.

Lemma 3.12. The maps λmn are injective for all m,n > 0.

Proof. AssumeA andA′ are central simple k-algebras withA⊗kMn(k) ∼= A′⊗kMn(k).
By Wedderburn’s theorem they are matrix algebras over division algebras D and
D′, respectively, hence so are A ⊗k Mn(k) and A′ ⊗k Mn(k). But then D ∼= D′ by
the unicity statement in Wedderburn’s theorem, so finally A ∼= A′ by dimension
reasons.

Now define the setH1(G,PGL∞) as the union for all n of the setsH1(G,PGLn(K))

via the inclusion maps λmn, equipped with the product operation coming from (7)
(which is manifestly compatible with the maps λmn). Also, observe that for a Galois
extension L|k containing K, the natural surjection Gal(L|k) → Gal(K|k) induces
injective maps

H1(Gal(K|k),PGLn(K))→ H1(Gal(L|k),PGLn(K))

for all n, and hence also injections

ιLK : H1(Gal(K|k),PGL∞)→ H1(Gal(L|k),PGL∞).

Fixing a separable closure ks of k, we define H1(k,PGL∞) as the union over all
Galois extensions K|k contained in ks of the groups H1(Gal(K|k),PGL∞) via the
inclusion maps ιLK . The arguments above then yield:

Proposition 3.13. The sets H1(G,PGL∞) and H1(k,PGL∞) equipped with the product
operation coming from (7) are abelian groups, and there are natural group isomorphisms

Br(K|k) ∼= H1(G,PGL∞) and Br(k) ∼= H1(k,PGL∞).

Remark 3.14. The sets H1(G,PGL∞) are not cohomology sets of G in the sense
defined so far, but may be viewed as cohomology sets of G with values in the di-
rect limit of the groups PGLn(K) via the maps λmn. Still, this coefficient group is
fairly complicated. In the next section we shall identify Br(K|k) with the second
cohomology group of G with values in the multiplicative group K×, a group that is
much easier to handle.
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4. THE COHOMOLOGICAL BRAUER GROUP

In this section we first establish a formal proposition which, combined with the
descent method, is a main tool in computations.

Proposition 4.1. Let G be a group and

1→ A→ B → C → 1

an exact sequence of groups equipped with a G-action, the maps being G-homomorphisms.
Then there is an exact sequence of pointed sets

1→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C).

By definition, an exact sequence of pointed sets is a sequence in which the kernel
of each map equals the image of the previous one, the kernel being the subset of
elements mapping to the base point. Note that, in contrast to the case of groups, a
map with trivial kernel is not necessarily injective.

Proof. The only nonobvious points are the definition of the map δ : CG → H1(G,A)

and the exactness of the sequence at the third and fourth terms. To define δ, take
an element c ∈ CG and lift it to an element b ∈ B via the surjection B → C. For all
σ ∈ G the element b−1σ(b) maps to 1 in C because c = σ(c) by assumption, so it lies
inA. Immediate calculations then show that the map σ 7→ b−1σ(b) is a 1-cocycle and
that modifying b by an element of A yields an equivalent cocycle, whence a well-
defined map δ as required, sending elements coming from BG to 1. The relation
δ(c) = 1 means by definition that b−1σ(b) = a−1σ(a) for some a ∈ A, so c lifts to the
G-invariant element ba−1 inB. This shows the exactness of the sequence at the third
term, and the composition CG → H1(G,A) → H1(G,B) is trivial by construction.
Finally, that a cocycle σ 7→ aσ with values in A becomes trivial in H1(G,B) means
that aσ = b−1σ(b) for some b ∈ B, and modifying σ 7→ aσ by an A-coboundary we
may choose b so that its image c in C is fixed by G; moreover, the cohomology class
of σ 7→ aσ depends only on c.

As a first application, we derive a basic theorem on central simple algebras.

Theorem 4.2. (Skolem-Noether) All automorphisms of a central simple algebra are in-
ner, i.e. given by conjugation by an invertible element.

Proof. Let A be a central simple k-algebra of degree n and K a finite Galois splitting
field of A. Denoting by A× the subgroup of invertible elements of A and using
Lemma 3.9 we get an exact sequence

1→ K× → (A⊗k K)× → AutK(A⊗k K)→ 1
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of groups equipped with a G = Gal(K|k)-action, where the second map maps an
invertible element to the inner automorphism it defines. Proposition 4.1 then yields
an exact sequence

1→ k× → A× → Autk(A)→ H1(G,K×),

where the last term is trivial by Hilbert’s Theorem 90. The theorem follows.

We now come back to the situation of Proposition 4.1. In the case when A is
contained in the centre of B (so in particular A is abelian), the exact sequence of the
proposition can be extended on the right by the second cohomology group of A.
Recall the formulas: A 2-cocycle of G with values in A (written multiplicatively) is a
map (σ, τ) 7→ aσ,τ from G×G to A satisfying the relation

(8) σ(aτ,υ)a
−1
στ,υaσ,τυa

−1
σ,τ = 1

for all σ, τ, υ ∈ G. The 2-cocyle aσ,τa′−1
σ,τ is a 2-coboundary if it is of the form (σ, τ) 7→

aσσ(aτ )a
−1
στ with some 1-cochain σ 7→ aσ from G to A. The abelian group H2(G,A)

is the quotient of the group of 2-cocycles is an abelian group by the subgroup of
2-coboundaries.

