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1. BACKGROUND FROM CATEGORY THEORY

Definition 1.1. A category consists of objects as well as morphisms between pairs of
objects; given two objects A, B of a category C, the morphisms from A to B form a
set, denoted by Hom(A,B). (Notice that in contrast to this we do not impose that
the objects of the category form a set.) These are subject to the following constraints.

(1) For each object A the set Hom(A,A) contains a distinguished element idA,
the identity morphism of A.

(2) Given two morphims φ ∈ Hom(B,C) and ψ ∈ Hom(A,B), there exists a
canonical morphism φ ◦ ψ ∈ Hom(A,C), the composition of φ and ψ. The
composition of morphisms should satisfy two natural axioms:
• Given φ ∈ Hom(A,B), one has φ ◦ idA = idB ◦ φ = φ.
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• (Associativity rule) For λ ∈ Hom(A,B), ψ ∈ Hom(B,C), φ ∈ Hom(C,D)

one has (φ ◦ ψ) ◦ λ = φ ◦ (ψ ◦ λ).

A morphism φ ∈ Hom(A,B) is an isomorphism if there exists ψ ∈ Hom(B,A) with
ψ ◦ φ = idA, φ ◦ ψ = idB; we denote the set of isomorphisms between A and B by
Isom(A,B).

Examples 1.2. In these notes, the main examples we’ll consider will be algebraic.
Thus we shall consider, for example, the category of groups, abelian groups, rings,
or modules over a fixed ring R. In all these examples the morphisms are the homo-
morphisms between appropriate objects.

Remark 1.3. If the objects themselves form a set, we say that the category is small.
In this case one can associate an oriented graph to the category by taking objects as
vertices and defining an oriented edge between two objects corresponding to each
morphism.

In the examples above the categories are not small but if we restrict to some set
of objects we obtain small subcategories (in the sense to be defined below).

For small categories it is easy to visualize the contents of the following definition.

Definition 1.4. The opposite category Cop of a category C is “the category with the
same objects and arrows reversed”; i.e. for each pair of objects (A, B) of C, there is a
canonical bijection between the sets Hom(A,B) of C and Hom(B,A) of Cop preserv-
ing the identity morphisms and composition.

Next we consider subcategories.

Definition 1.5. A subcategory of a category C is just a category D consisting of some
objects and some morphisms of C; it is a full subcategory if given two objects in D,
HomD(A,B) = HomC(A,B), i.e. all C-morphisms between A and B are morphisms
in D.

Examples 1.6. The category of abelian groups is a full subcategory of the category
of groups. Given a ring R 6= Z, the category of R-modules is a subcategory of that
of abelian groups, but not a full subcategory.

Now comes the second basic definition of category theory.

Definition 1.7. A (covariant) functor F between two categories C1 and C2 consist-
s of a rule A 7→ F (A) on objects and a map on sets of morphisms Hom(A,B) →
Hom(F (A), F (B)) which sends identity morphisms to identity morphisms and p-
reserves composition. A contravariant functor from C1 to C2 is a functor from C1 to
Cop2 .
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Examples 1.8. Here are some examples of functors.

(1) The identity functor is the functor idC on any category C which leaves all
objects and morphisms fixed.

(2) Other basic examples of functors are obtained by fixing an object A of a cat-
egory C and considering the covariant functor Hom(A, ) (resp. the con-
travariant functor Hom( , A)) from C to the category Sets which sends an ob-
jectB the set Hom(A,B) (resp. Hom(B,A)) and a morphism φ : B → C to the
set-theoretic map Hom(A,B)→ Hom(A,C) (resp. Hom(C,A)→ Hom(B,A))
induced by composing with φ.

(3) There are forgetful functors defined by forgetting structure. For instance, as-
sociating to an R-module the underlying abelian group and to an R-module
homomorphism the underlying group homomorphism defines the forgetful
functor from the category of R-modules to that of abelian groups.

(4) On the category ModR ofR-modules important examples of functors are giv-
en by tensor product. Fix an R-module B. The rule

A 7→ A⊗R B, (φ : A1 → A2) 7→ (φ⊗ idB : A1 ⊗B → A2 ⊗B)

defines a functor ⊗R B : ModR → ModR. Similarly, tensoring by a module
A on the left gives a functor A⊗R : ModR → ModR.

Definition 1.9. If F and G are two functors with same domain C1 and target C2, a
morphism of functors Φ between F and G is a collection of morphisms ΦA : F (A) →
G(A) in C2 for each object A ∈ C1 such that for every morphism φ : A→ B in C1 the
diagram

F (A)
ΦA−−−→ G(A)

F (φ)

y yG(φ)

F (B)
ΦB−−−→ G(B)

commutes. The morphism Φ is an isomorphism if each ΦA is an isomorphism; in
this case we shall write F ∼= G.

Remark 1.10. Given two categories C1 and C2 one can define (modulo some set-
theoretic difficulties) a new category called the functor category of the pair (C1, C2)

whose objects are functors from C1 to C2 and whose morphisms are morphisms of
functors. Here the composition rule for some Φ and Ψ is induced by the composi-
tion of the morphisms ΦA and ΨA for each object A in C1.

We now turn to categories with additional properties, abstracting some proper-
ties of categories of modules over some ring.

Definition 1.11. A category A is additive if the following hold:
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• For any two objectsA,B the set Hom(A,B) carries the structure of an abelian
group.
• The compositions of morphisms Hom(A,B) × Hom(B,C) → Hom(A,C) are
Z-bilinear maps.
• There is an object 0 ∈ A that is both initial and final (i.e. for every object
A ∈ A there is a unique morphism 0→ A and a unique morphism A→ 0).
• For any two objects A,B the product A × B exists (defined by the usual

universal property).

In an additive category the kernel of a morphism φ : A → B is an object ker(φ)

together with a morphism κ : ker(φ) → A such that every morphism ψ : C → A

with φ ◦ ψ = 0 factors uniquely as a composite C → ker(φ)
κ→ A. Similarly, the

cokernel of φ is an object coker(φ) together with a morphism γ : B → coker(φ) such
that every morphism ψ : B → C with ψ ◦ φ = 0 factors uniquely as a composite
B → coker(φ)

γ→ C.
The kernel and the cokernel may not exist for φ. When they do, we define the im-

age of φ as im(φ) := ker(B → coker(φ)) and its coimage as coim(φ) := coker(ker(φ)→
A). Note that by definition there is a canonical morphism coim(φ) → im(φ). With
these notions exact sequences are defined in the usual way.

Definition 1.12. An additive categoryA is abelian if every morphism φ has a kernel
and a cokernel and the canonical morphism coim(φ)→ im(φ) is an isomorphism.

Basic examples of abelian categories are categories of modules over some (not
necessarily commutative) ring. The Freyd–Mitchell embedding theorem states that ev-
ery small abelian category can be embedded as a full subcategory in the category
modules over a suitable ring R.

Somewhat less straightforward examples are given by sheaves of abelian groups
on some topological space. Later we shall encounter additive categories which are
not abelian.

2. CATEGORIES OF MODULES

A functor F : A → B between additive categories is additive if for any two objects
A,B ∈ A the induced map Hom(A,B) → Hom(F (A), F (B)) is a group homomor-
phism. In what follows all functors between additive categories will be understood
to be additive.

Definition 2.1. A functor F : A → B between abelian categories is left exact if for
every short exact sequence

0→ A1 → A2 → A3 → 0
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in A the sequence
0→ F (A1)→ F (A2)→ F (A3)

is exact; it is right exact if

F (A1)→ F (A2)→ F (A3)→ 0

is exact. We say that F is exact if it is both left and right exact.
There are also notions of left and right exactness for contravariant functorsG: left

exactness is defined by exactness of

0→ G(A3)→ G(A2)→ G(A1)

and right exactness by that of

G(A3)→ G(A2)→ G(A1)→ 0.

Remark 2.2. In the Freyd–Mitchell embedding theorem cited in the previous section
the functor realizing the embedding is exact.

Examples 2.3. Fix objects A and B in A.

(1) The functor Hom(A, ) from A to the category of abelian groups is left exact
but not always right exact.

(2) The contravariant functor Hom( , B) is left exact but not always right exact.

Now we specialize to the category ModR of modules over a ring R. We shall
assume our rings to be commutative with unit. However, everything will hold for
noncommutative rings as well, one just has to choose a convention whether one
considers left or right modules over a ring R.

We shall study modules satisfying exactness properties for the above two Hom-
functors, and also for the tensor product functors A ⊗R : ModR → ModR and
⊗R B : ModR → ModR which do not exist in an arbitrary abelian category. They

are right exact but not left exact in general. We start with the tensor product.

Definition 2.4. An R-module A is flat over R if the functor A⊗R is exact.

Example 2.5. The R-module R is obviously flat. Since tensor products commute
with direct sums, free R-modules are also flat. (Recall that a free R-module is by
definition an R-module isomorphic to a direct sum of copies of the R-module R.)

In Proposition 5.4 below we’ll see that conversely finitely generated flat modules
over a Noetherian local ring are free.

We note for later use the following fact:

Proposition 2.6. An R-module A is flat if and only if the restriction of the functor A⊗R
to the full subcategory of finitely generated R-modules is exact.
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Proof. We only have to treat left exactness. Assume φ : B0 → B is an injective map
ofR-modules, and α =

∑
ai⊗bi is an element ofA⊗RB0 that maps to 0 inA⊗B. To

prove that α = 0 we may replace B0 by the finitely generated submodule generated
by the bi. Also, by construction of the tensor product the image of α in A ⊗R B is
0 if the corresponding element of the free R-module R[A × B] is a sum of finitely
many relations occurring in the definition of A⊗RB, so we find a finitely generated
submodule φ(B0) ⊂ Bf ⊂ B such that α maps to 0 already in A⊗R Bf . �

A stronger notion is that of faithful flatness:

Definition 2.7. An R-module A is faithfully flat over R if it is flat and for every R-
module B one has B 6= 0 if and only if A⊗R B 6= 0.

It is easy to see that faithful flatness is equivalent to the following property: a
sequence of R-modules 0 → B1 → B2 → B3 → 0 is exact if and only if the sequence
0→ A⊗RB1 → A⊗RB2 → A⊗RB3 → 0 is exact. Another important characterization
is:

Lemma 2.8. A flat R-module A is faithfully flat if and only if A ⊗R R/P 6= 0 for every
maximal ideal P ⊂ R.

Proof. Necessity is obvious. For sufficiency assume B 6= 0 but A ⊗R B = 0. For a
nonzero b ∈ B consider its annihilator I = Ann(b) := {r ∈ R : rb = 0}. Since b 6= 0,
we have I 6= R, so there is a maximal ideal P ⊂ R with P ⊃ I . Tensoring by A

the injective map R/I → B obtained by sending 1 to b we obtain an injective map
A⊗R R/I ↪→ A⊗R B = 0 by flatness of A, so A⊗R R/I = 0. But A⊗R R/I surjects
onto A⊗R R/P , so A⊗R R/P = 0 as well, contradiction. �

Now we can introduce an important class of (faithfully) flat R-modules:

Proposition 2.9. IfR is Noetherian and R̂ is the completion ofR with respect to some ideal
I ⊂ R, then R̂ is flat over R. If moreover R is local, then R̂ is faithfully flat over R.