Proposition 4.3. Let G be a group, and

1→ A→ B → C → 1

an exact sequence of groups equipped with aG-action, such thatB andC are not necessarily
commutative, butA is commutative and contained in the centre ofB. Then there is an exact
sequence of pointed sets

1→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)→ H2(G,A).

Proof. The sequence was constructed until the penultimate term in Proposition 4.1.
To define the map ∂ : H1(G,C)→ H2(G,A), take a 1-cocycle σ 7→ cσ representing a
class inH1(G,C), and lift each cσ to an element bσ ∈ B. The cocycle relation for σ 7→
cσ implies that for all σ, τ ∈ G the element bσσ(bτ )b

−1
στ maps to 1 in C, hence comes

from an element aσ,τ ∈ A. The function (σ, τ) 7→ aσ,τ depends only on the class of
σ 7→ cσ inH1(G,C). Indeed, if we replace it by an equivalent cocycle σ 7→ c−1cσσ(c),
lifting c to b ∈ B replaces aστ by (b−1bσσ(b))(σ(b−1)σ(bτ )στ(b))(στ(b)−1b−1

σ,τb) = b−1aσ,τb,
which equals aσ,τ because A is central in B. A straightforward calculation, which
we leave to the readers, shows that (σ, τ) 7→ aστ satisfies the 2-cocycle relation (8).
Finally, replacing bσ by another lifting aσbσ replaces aσ,τ by aσbσσ(aτbτ )b

−1
στ a

−1
στ =

aσσ(aτ )a
−1
στ aσ,τ , which has the same class in H2(G,A) (notice that we have used a-

gain that A is central in B). This defines the map ∂, and at the same time shows that
it is trivial on the image of H1(G,B).
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Finally, in the above notation, a class in H1(G,C) represented by σ 7→ cσ is in
the kernel of ∂ if the 2-cocycle (σ, τ) 7→ bσσ(bτ )b

−1
στ equals a 2-coboundary (σ, τ) 7→

aσσ(aτ )a
−1
στ . Replacing bσ by the equivalent lifting a−1

σ bσ we may assume bσσ(bτ )b
−1
στ =

1, which means that σ 7→ bσ is a 1-cocycle representing a cohomology class in
H1(G,B).

Remark 4.4. The proposition does not hold in the above form when A is not con-
tained in the centre of B. Instead, one has to work with twists of A.

We now apply Proposition 4.3 to the Brauer group. Let K|k be a finite Galois
extension of fields with groupG, andm a positive integer. Applying the proposition
to the exact sequence of G-groups

1→ K× → GLm(K)→ PGLm(K)→ 1

we get an exact sequence of pointed sets

(9) H1(G,GLm(K)) −→ H1(G,PGLm(K))
δm−→ H2(G,K×).

Now recall the maps λmn : H1(G,PGLm(K)) → H1(G,PGLmn(K)) introduced
before Lemma 3.12.

Lemma 4.5. The diagram

H1(G,PGLm(K))
δm−−−→ H2(G,K×)

λmn

y yid

H1(G,PGLmn(K))
δmn−−−→ H2(G,K×)

commutes for all m,n > 0.

Proof. A 1-cocycle σ 7→ cσ representing a class in H1(G,PGLm(K)) is mapped by δm
to a 2-cocycle aσ,τ = bσσ(bτ )b

−1
στ by the construction of the previous proof, where bσ is

given by some invertible matrix Mσ and aσ,τ is the identity matrix Im multiplied by
some scalar µσ,τ ∈ K×. Performing the same construction for the image of σ 7→ cσ

by λmn means replacing Mσ by the block matrix with n copies of Mσ along the
diagonal, which implies that the scalar matrix we obtain by taking the associated
2-cocycle is µσ,τImn.

By the lemma, taking the union of the pointed sets H1(G,PGLm(K)) with respect
to the maps λmn yields a map

δ∞ : H1(G,PGL∞)→ H2(G,K×).
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Equip the set H1(G,PGL∞) with the group structure defined in Proposition 3.13. In
Theorem 4.7 we shall prove that δ∞ is an isomorphism. Here we establish a weaker
statement which is already sufficient for a number of interesting applications.

Proposition 4.6. The map δ∞ is an injective group homomorphism.

Proof. To show that δ∞ preserves multiplication, take classes cm∈ H1(G,PGLm(K))

and cn ∈ H1(G,PGLn(K)). With notations as in the previous proof, the classes
δm(cm) and δn(cn) are represented by 2-cocycles of the form (σ, τ) → µσ,τIm and
(σ, τ) → νσ,τIn, respectively. From the fact that the product cmn of λnm(cn) and
λmn(cm) in H1(G,PGLmn(K)) is induced by tensor product of linear maps we infer
that δmn(cmn) is represented by a 2-cocycle mapping (σ, τ) to the tensor product of
the linear maps given by multiplication by µσ,τ and νσ,τ , respectively. But this tensor
product is none but multiplication by µσ,τνσ,τ , which was to be seen.

Once we know that δ∞ is a group homomorphism, for injectivity it is enough to
show that the map δm in exact sequence (9) has trivial kernel for all m. This follows
from the exact sequence in view of the triviality of H1(G,GLm(K)) (Example 3.4).

We can finally prove:

Theorem 4.7. The map δ∞ induces an isomorphism

H1(G,PGL∞)
∼→ H2(G,K×)

of abelian groups. Consequently, there is an isomorphism

Br(K|k) ∼= H2(G,K×).

Before proving the theorem, let us recall a consequence of Galois theory. Let
K|k be a Galois extension as in the lemma, and consider two copies of K, the first
one equipped with trivial G-action, and the second one with the action of G as the
Galois group. Then the tensor product K ⊗k K (endowed with the G-action given
by σ(a⊗ b) ∼= a⊗ σ(b)) decomposes as a direct sum of copies of K:

(10) K ⊗k K ∼=
⊕
σ∈G

Keσ,

where G acts on the right-hand side by permuting the basis elements eσ. In other
words, the tensor product K ⊗k K is isomorphic as a G-module to K ⊗Z Z[G].

To see this, write K = k[x]/(f) with f some monic irreducible polynomial f ∈
k[x], and choose a root α of f in K. As K|k is Galois, f splits in K[x] as a product
of linear terms of the form (x − σ(α)) for σ ∈ G. Thus using a special case of the
Chinese Remainder Theorem for rings (which is easy to prove directly) we get

K ⊗k K ∼= K[x]/(f) ∼= K[x]/(
∏
σ∈G

(x− σ(α)) ∼=
⊕
σ∈G

K[x]/(x− σ(α)),
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whence a decomposition of the required form.

Proof. The second statement follows from the first in view of Proposition 3.13, and
for the first statement it remains to prove surjectivity of the map δ∞. We show
much more, namely that the map δn is surjective, where n is the order of G. For
this, consider K ⊗k K as a K-vector space. Multiplication by an invertible element
ofK⊗kK is aK-linear automorphismK⊗kK → K⊗kK. In this way we get a group
homomorphism (K ⊗k K)× → GLn(K) which we may insert into a commutative
diagram with exact rows

1 −−−→ K× −−−→ (K ⊗k K)× −−−→ (K ⊗k K)×/K× −−−→ 1

id

y y y
1 −−−→ K× −−−→ GLn(K) −−−→ PGLn(K) −−−→ 1

where all maps are compatible with the action of G if we make G act on K ⊗k K
via the right factor and on the other terms by the standard action. Hence by taking
cohomology we get a commutative diagram

H1(G, (K ⊗k K)×/K×)
α−−−→ H2(G,K×) −−−→ H2(G, (K ⊗k K)×)y id

y
H1(G,PGLn(K))

δn−−−→ H2(G,K×)

where the upper row is exact. Now the discussion before the proof implies that
(K ⊗k K)× is isomorphic to the G-module K× ⊗Z Z[G], because the invertible ele-
ments in

⊕
Kei are exactly those with coefficients in K×. Now since G is finite,

there is a non-canonical isomorphism ofG-modulesK×⊗ZZ[G] ∼= HomZ(Z[G], K×).
In other words, theG-module (K⊗kK)× is co-induced, hence the groupH2(G, (K⊗k
K)×) is trivial. This yields the surjectivity of the map α in the diagram, and hence
also that of δn by commutativity of the diagram.

Corollary 4.8. Let K|k be a Galois extension of degree n. Then each element of the relative
Brauer group Br(K|k) has order dividing n.

Consequently, the full Brauer group Br(k) is a torsion abelian group.

Proof. This follows from the theorem together with the fact that H2(G,A) for any G-
moduleA is annihilated by the order ofG (consequence of a restriction-corestriction
argument).

In the case of a finite cyclic Galois extension the theorem gives a means to com-
pute the relative Brauer group. Recall that for a finite Galois extension K|k with
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group G the norm map NK|k : K → k sends a ∈ K to
∏
σ∈G

σ(a); it restricts to a

homomorphism on multiplicative groups.

Corollary 4.9. For a finite cyclic Galois extension K|k there is an isomorphism

Br(K|k) ∼= k×/NK|k(K
×).

This follows from the theorem together with the following general lemma in
group cohomology.

Lemma 4.10. Let G be a finite cyclic group of order n, generated by an element σ. For a
G-module A, define maps N : A→ A and σ − 1 : A→ A by

N : a 7→
n−1∑
i=0

σia and σ − 1 : a 7→ σa− a

and put NA := ker(N). With these notations we have

(11) H0(G,A) = AG, H2i+1(G,A) = NA/(σ − 1)A and H2i+2(G,A) = AG/NA

for i > 0.

Proof. Consider the maps N and σ − 1 for A = Z[G]. One checks easily that in this
case ker(N) = Im (σ−1) and Im (N) = ker(σ−1). Hence we obtain a free resolution

· · · N→ Z[G]
σ−1−→ Z[G]

N→ Z[G]
σ−1−→ Z[G]→ Z→ 0,

the last map being induced by σ 7→ 1. Computing the groups Hj(G,A) using this
free resolution yields the formulas of the lemma.

Remark 4.11. IfK|k is a finite Galois extension with cyclic Galois groupG as above,
the lemma applied with A = K× also shows H1(G,K×) = NK

×/(σ − 1)K×. The
first group is trivial by Hilbert’s Theorem 90 and we obtain the original form of the
theorem proven by Hilbert: In a cyclic field extension K|k with Gal(K|k) =< σ > each
element of norm 1 is of the form σ(c)c−1 with some c ∈ K.