Proof. First note that for all finitely generated R-modules A we have isomorphisms
Â ∼= R̂⊗RA. WhenA = Rn this is easily checked using the definition of completions.
In the general case write A as a cokernel of a suitable morphism Rm → Rn and use
right exactness of completion and of the tensor product. In view of Proposition 2.6
flatness of R̂ now follows as it is known that the functor A 7→ Â is exact on the
category of finitely generated modules over Noetherian rings.

Now assume R is local with maximal ideal P . In view of the lemma above we
have to check that the tensor product R̂ ⊗R R/P ∼= R̂/P R̂ is nonzero. In fact, it is
known that R̂ is local with maximal ideal PR̂. A ‘cheaper’ argument is as follows:
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by definition of completions we have a natural surjection R̂ → R/I which we may
compose with the natural surjection R/I → R/P induced by the inclusion I ⊂ P .
The composite R̂→ R/P factors through R̂/P R̂ which must then be nonzero. �

Another type of important example is the following.

Example 2.10. If S ⊂ R is a multiplicatively closed subset, the localization RS is flat
over R. In particular, when R is an integral domain, its fraction field is flat over R.

To see this, let A′ ↪→ A be an injective morphism of R-modules. We have to show
that A′ ⊗R RS → A ⊗R RS is still injective. A general element of A′ ⊗R RS is a sum
of elements of the form a′ ⊗ (r/s′) with a′ ∈ A′, r ∈ R, s′ ∈ S. Choosing a common
denominator in S and using bilinearity of the tensor product we may rewrite this
element in the form a ⊗ (1/s) with a ∈ A′, s ∈ S. An element of this form is 0 in
A′ ⊗R RS if and only if tsa = 0 for some t ∈ S. But such an equation holds in A′ if
and only if it holds in A.

Note that RS is not always faithfully flat over R. For instance, Q is not faithfully
flat over Z because A⊗Z Q = 0 for every torsion abelian group A.

Now to the covariant Hom-functor. The following definition can be made in an
arbitrary abelian category:

Definition 2.11. An R-module P is projective if the functor Hom(P, ) : ModR →
ModR is exact.

By left exactness of Hom(P, ) a module P is projective if and only if the natural
map Hom(P,A) → Hom(P,B) given by λ → α ◦ λ is surjective for every surjection
α : A→ B.

Lemma 2.12.

(1) The R-module R is projective.
(2) Arbitrary direct sums of projective modules are projective.

Proof. For the first statement, given an R-homomorphism λ : R → B and a surjec-
tion A→ B, lift λ to an element of Hom(R,A) by lifting λ(1) to an element of A. The
second statement is immediate from the compatibility of Hom-groups with direct
sums in the first variable.

Corollary 2.13. A free R-module is projective.

Construction 2.14. Given an R-module A, define a free R-module F (A) by taking
direct sum of copies of R indexed by the elements of A. One has a surjection πA :

F (A) → A induced by mapping 1a to a, where 1a is the element of F (A) with 1 in
the component corresponding to a ∈ A and 0 elsewhere.



8 TAMÁS SZAMUELY

When A is finitely generated by a system a1, . . . , an of generators, one may con-
sider the finitely generated free module Ffg(A) defined as a finite direct sum of
copies of R indexed by the elements ai. Sending 1ai to ai still defines a surjection
Ffg(A)→ A.

Thus every R-module is the quotient of a free R-module and hence of a projec-
tive module. This is expressed by saying that the category of R-modules has enough
projectives. The full subcategory of finitely generated modules also has enough pro-
jectives by the second part of the construction.

Projective modules are in fact direct summands of free modules:

Lemma 2.15. An R-module P is projective if and only if there exist an R-module A and a
free R-module F with P ⊕ A ∼= F .

By symmetry, A is then also projective.

Proof. For sufficiency, extend a map λ : P → B to F by defining it to be 0 on A and
use projectivity of F . For necessity, take F to be the free R-module F (P ) associated
with P in the above example. We claim that we have an isomorphism as required,
with A = ker(πP ). Indeed, as P is projective, we may lift the identity map of P to a
map π : P → F (P ) with πP ◦ π = idP .

Since free modules are flat, the lemma implies:

Corollary 2.16. Projective modules are flat.

Projective modules over local rings are in fact free:

Proposition 2.17. Let R be a local ring with maximal ideal P and residue field k, and let
A be a finitely generated R-module.

If A is projective, then A is free over R.

Proof. Let a1, . . . an ∈ A be elements such that their mod PA images form a basis
of the k-vector space A/PA. By Nakayama’s lemma they generate A, so the map
φ : Rn → A sending (r1, . . . , rn) to r1a1 + · · ·+rnan is surjective and an isomorphism
mod P . By projectivity of A we then have Rn ∼= A ⊕ B where B = ker(φ). Since
Rn/PRn ∼→ A/PA, we get B ⊂ PRn. But then Rn = A+ PRn, so Rn ∼→ A, again by
Nakayama’s lemma. �

Remark 2.18. In fact, Kaplansky proved that the proposition holds without assum-
ing A finitely generated, but the proof is much more involved.

The above proposition yields a characterization of finitely generated projective
modules over arbitrary Noetherian rings.
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Proposition 2.19. Let R be a Noetherian ring. A finitely generated R-module A is projec-
tive if and only if A⊗R RP is free for all prime ideals P ⊆ R.

In fact, one may restrict to maximal ideals in this statement.

For the proof we need some lemmas.

Lemma 2.20. Let R be a ring.