Finally, we can use Corollary 4.9 to give the first concrete examples of fields with
nontrivial Brauer group.

Example 4.12. For the field R of real numbers we have

Br(R) ∼= R×/NC|R(C×) ∼= Z/2Z.

Indeed, the norm map NC|R : C× → R× sends a + bi to a2 + b2, whence NC|R(C×)

equals the positive real numbers. Consequently, there is only one nontrivial Brauer
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class which must be that of the Hamilton quaternions. This proves a classical theo-
rem of Frobenius: The only finite-dimensional division algebras over R are R, C and the
Hamilton quaternions.

Example 4.13. The Brauer group of a finite field is trivial. To see this, we have to
show Br(Fqr |Fq) = 0 for all q and r, where Fqr is the finite field with qr elements. By
Corollary 4.9 this amounts to showing surjectivity of the norm map N := NFqr |Fq .

Since the extension Fqr |Fq is known to be cyclic with generator σ : a 7→ aq, the

norm map N equals a 7→ a
qr−1
q−1 . On the other hand, the multiplicative group F×qr is

also cyclic, so if ω is a generator, thenN(ω) ∈ F×q . It follows thatN(ω), N(ω2), . . . , N(ωq−1)

give the elements of F×q .
We have proven another theorem of Wedderburn: Over a finite field every finite-

dimensional division algebra is commutative.

5. INDEX AND PERIOD

In this section we use the cohomological theory of the Brauer group to derive
basic results of Brauer concerning two important invariants for central simple alge-
bras. By Example 4.13 we can assume throughout that the base field k is infinite,
otherwise the discussion to follow is vacuous.

The first of the announced invariants is the following.

Definition 5.1. Let A be a central simple algebra over a field k. The index ind k(A) of
A over k is defined to be the degree of D over k, where D is the division algebra for
whichA ∼= Mn(D) according to Wedderburn’s theorem. We shall drop the subscript
k from the notation when clear from the context.

Remarks 5.2.

(1) For a division algebra index and degree are one and the same thing.
(2) The index of a central simple k-algebra A depends only on the class of A

in the Brauer group Br(k). Indeed, this class depends only on the division
algebra D associated with A by Wedderburn’s theorem, and the index is by
definition an invariant of D.

(3) We have ind (A) = 1 if and only if A is split.

Proposition 5.3. Let A be a central simple k-algebra. The index ind (A) is the greatest
common divisor of the degrees of finite separable field extensions K|k that split A.

For the proof we need the following refinement of Theorem 4.7.

Proposition 5.4. LetK|k be a separable field extension of degree n. Let K̃ be the Galois clo-
sure ofK, and denote the Galois groups Gal(K̃|k) and Gal(K̃|K) byG andH , respectively.
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The boundary map δn : H1(G,PGLn(K̃))→ Br(K̃|k) induces a bijection

ker(H1(G,PGLn(K̃))→ H1(H,PGLn(K̃)))
∼→ Br(K|k).

The proof uses a lemma from Galois theory.

Lemma 5.5. Making G act on the tensor product K ⊗k K̃ via the second factor, we have
an isomorphism of G–modules

(K ⊗k K̃)× ∼= MG
H (K̃×).

Proof. According to the theorem of the primitive element, we may write K = k(α)

for some α ∈ K with minimal polynomial f ∈ k[x], so that K̃ is the splitting field
of f . By Galois theory, if 1 = σ1, . . . , σn is a system of left coset representatives for
H in G, the roots of f in K are exactly the σi(α) for 1 ≤ i ≤ n. So we get, just like
before the proof of Theorem 4.7, a chain of isomorphisms

K ⊗k K̃ ∼= K̃[x]/
n∏
i=1

(x− σi(α)) ∼= HomH(Z[G], K̃) = MG
H (K̃).

The lemma follows by restricting to invertible elements.

Proof of Proposition 5.4: We have already shown in the proof of Theorem 4.7 the
injectivity of δn (even of δ∞), so it suffices to see surjectivity. With the notations of
the lemma above, consider the short exact sequence of G-modules

1→ K̃× → (K ⊗k K̃)× → (K ⊗k K̃)×/K̃× → 1,

where G acts on K ⊗k K̃ via the second factor. Part of the associated long exact
sequence reads

(12) H1(G, (K ⊗k K̃)×/K̃×)→ H2(G, K̃×)→ H2(G, (K ⊗k K̃)×).

Using the previous lemma, Shapiro’s lemma and Theorem 4.7, we get a chain of
isomorphisms

H2(G, (K ⊗k K̃)×) ∼= H2(G,MG
H (K̃)) ∼= H2(H, K̃) ∼= Br(K̃|K).

We also have H2(G, K̃×) ∼= Br(K̃|k), so all in all we get from exact sequence (12) a
surjection

α̃ : H1(G, (K ⊗k K̃)×/K̃×)→ Br(K|k)

On the other hand, the choice of a k-basis ofK provides an embeddingK ↪→Mn(k),
whence a G-equivariant map K ⊗k K̃ → Mn(K̃), and finally a map (K ⊗k K̃)× →
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GLn(K̃). Arguing as in the proof of Theorem 4.7, we get a commutative diagram:

H1(G, (K ⊗k K̃)×/K×)
α̃−−−→ H2(G, K̃×)y yid

H1(G,PGLn(K̃))
δn−−−→ H2(G, K̃×)

Therefore by the surjectivity of α̃ each element of Br(K|k) ⊂ H2(G, K̃×) comes
from some element in H1(G,PGLn(K̃)). By the injectivity of δn and its obvious
compatibility with restriction maps, this element restricts to 1 in H1(H,PGLn(K̃)),
as required.

Proof of Proposition 5.3. In view of Theorem 2.12 it is enough to show that if a finite
separable extension K|k of degree n splits A, then ind (A) divides n. For such a
K, the class of A in Br(K|k) comes from a class in H1(G,PGLn(K̃)) according to
Proposition 5.4. By Theorem 3.11 this class is also represented by some central
simple k-algebra B of degree n, hence of index dividing n. But ind (A) = ind (B) by
Remark 5.2 (2). �

Combining with Theorem 2.12 we get:

Corollary 5.6. The index ind (A) is the smallest among the degrees of finite separable field
extensions K|k that split A.

Here is another useful corollary.

Corollary 5.7. Let K|k be a finite separable field extension.

(1) We have the divisibility relations

indK(A⊗k K) | ind k(A) | [K : k] indK(A⊗k K).

(2) If ind k(A) is prime to [K : k], then ind k(A) = indK(A⊗k K). In particular, if A
is a division algebra, then so is A⊗k K.

Proof. It is enough to prove the first statement. The divisibility relation indK(A ⊗k
K) | ind k(A) is immediate from the proposition. For the second one, use The-
orem 2.12 to find a finite separable field extension K ′|K splitting A ⊗k K with
[K ′ : K] = indK(A ⊗k K). Then K ′ is also a splitting field of A, so Proposition
5.3 shows ind k(A) | [K ′ : k] = indK(A⊗k K)[K : k].

Now we come to the second main invariant.

Definition 5.8. The period (or exponent) of a central simple k-algebra A is the order
of its class in Br(k). We denote it by per (A).
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The basic relations between the period and the index are the following.

Proposition 5.9. (Brauer) Let A be a central simple k-algebra.

(1) The period per (A) divides the index ind (A).
(2) The period per (A) and the index ind (A) have the same prime factors.

For the proof of the second statement we shall need the following lemma.

Lemma 5.10. Let p be a prime number not dividing per (A). Then A is split by a finite
separable extension K|k of degree prime to p.

Proof. Let L|k be a finite Galois extension that splits A, let P be a p-Sylow subroup
of Gal(L|k) and K its fixed field. Then Br(L|K) ∼= H2(P,L×) is a p-primary tor-
sion group by Corollary 4.8, so the assumption implies that the image of [A] by the
restriction map Br(L|k)→ Br(L|K) is trivial. This means that A is split by K.

Proof of Proposition 5.9: According to Theorem 2.12, the algebraA is split by a sep-
arable extension K|k of degree ind (A) over A. If K̃ is a Galois closure of K, Propo-
sition 5.4 implies that the class [A] of A in Br(K̃|k) is annihilated by the restriction
map Br(K̃|k) → Br(K̃|K). Composing with the corestriction Br(K̃|k) → Br(K̃|K)

and using that Cor ◦ Res = [K : k], we get that [A] is annihilated by multiplication
by [K : k] = ind (A), whence the first statement. For the second statement, let p be
a prime number that does not divide per (A). By the lemma above, there exists a
finite separable splitting field K|k with [K : k] prime to p. Hence by Proposition
5.3, the index ind (A) is also prime to p.

As an application of the above, we finally prove the following decomposition
result.

Proposition 5.11. (Brauer) Let D be a central division algebra over k. Consider the pri-
mary decomposition

ind (D) = pm1
1 pm2

2 · · · pmr
r .

Then we may find central division algebras Di (i = 1, .., r) such that

D ∼= D1 ⊗k D2 ⊗k · · · ⊗k Dr

and ind (Di) = pmi
i for i = 1, .., r. Moreover, the Di are uniquely determined up to isomor-

phism.

Proof. The Brauer group is torsion (Corollary 4.8), so it splits into p-primary compo-
nents:

Br(k) =
⊕
p

Br(k){p}.



28 TAMÁS SZAMUELY

In this decomposition the class of D decomposes as a sum

[D] = [D1] + [D2] + · · ·+ [Dr]

where the Di are division algebras with [Di] ∈ Br(k){pi} for some primes pi. By
Proposition 5.9 (2) the index of each Di is a power of pi. The tensor product A =

D1 ⊗k D2 ⊗k · · · ⊗k Dr has degree
∏
i

ind (Di) over k and its index equals that of D

by Remark 5.2 (2), so indD divides
∏
i

ind (Di). A repeated application of Theorem

2.12 shows that for fixed i one may find a finite separable extension Ki|k of degree
prime to pi that splits all the Dj for j 6= i. Then D⊗kKi and Di⊗kKi have the same
class in Br(Ki), and thus indKi

(Di⊗kKi) | ind (D) by Corollary 5.7 (1). The algebras
Di ⊗k Ki are still division algebras of index ind (Di) over Ki by Corollary 5.7 (2). To
sum up, we have proven that ind (Di) divides ind (D) for all i, so we conclude that
ind (D) =

∏
i

ind (Di). The k-algebras D and D1 ⊗k D2 ⊗k · · · ⊗k Dr thus have the

same Brauer class and same dimension, hence they are isomorphic as claimed. The
unicity of the Di holds for the same reason.