(1) An R-module A is 0 if and only if A⊗R RP = 0 for all maximal ideals P .
(2) A morphism ϕ : A1 → A2 of R-modules is injective (resp. surjective) if and only if

ϕ⊗ idRP is (resp. surjective) for all maximal ideals P .

Proof. For the nontrivial implication of (1) assume A 6= 0, and pick a nonzero a ∈ A.
The map R → A sending r ∈ R to ra shows that the submodule 〈a〉 ⊂ A is isomor-
phic to R/I for some ideal I ( R. Pick a maximal ideal I ⊂ P ⊂ R. We then have
a 6= 0 in A⊗R RP .

Statement (2) follows by applying (1) to the kernel (resp. cokernel) of ϕ. �

Lemma 2.21. Given a finitely presented R-module A, an R-module B and a prime ideal
P ⊂ R, we have canonical isomorphisms

HomR(A,B)⊗R RP
∼→ HomRP (A⊗R RP , B ⊗R RP ).

Proof. We have a natural map HomR(A,B)⊗RRP → HomRP (A⊗RRP , B⊗RRP ) in-
duced by tensoring withRP . IfA ∼= Rn for some n, then this map is an isomorphism
because the map HomR(R,B)⊗R RP

∼→ HomRP (R ⊗R RP , B ⊗R RP ) identifies with
the identity map of B ⊗R RP . For the general case write A as a cokernel of some
map Rm → Rn (this is possible as A is finitely presented). We have a commutative
diagram
0 −−−−−→ HomR(A,B)⊗R RP −−−−−→ HomR(Rn, B)⊗R RP −−−−−→ HomR(Rm, B)⊗R RPy y y
0 −−−−−→ HomRP

(A⊗R RP , B ⊗R RP ) −−−−−→ HomRP
(Rn ⊗R RP , B ⊗R RP ) −−−−−→ HomRP

(Rm ⊗R RP , B ⊗R RP )

whose rows are exact by left exactness of Hom( , B) and by flatness of RP over R.
The second and third vertical maps are isomorphisms by the previous case, hence
so is the first. �

Proof of Proposition 2.19. The ‘only if’ part follows from Lemma 2.15 because if A is
a direct summand of a free module over R, so is A ⊗R RP over RP . For the ‘if’
part take an exact sequence 0 → K → F

f→ A → 0 with F finitely generated and
free. We show that this sequence splits. This is equivalent to showing that the map
HomR(A,F ) → HomR(A,A) induced by f is surjective. Indeed, if this is the case,
then a splitting is given by a preimage of idA ∈ HomR(A,A); conversely, if idA comes
from HomR(A,F ), then so does every element of HomR(A,A) by left composition.
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By assumption for P maximal the induced map HomRP (A ⊗R RP , F ⊗R RP ) →
HomRP (A ⊗R RP , A ⊗R RP ) is surjective. By the lemma above this is the same as
the map HomR(A,F )⊗R RP → HomR(A,A)⊗RRP (note that A is finitely presented
because R is Noetherian)), so we conclude from part (2) of Lemma 2.20. �

We now consider the dual notion of injective modules.

Definition 2.22. An R-module Q is injective if the functor Hom( , Q) : ModR →
ModR is exact.

By right exactness of Hom( , Q) a module Q is injective if and only if given an
injective map α : A ↪→ B, every homomorphism λA : A → Q extends to a homo-
morphism λB : B → Q with λA = λB ◦ α.

Remark 2.23. Arbitrary direct products of injective modules are injective. This fol-
lows from compatibility of the functor Hom(A, ) with direct products.

Lemma 2.24 (Baer’s criterion). An R-module Q is injective if and only if for every ideal
I ↪→ R and every R-module homomorphism λI : I → Q there is an extension λR : R→ Q.

Proof. Only the ‘if’ part requires proof. Assume given an inclusion A ↪→ B and a
map λ : A → Q. Consider pairs (A′, λ′) where A ⊂ A′ ⊂ B is an R-submodule and
λ′ : A′ → Q extends λ. Inclusion maps A′ ↪→ A′′ induce a natural partial ordering
on the set of such pairs and the condition of Zorn’s lemma is satisfied. Let (Ã, λ̃) be
a maximal pair. If Ã = B, we are done. Suppose Ã 6= B, and pick b ∈ B \ Ã. The
set I := {r ∈ R : rb ∈ Ã} is an ideal in R equipped with a natural map λI : I → Ã

given by r 7→ rb. By assumption the composite map λ̃ ◦ λI : I → Q extends to a
map λR : R→ Q. On the submodule Ã∩〈b〉 ⊂ B the map λ̃ coincides with the map
λb : 〈b〉 → Q, rb 7→ λR(r). Hence λ̃ and rb 7→ λR(r) patch together to a map from
Ã+ 〈b〉 ⊂ B to Q, contradicting the maximality of Ã.

Recall that an abelian group A is divisible if for all n ∈ Z the map a 7→ na is
surjective on A. Basic examples of divisible abelian groups are Q and Q/Z.

Corollary 2.25. An abelian group Q is injective if and only if it is divisible.

Proof. For ‘only if’ fix a ∈ Q and define a homomorphism nZ → Q by sending n to
a. By injectivity it extends to a homomorphism Z → Q. The image of 1 will be an
element b ∈ Q with nb = a. Conversely, since every ideal of Z is of the form nZ,
reversing the argument gives that the condition in Baer’s criterion is satisfied.
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This enables us to construct injective modules over an arbitrary ring R. Note
first that given an abelian group T and a ring R, the set of abelian group homo-
morphisms HomZ(R, T ) carries a natural R-module structure by composing maps
R→ T by the multiplication-by r-map R→ R for r ∈ R.

Lemma 2.26. For an R-module A the natural map of abelian groups

HomZ(A, T )→ HomR(A,HomZ(R, T ))

given by φ 7→ (a 7→ (r 7→ φ(ra)) for r ∈ R, a ∈ A is an isomorphism. Moreover, making
A vary induces an isomorphism of contravariant functors

HomZ( , T )
∼→ HomR( ,HomZ(R, T )).

Proof. An inverse map sends ρ ∈ HomR(A,HomZ(R, T )) to a 7→ ρ(a)(1) for a ∈ A.
Functoriality follows from the construction.

Corollary 2.27. If Q is an injective abelian group, then HomZ(R,Q) is an injective R-
module.

Proof. Assume given an injection ι : A ↪→ B. We have to show surjectivity of the
map HomR(B,HomZ(R,Q)) → HomR(A,HomZ(R,Q)). By the lemma it identifies
with the natural map HomZ(B,Q) → HomZ(A,Q) induced by ι which is surjective
by injectivity of Q.

Now we can prove that the category of R-modules has enough injectives.

Proposition 2.28. Every R-module A can be embedded in an injective R-module.

Proof. Set Q := HomZ(R,Q/Z). This is an injective R-module by the previous corol-
lary. Define now a module I(A) as the direct product of copies of Q indexed by the
set HomR(A,Q). This is still an injective R-module by Remark 2.23. Define a map
A → I(A) by sending a ∈ A to φ(a) in the component indexed by φ ∈ HomR(A,Q).
To see that this map is injective, note first that HomR(A,Q) ∼= HomZ(A,Q/Z) by
the previous lemma. Thus it will suffice to construct for each nonzero a ∈ A a
group homomorphism φ̄ : A → Q/Z with φ̄(a) 6= 0, for then the corresponding
φ ∈ HomR(A,Q) will satisfy φ(a) 6= 0. Let 〈a〉 ⊂ A be the Z-submodule of A gener-
ated by a. Define a group homomorphism 〈a〉 → Q/Z by sending a to any nonzero
element of Q/Z if a has infinite order and to a nonzero element of order dividing n
if a has finite order n. By divisibility of Q/Z this map extends to a homomorphism
φ̄ : A→ Q/Z as required. �
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3. COMPLEXES AND RESOLUTIONS

We begin with some constructions that work in an arbitrary abelian category.

Definition 3.1. A (cohomological) complex A• in an abelian category A is a sequence
of morphisms

. . . · · · d
i−1

−→ Ai
di−→ Ai+1 di+1

−→ Ai+2 di+2

−→ . . .

for all i ∈ Z, satisfying di+1 ◦ di = 0 for all i.

We shall also use the convention A−i := Ai, giving rise to the homological indexing
of the complex.

We introduce the notations

Zi(A•) := ker(di), Bi(A•) := Im (di−1) and H i(A•) := Zi(A•)/Bi(A•).

The complex A• is said to be acyclic or exact if H i(A•) = 0 for all i.
A morphism of complexes φ : A• → B• is a collection of homomorphisms φi : Ai →

Bi for all i such that the diagrams

Ai −−−→ Ai+1

φi

y yφi+1

Bi −−−→ Bi+1

commute for all i. Thus complexes form a category in which morphisms are defined
as above; we shall denote it by C(A). The reader will check that this category is
again abelian.

By its defining property, a morphism of complexes φ : A• → B• induces maps
H i(φ) : H i(A•) → H i(B•) for all i. We say that φ is a quasi-isomorphism if the H i(φ)

are isomorphisms for all i.
An important source for quasi-isomorphisms is the following.

Definition 3.2. Two morphisms of complexes φ, ψ : A• → B• are (chain) homotopic
if there exist maps ki : Ai → Bi−1 for all i satisfying

(1) φi − ψi = ki+1 ◦ diA + di−1
B ◦ ki

for all i.
Two complexes A• and B• are homotopy equivalent if there exist morphisms of

complexes φ : A• → B• and ρ : B• → A• such that φ◦ρ is homotopic to the identity
map of B• and ρ ◦ φ is homotopic to the identity map of A•.

The following statement follows from the definitions:
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Lemma 3.3. If φ and ψ are homotopic morphisms A• → B•, then H i(φ) = H i(ψ) for all i.
In particular, when φ induces a homotopy equivalence of complexes, then φ is a quasi-

isomorphism.

Remark 3.4. Historically one of the first examples of a (homological) complex of
abelian groups was the singular complex S•(X) associated with a topological space
X ; its homology groups are by definition the (singular) homology groups of X .
The assignment X 7→ S•(X) induces a functor from the category of topological s-
paces (with continuous maps as morphisms) to the category of complexes of abelian
groups. It is a basic result in algebraic topology that homotopic continuous maps
from a space X to a space Y induce homotopic morphisms of complexes S•(X) →
S•(Y ) and hence homotopy equivalent topological spaces give rise to homotopy
equivalent singular complexes. This is the origin of the use of homotopical mor-
phisms of complexes in homological algebra.

A short exact sequence of complexes is a short exact sequence in the category C(A).
In other words, it is a sequence of morphisms of complexes

0→ A• → B• → C• → 0

such that the sequences

0→ Ai → Bi → Ci → 0

are exact for all i. Now we have the following basic fact.

Proposition 3.5. Given a short exact sequence

0→ A• → B• → C• → 0

of complexes, there is a long exact sequence

· · · → H i(A•)→ H i(B•)→ H i(C•)
∂→ H i+1(A•)→ H i+1(B•)→ . . .

The map ∂ is usually called the connecting homomorphism or the (co)boundary map.
For the proof of the proposition we need the following equally basic lemma.