6. CENTRAL SIMPLE ALGEBRAS OVER COMPLETE DISCRETELY VALUED FIELDS

In this section K denotes a field complete with respect to a discrete valuation,
with perfect residue field κ. Our first goal is to prove:

Theorem 6.1. Every central simple algebra A over K is split by a finite unramified exten-
sion of K.

The bulk of the proof of the theorem is contained in the following proposition.

Proposition 6.2. Every central division algebra D of degree d > 1 over K contains a
K-subalgebra L that is an unramified field extension of K of degree > 1.

We prove the proposition following the method of Serre [2], §XII.2. The key tool
is the extension of the valuation on K to D. By definition, a discrete valuation on a
division algebra D is a map w : D → Z ∪ {∞} satisfying the same properties as in
the commutative case. The elements satisfying w(x) ≥ 0 form a subring Aw ⊂ D in
which the set Mw of elements with w(x) > 0 is a two-sided ideal. Fixing an element
π ∈ D such that w(π) is the positive generator of the subgroup w(D \ {0}) ⊂ Z, we
may write each m ∈Mw in the form m = bπ with b ∈ Aw.

To extend discrete valuations from K to D we need the notion of reduced norms.

Construction 6.3. Let A be a central simple k-algebra of degree n. Take a finite Ga-
lois splitting field K|k with group G, and choose a K-isomorphism φ : Mn(K)

∼→
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A ⊗k K. Recall that the isomorphism φ is not compatible with the action of G.
However, if we twist the usual action of G on Mn(K) by the 1-cocycle σ 7→ aσ
with aσ = φ−1 ◦ σ(φ) associated with A by the descent construction, then we get an
isomorphism aMn(K)

∼→ A⊗k K that is already G-equivariant, whence an isomor-
phism (aMn(K))G ∼= A.

Now consider the determinant map det : Mn(K) → K. For all σ ∈ G, lifting aσ
to an invertible matrix Cσ ∈ GLn(K) we get

(13) det(Cσσ(M)C−1
σ ) = det(σ(M)) = σ(det(M))

by multiplicativity of the determinant and its compatibility with the usualG-action.
Bearing in mind that the twistedG-action on aMn(K) is given by (σ,M)→ aσσ(M)a−1

σ ,
this implies that the map det : aMn(K) → K is compatible with the action of
G. So by taking G-invariants and using the isomorphism above we get a map
Nrd : A → k, called the reduced norm map. On the subgroup A× of invertible el-
ements of A it restricts to a group homomorphism Nrd : A× → k×.

The above construction does not depend on the choice of φ, for changing φ amounts
to replacing aσ by an equivalent cocycle, i.e. replacing the matrix Cσ above by some
D−1Cσσ(D), which does not affect the expression in (13). The construction does not
depend on the choice of K either, as one sees by embedding two Galois splitting
fields K,L into a bigger Galois extension M |k.

The reduced norm map is a generalization of the norm map for quaternion alge-
bras. Just like the quaternion norm, it enjoys the following property:

Proposition 6.4. In a central simple k-algebra A an element a ∈ A is invertible if and
only if Nrd (a) 6= 0. Hence A is a division algebra if and only if Nrd restricts to a nowhere
vanishing map on A \ 0.

Proof. If a is invertible, it corresponds to an invertible matrix via any isomorphism
φ : A ⊗K K ∼= Mn(K), which thus has nonzero determinant. For the converse,
consider φ as above and assume an element a ∈ A maps to a matrix with nonzero
determinant. It thus has an inverse b ∈ Mn(K). Now in any ring the multiplicative
inverse of an element is unique (indeed, if b′ is another inverse, one has b = bab′ =

b′), so for an automorphism σA ∈ Autk(A⊗kK) coming from the action of an element
σ ∈ Gal(K|k) on K we have σA(b) = b. As A is the set of fixed elements of all the
σA, this implies b ∈ A.

Now recall that given a finite dimensional k-algebra A, the norm of an element
a ∈ A are defined as follows: one considers the k-linear mapping La : A→ A given
by La(x) = ax and puts NA|k(a) := det(La).
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Proposition 6.5. If A is a central simple k-algebra of degree n, then NA|k = (Nrd A)n.

Proof. We may assume, up to passing to a splitting field of A, that A = Mn(k). The
required formulae then follow from the fact that for M ∈ Mn(k), the matrix of the
multiplication-by-M map LM with respect to the standard basis of Mn(k) is the
block diagonal matrix diag(M, . . . ,M).

Lemma 6.6. If D and K are as in the proposition, the discrete valuation v of K extends to
a unique discrete valuation on D, given by the formula

w =
1

d
v ◦ NrdD.

Moreover, D is complete with respect to w.

Proof. We first show that if L|K is a field extension contained in D, then for x ∈ L
we have

(14)
1

d
v(NrdD(x)) =

1

[L : K]
v(NL|K(x)).

Indeed, Proposition 6.5 gives ND|K = (NrdD)d. On the other hand, viewing D as an
L-vector space of dimension d2/[L : K], we have

ND|K(x) = NL|K(x)d
2/[L:K]

for x ∈ L. It follows that we have an equality

NrdD(x) = ωNL|K(x)d/[L:K]

in K with some d-th root of unity ω, whence formula (14) follows after applying v.
Applying formula (14) with L = K gives w|K = v. Applying it to the subfields

K(x) ⊂ D generated by each x ∈ D and comparing with the description of the
unique extension of v to finite field extensions implies the uniqueness of the ex-
tension to D. Next, we check that w as defined above is a discrete valuation. The
implication w(x) = ∞ ⇒ x = 0 follows from Proposition 6.4, and the formula
w(xy) = w(x) + w(y) from the multiplicativity of the reduced norm. The property
w(x+ y) ≥ min(w(x), w(y)) reduces to w(1 +x−1y) ≥ min(1, w(x−1y)) after subtract-
ing w(x). The latter can be checked in the field L = K(x−1y) where it holds because,
as remarked above, formula (14) implies that w|L is a multiple of the unique exten-
sion of v to L. Finally, the completeness of D with respect to the w-adic topology is
proven as in the commutative case.

Proof of Proposition 6.2. Extend the valuation v of K to a discrete valuation w of D as
in the lemma above. If the statement of the proposition does not hold, then for each
finite field extension L|K contained in D the valuation w|L has residue field equal
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to that of v. In particular, this holds for the subfield L = K(b) generated by any
b ∈ Aw. Fixing b, we thus find a0 in the ring of integers Av of K with b − a0 ∈ Mw.
Fixing moreover a generator π as after the statement of the proposition we may
write

b = a0 + b1π

with some b1 ∈ Aw. Repeating the procedure with b1 in place of b and continuing
in the same way, we construct inductively for each N > 0 elements aN ∈ Av and
bN ∈ Aw satisfying

b =
N−1∑
i=0

aiπ
i + bNπ

N .

We infer that b is in the closure of the subfield K(π) ⊂ D for the w-adic topology on
D. ButK(π) is closed inD (this holds for any linear subspace in a finite-dimensional
normed vector space over a complete valued field and is easily checked by taking
coordinates), whence b ∈ K(π). Since b was arbitrary here and for every x ∈ D

we have xπm ∈ Aw for m large enough, we conclude D ⊂ K(π), contradicting the
assumption that the centre of D is K.

Proof of Theorem 6.1. We use induction on the index d of A, the case d = 1 be-
ing obvious. Using Wedderburn’s theorem we may assume that A is a division
algebra of degree d. Applying Proposition 6.2, we find a nontrivial unramified
field extension L|K that embeds in A over K. The L-algebra A ⊗K L is not a di-
vision algebra because it contains L ⊗K L which is a product of copies of L. Thus
ind (A ⊗K L) < ind (A) = d, and therefore A ⊗K L splits over an unramified exten-
sion M |L by the inductive assumption. But M |K is again an unramified extension,
which concludes the proof.

Now denote by Knr the maximal unramified extension of K, i.e. the composi-
tum of all finite unramified extensions of K inside a fixed separable closure. The
theorem then implies:

Corollary 6.7. We have Br(K) = Br(Knr|K).

So we are left to study the relative Brauer group Br(Knr|K). To do so, let L|K be a
finite unramified Galois extension with group G. Denoting by UL the multiplicative
group of units in L, the valuation v of L defines an exact sequence of G-modules

(15) 1→ UL → L×
v→ Z→ 0

which is split by the map Z → L× sending 1 to a local parameter π of v. (Note that
π ∈ K and hence is G-invariant because L|K is unramified.) Therefore we have a
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split exact sequence of cohomology groups

0→ H2(G,UL)→ H2(G,L×)→ H2(G,Z)→ 0.

Next note that H i(G,Q) = 0 for all i > 0: indeed, if G has order n, then on the one
hand nH i(G,Q) = 0, on the other hand, since the multiplication-by-n map Q

n→ Q

is an isomorphism, so is H i(G,Q)
n→ H i(G,Q). So we can use the exact sequence

0→ Z→ Q→ Q/Z→ 0

to obtain isomorphisms H2(G,Z) ∼= H1(G,Q/Z) ∼= Hom(G,Q/Z) and we may
rewrite the above sequence as

0→ H2(G,UL)→ H2(G,L×)→ Hom(G,Q/Z)→ 0.

Now we study the group on the left.

Proposition 6.8. Let L|K be a finite unramified Galois extension with group G and let λ
be the residue field of L. The natural reduction map UL → λ× induces isomorphisms

H2(G,UL) ∼= H2(G, λ×).

Therefore we have a split exact sequence

0→ Br(λ|κ)→ Br(L|K)→ Hom(G,Q/Z)→ 0.

For the proof we need a formal lemma.

Lemma 6.9. Let G be a finite group, and (Aj, φj) an inverse system of G-modules indexed
by the set Z+ of positive integers, with surjective transition maps φj . If i > 0 is an integer
such that H i(G,A1) = H i(G, ker(φj)) = 0 for all j, then H i(G, lim

←
Aj)=0.