Lemma 3.6 (The Snake Lemma). Given a commutative diagram

A −−−→ B −−−→ C −−−→ 0yα yβ yγ
0 −−−→ A′ −−−→ B′ −−−→ C ′

with exact rows, there is an exact sequence

ker(α)→ ker(β)→ ker(γ)→ coker (α)→ coker (β)→ coker (γ).
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Proof. It is easy to give a proof in a category of R-modules. The construction of all
maps in the sequence is then immediate, except for the map ∂ : ker(γ)→ coker (α).
For this, lift c ∈ ker(γ) to b ∈ B. By commutativity of the right square, the element
β(b) maps to 0 in C ′, hence it comes from a unique a′ ∈ A′. Define ∂(c) as the image
of a′ in coker (α). Two choices of b differ by an element a ∈ A which maps to 0
in coker (α), so ∂ is well-defined. Checking exactness is left as an exercise to the
readers.

In a general abelian category take the smallest abelian subcategory containing all
morphisms in the diagram. It is a small subcategory, so we may apply the Freyd–
Mitchell embedding theorem to it. Since the embedding functor is exact, we deduce
the required exact sequence from the case of module categories.

Proof of Proposition 3.5. Applying the Snake Lemma to the diagram

Ai/Bi(A•) −−−→ Bi/Bi(B•) −−−→ Ci/Bi(C•) −−−→ 0yα yβ yγ
0 −−−→ Zi+1(A•) −−−→ Zi+1(B•) −−−→ Zi+1(C•)

yields a long exact sequence

H i(A•)→ H i(B•)→ H i(C•)→ H i+1(A•)→ H i+1(B•)→ H i+1(C•),

and the proposition is obtained by splicing these sequences together. �

Corollary 3.7. Assume given a commutative diagram of morphisms of complexes

0 −−−→ A• −−−→ B• −−−→ C• −−−→ 0

φA

y φB

y φC

y
0 −−−→ A′• −−−→ B′• −−−→ C ′• −−−→ 0

with exact rows. If any two of the vertical maps are quasi-isomorphisms, then so is the third
one.

Proof. Apply the five lemma to the associated commutative diagram of long exact
sequences. �

Now we assume A has enough projectives (e.g. it is a category of modules over a
ring). As a consequence, every object A has a projective resolution P• → A, i.e. there
is an acyclic complex of the form

· · · → P2 → P1 → P0 → A→ 0

(note the homological indexing!) with Pi projective. Such a resolution can be ob-
tained inductively: first take a surjection p0 : P0 → A with Pi projective. Once Pi
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and pi : Pi → Pi−1 have been defined (with the convention P−1 = A), one defines
Pi+1 and pi+1 by applying the same construction to ker(pi) in place of A.

Remark 3.8. A projective resolution can be interpreted as a quasi-isomorphism be-
tween the complex

· · · → P2 → P1 → P0 → 0→ 0→ · · ·

and the complex
· · · → 0→ 0→ A→ 0→ 0

in which A is the only nonzero term and it is placed in degree 0. Indeed, we have
a morphism of complexes given by the map P0 → A in degree 0 and the zero map
elsewhere; it is a quasi-isomorphism because both complexes have trivial homology
outside degree 0 and there it equals A. This almost tautological observation will be
useful later.

Now the basic fact concerning projective resolutions is:

Lemma 3.9. Assume given a diagram

. . . −−−→ P2
p2−−−→ P1

p1−−−→ P0
p0−−−→ A −−−→ 0yα

. . . −−−→ B2
b2−−−→ B1

b1−−−→ B0
b0−−−→ B −−−→ 0

where the upper row is a complex with the Pi projective and the lower row is an acyclic
complex. Then α extends to a morphism of complexes given by the diagram:

. . . −−−→ P2
p2−−−→ P1

p1−−−→ P0
p0−−−→ A −−−→ 0yα2

yα1

yα0

yα
. . . −−−→ B2

b2−−−→ B1
b1−−−→ B0

b0−−−→ B −−−→ 0

Moreover, any two such extensions are chain homotopic.

Proof. To construct αi, assume that the αj are already defined for j < i, with the
convention α−1 = α. Observe that Im (αi−1 ◦pi) ⊂ Im (bi); this is immediate for i = 0

and follows from bi−1◦αi−1◦pi = αi−2◦pi−1◦pi = 0 for i > 0 by exactness of the lower
row. Hence by the projectivity of Pi we may define αi as a preimage in Hom(Pi, Bi)

of the map αi−1 ◦ pi : Pi → Im (bi). For the second statement, suppose βi : Pi → Bi

define another extension. Define k−1 = 0 and assume kj defined for j < i satisfying
αj−βj = kj−1◦pj +bj+1◦kj . This implies Im (αi−βi−(ki−1◦pi)) ⊂ Im (bi+1) because

bi ◦ (αi − βi − (ki−1 ◦ pi)) = (αi−1 − βi−1) ◦ pi − bi ◦ ki−1 ◦ pi = ki−2 ◦ pi−1 ◦ pi = 0,

so, again using the projectivity of Pi, we may define ki as a preimage of αi − βi −
(ki−1 ◦ pi) ∈ Hom(Pi, Im (bi+1)) in Hom(Pi, Bi+1).
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Corollary 3.10. Any two projective resolutions of an object A are homotopy equivalent.