Proof. Choose a projective resolution P• of Z, and represent an element ofH i(G, lim
←

Aj)

by a collection of homomorphisms λj : Pi → Aj each of which are mapped to
0 by δi∗. By induction on j we construct µ ∈ Hom(Pi−1, lim←

Aj) represented by

homomorphisms µj : Pi−1 → Aj with δi−1
∗ (µj) = λj . The existence of µ1 fol-

lows from H i(G,A1) = 0. Assuming µj has been constructed, lift it to a homo-
morphism µ′j+1 : Pi−1 → Aj+1 using the surjectivity of φj : Aj+1 → Aj . Then
λj+1 − δi∗(µ

′
j+1) is a map P i → ker(φj) mapped to 0 by δi∗, and hence of the form

δi−1
∗ (νj+1) with some νj+1 : Pi−1 → ker(φj) by the assumption H i(G, ker(φj)) = 0.

Setting µj+1 = µ′j+1 + νj+1 completes the inductive step.

We also need a lemma often called the additive form of Hilbert’s theorem 90.

Lemma 6.10. IfK|k is a finite Galois extension of fields with Galois groupG, thenH i(G,K) =

0 for i > 0.
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Proof. The normal basis theorem of Galois theory asserts that there is an element
x ∈ K such that the images σ(x) for x ∈ G form a basis of K as a k-vector space.
In other words, K ∼= k ⊗Z Z[G] as a G-module and hence is co-induced. The claim
follows.

Here is another argument which works for G cyclic and i even (and hence is
sufficient to treat H2(G,K) for K finite which will be our most important appli-
cation). Applying Lemma 4.10 to the G-module K we have to show that the map
Tr := 1 + σ + σ2 + · · · + σn−1 : K → k is surjective, where n is the order of G and
σ ∈ G is a generator. By Dedekind’s lemma the map Tr is not identically 0, so we
find x ∈ K with Tr(x) = a ∈ k×. Now if b ∈ k× is an arbitrary element, then

Tr(a−1bx) =
n−1∑
i=0

σ(a−1bx) =
n−1∑
i=0

σ(a−1b)σ(x) = a−1b

n−1∑
i=0

σ(x) = a−1bTr(x) = b.

Proof of Proposition 6.8. In view of Theorem 4.7 and the discussion preceding the
proposition it will be enough to prove the first statement. Consider for all j > 0

the multiplicative subgroups

U j
L := {x ∈ L : v(x− 1) ≥ i}

in the group of units UL of L. The groups U j
L form a decreasing filtration of U1

L

such that the natural map U1
L → lim

←
U1
L/U

j
L is an isomorphism. Furthermore, the

reduction map UL → λ× yields an exact sequence

1→ U1
L → UL → λ× → 1

whose associated long exact sequence shows that the proposition follows if we
show H2(G,U1

L) = 0. For this, fix a local parameter π generating the maximal ideal
of the valuation ring Av ⊂ L of v, and consider the maps U j

L → λ sending 1 + aπj to
the image of a ∈ Av in λ. These maps are surjective group homomorphisms giving
rise to exact sequences of G-modules

1→ U j+1
L → U j

L → λ→ 0

for all j. Here we haveH2(G, λ) = 0 by Lemma 6.10, from which we inferH2(G,U j
L/U

j+1
L ) =

0 for j > 0. By induction on j using the exact sequences

1→ U j
L/U

j+1
L → U1

L/U
j+1
L → U1

L/U
j
L → 1

we obtain H2(G,U1
L/U

j
L) = 0 for all j > 0. We conclude by applying the above

lemma to the inverse system of G-modules formed by the quotients U1
L/U

j
L. �
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Corollary 6.11 (Witt). For a complete discretely valued field K with perfect residue field κ
there is a split exact sequence

(16) 0→ Br(κ)→ Br(K)→ Homc(Gal(κ̄|κ),Q/Z)→ 0.

Here κ̄ is a fixed algebraic closure of κ and Homc(Gal(κ̄|κ),Q/Z) denotes those homomor-
phisms Gal(κ̄|κ)→ Q/Z that factor through a finite quotient of Gal(κ̄|κ).

Proof. This follows from Corollary 6.1 and the above proposition after taking (di-
rected) unions over L.

Corollary 6.12 (Hasse). Assume moreover κ is a finite field. Then Br(K) ∼= Q/Z.

Proof. In this case Br(κ) = 0 by Example 4.13 and Hom(G,Q/Z) ∼= Z/nZ if G has
order n because a finite extension of finite fields has cyclic Galois group.

Remark 6.13. The corollary applies in particular to the field Qp of p-adic numbers
and its finite extensions. It can be used to determine the Brauer group of Q via the
following famous theorem of Albert, Brauer, Hasse, and Noether: there is an exact
sequence

0→ Br(Q)→
⊕
p

Br(Qp)⊕ Br(R)
Σ→ Q/Z→ 0.

Here the maps Br(Q)→ Br(Qp) are induced by the base change mapsA 7→ A⊗QQp

for a central simple Q-algebra A; it is a nontrivial fact that for fixed A the algebras
A ⊗Q Qp are split for all but finitely many p. Similarly we have a map Br(Q) →
Br(R). The map Σ is induced by taking the isomorphisms Br(Qp) ∼= Q/Z, the

embedding Br(R) → Q/Z induced by the inclusion
1

2
Z/Z ⊂ Q/Z and then taking

the sum. The theorem holds more generally for finite extensions of Q; one then has
to consider extensions of the p-adic and real valuations in the direct sum.