Proof. Given two projective resolutions P• → A and P ′• → A, the identity map of A
lifts to morphisms of complexes φ : P• → P ′• and φ′ : P ′• → P• by the lemma above.
By the second statement of the lemma φ ◦ φ′ : P ′• → P ′• is chain homotopic to the
identity map of P ′• and similarly for φ′ ◦ φ : P• → P•. �

For a categoryA that has enough injectives the preceding arguments dualize. Using
the fact that every object A embeds in an injective object we construct inductively
injective resolutions A→ Q•, i.e. acyclic complexes of the form

0→ A→ Q0 → Q1 → Q2 → · · ·

with the Qi injective. The analogue of the previous lemma holds, with the same
proof (performed in the opposite category of A):

Lemma 3.11. Assume given a diagram

0 −−−→ A
a0−−−→ A0 a1−−−→ A1 a2−−−→ A2 −−−→ . . .yα

0 −−−→ B
q0−−−→ Q0 q1−−−→ Q1 q2−−−→ Q2 −−−→ . . .

where the lower row is a complex with the Qi injective and the upper row is an acyclic
complex. Then α extends to a morphism of complexes given by the diagram:

0 −−−→ A
a0−−−→ A0 a1−−−→ A1 a2−−−→ A2 −−−→ . . .yα yα0

yα1

yα2

0 −−−→ B
q0−−−→ Q0 q1−−−→ Q1 q2−−−→ Q2 −−−→ . . .

Moreover, any two such extensions are chain homotopic. In particular, any two injective
resolutions of A are homotopy equivalent.

4. DERIVED FUNCTORS

Derived functors remedy the defect of exactness of left or right exact functors.

Construction 4.1. LetA, B be abelian categories and F : A → B an additive functor.
Assume that A has enough projectives. Then the left derived functors LiF of F are
defined as follows. Given an object A in A, choose a projective resolution P• → A

and consider the complex F (P•), then set LiF (A) := Hi(F (P•)). Given a morphism
α : A → B in A, choose projective resolutions PA

• → A, PB
• → B. By Lemma 3.9

the map α induces a morphism of complexes α• : PA
• → PB

• . Define LiF (α) :=

Hi(F (α•)).
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Dually, when A has enough injectives, the right derived functors RiF of F are
defined by choosing an injective resolution A → Q• for an object A, and setting
RiF (A) := H i(F (Q•)). Given a morphism α : A→ B in A, the morphism RiF (α) is
defined by lifting α to a morphism of injective resolutions using Lemma 3.11, and
then taking the i-th cohomology.

Lemma 4.2. The definition of LiF (A) does not depend on the choice of the projective reso-
lution P•, and that of LiF (α) on the choice of the lifting α• of α.

Similar statements hold for the right derived functors RiF .

Proof. We do the case of LiF . If P• → A, P ′• → A are two projective resolutions, they
are homotopy equivalent by by Corollary 3.10. Applying the functor F we get that
the complexes F (P ′•) and F (P ′•) are also homotopy equivalent via F (φ) and F (φ′).
It follows that F (φ) induces canonical quasi-isomorphisms F (P•) → F (P ′•). The
well-definedness of LiF (α) follows from the second statement of Lemma 3.9. �

Proposition 4.3. Assume that A has enough projectives and moreover F is a right exact
functor. Then L0(F ) ∼= F , and given a short exact sequence 0 → A → B → C → 0 of
R-modules, there is an associated long exact sequence of the form

· · · → LiF (A)→ LiF (B)→ LiF (C)→ Li−1F (A)→ · · ·

ending with F (C)→ 0.
Similarly, when A has enough injectives and F is left exact, we have R0(F ) ∼= F , and a

short exact sequence 0→ A→ B → C → 0 induces a long exact sequence of the form

· · · → RiF (A)→ RiF (B)→ RiF (C)→ Ri+1F (A)→ · · ·

starting with 0→ F (A).

The proof uses a lemma.

Lemma 4.4 (Horseshoe Lemma). Assume given a short exact sequence

0→ A→ B → C → 0

in A and projective resolutions PA
• → A, PC

• → C. There exists a projective resolution
PB
• → B fitting in a short exact sequence of complexes

0→ PA
• → PB

• → PC
• → 0

and a commutative diagram

0 −−−→ PA
• −−−→ PB

• −−−→ PC
• −−−→ 0y y y

0 −−−→ A −−−→ B −−−→ C −−−→ 0.
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A similar statement holds if we have injective resolutions A→ Q•A, C → Q•C .

Proof. Notice first that any short exact sequence 0 → P1 → P2 → P3 → 0 of pro-
jective modules splits as a direct sum P2

∼= P1 ⊕ P3 (lift the identity map of P3 to
a map P3 → P2). So if the lemma is true, we must have PB

i
∼= PA

i ⊕ PC
i for all

i. We therefore set PB
i := PA

i ⊕ PC
i and construct the maps in the required short

exact sequence of resolutions by induction on i. First, by projectivity of PC
0 the map

pC : PC
0 → C lifts to a map PC

0 → B. Taking the sum of this map with the composite
map PA

0 → A → B defines a map PA
0 ⊕ PC

0 → B, i.e. a map pB : PB
0 → B making

the diagram
0 −−−→ PA

0 −−−→ PB
0 −−−→ PC

0 −−−→ 0ypA ypB ypC
0 −−−→ A −−−→ B −−−→ C −−−→ 0

commute. Using the Snake Lemma we see that the surjectivity of pA and pC implies
that of pB and moreover the sequence 0 → ker(pA) → ker(pB) → ker(pC) → 0 is
exact. Now we have a commutative diagram

0 −−−→ PA
1 −−−→ PB

1 −−−→ PC
1 −−−→ 0y y

0 −−−→ ker(pA) −−−→ ker(pB) −−−→ ker(pC) −−−→ 0

with surjective vertical maps, so by repeating the above argument we get a surjec-
tive map PB

1 → ker(pB) making the diagram commute. Continuing the procedure
we obtain the required short exact sequence of resolutions. �

Proof of Proposition 4.3. The statements L0(F ) ∼= F and R0(F ) ∼= F under the stated
exactness assumptions follow from the definitions. We now derive the long exact
for left derived functors, the other one being similar. Apply the construction of the
Horseshoe Lemma to get an exact sequence 0→ PA

• → PB
• → PC

• → 0 of projective
resolutions. As already remarked, here in fact PB

i
∼= PA

i ⊕ PC
i for all i, so that

F (PB
i ) ∼= F (PA

i ) ⊕ F (PC
i ) by additivity of F . Thus we have a short exact sequence

of complexes 0 → F (PA
• ) → F (PB

• ) → F (PC
• ) → 0 to which we apply Proposition

3.5. �

Remark 4.5.
(1) For a projective object P we have LiF (P ) = 0 for i > 0 as we may take 0 →
P → P → 0 as a projective resolution. Similarly, RiF (Q) = 0 for i > 0 when Q is
injective. This gives rise to an important technique called dimension shifting which
we explain for left derived functors. Given an object A we may choose an exact
sequence 0 → K → P → A → 0 with P projective. The long exact sequence then
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induces isomorphisms LiF (A)
∼→ Li−1F (K) for i > 1. In this way, if we have to

prove a property of LiF for all A and all i > 0, we may reduce to the case i = 1

using induction.

(2) There is an additional functoriality property of derived functors that is often
useful: given a commutative diagram

0 −−−→ A −−−→ B −−−→ C −−−→ 0y y y
0 −−−→ A′ −−−→ B′ −−−→ C ′ −−−→ 0

of short exact sequences, the diagram

LiF (C) −−−→ Li−1F (A)y y
LiF (C ′) −−−→ Li−1F (A′)

of boundary maps in the associated log exact sequences commutes for all i, and
similarly for right derived functors. We omit the verification; it can also be derived
from the construction of total derived functors we’ll encounter later.

We now come to fundamental examples for the category of modules over a ring.

Examples 4.6. Let A be an R-module.

(1) The functor A ⊗R is right exact. Its i-th left derived functor is denot-
ed by TorRi (A, ). Thus for every R-module B we have an isomorphism
TorR0 (A,B) ∼= A⊗R B and every short exact sequence 0→ B1 → B2 → B3 →
0 of R-modules induces a long exact sequence

· · · → TorR1 (A,B1)→ TorR1 (A,B2)→ TorR1 (A,B3)→ A⊗RB1 → A⊗RB2 → A⊗RB3 → 0.

(2) The functor HomR(A, ) is left exact. Its i-th right derived functor is denot-
ed by ExtiR(A, ). Thus for every R-module B we have an isomorphism
Ext0

R(A,B) ∼= HomR(A,B) and every short exact sequence 0 → B1 → B2 →
B3 → 0 of R-modules induces a long exact sequence

0→ HomR(A,B1)→ HomR(A,B2)→ HomR(A,B3)→ Ext1
R(A,B1)→ Ext1

R(A,B2)→ · · ·

Of course, these facts hold more generally in any abelian category having
enough injectives.

One can define derived functors of contravariant functors by the same method
as for covariant ones; the only difference is that left derived functors are defined
via injective resolutions and right derived functors via projective ones. The basic
example is:
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Example 4.7. Let B be an R-module. The contravariant functor HomR( , B) is left
exact. Its i-th right derived functor, denoted by ExtiR( , B), is defined by tak-
ing a projective resolution P• → A of an R-module A and setting ExtiR(A,B) :=

H i(HomR(P•, B)). We have an isomorphism Ext0
R(A,B) ∼= HomR(A,B) and every

short exact sequence 0 → A1 → A2 → A3 → 0 of R-modules induces a long exact
sequence

0→ HomR(A3, B)→ HomR(A2, B)→ HomR(A1, B)→ Ext1
R(A3, B)→ Ext1

R(A2, B)→ · · ·

Again this works more generally in any abelian category having enough injectives.

Now an important question arises: we have defined the groups ExtiR(A,B) in two
ways, via a projective resolution of A and an injective resolution of B. Do the two
methods give the same result? Similarly, we have defined the groups Tori(A,B) via
a projective resolution of B; does using a projective resolution of A yield the same
groups? The answer is yes in both cases - we’ll see it in the section on total derived
functors.

5. EXT AND TOR

Now that we have Ext functors at our disposal, we can give another characteri-
zation of projective modules.

Proposition 5.1. The following are equivalent for an R-module A.

(1) A is projective.
(2) ExtiR(A,B) = 0 for all i > 0 and all R-modules B.
(3) Ext1

R(A,B) = 0 for all R-modules B.

Proof. The implication (1) ⇒ (2) is a special case of Remark 4.5 (1), (2) ⇒ (3) is
obvious, and (3)⇒ (1) follows from the long exact sequence of Ext. �

For injective modules we have a similar characterization, but it can be sharpened
using Baer’s criterion.

Proposition 5.2. The following are equivalent for an R-module B.

(1) B is injective.
(2) ExtiR(A,B) = 0 for all i > 0 and all R-modules A.
(3) Ext1

R(A,B) = 0 for all R-modules A.
(4) Ext1

R(R/I,B) = 0 for all ideals I ⊂ R.
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Proof. The equivalence of (1)–(3) is proven as above and (3) ⇒ (4) is obvious. Now
consider the exact sequence 0 → I → R → R/I → 0 for an ideal I ⊂ R and
apply the functor HomR( , B). The associated long exact sequence together with
assumption (4) shows that the map HomR(R,B) → HomR(I, B) is surjective, so (1)
holds by Baer’s criterion.

There is a similar characterization for flat modules as well.

Proposition 5.3. The following are equivalent for an R-module A.

(1) A is flat.
(2) TorRi (A,B) = 0 for all i > 0 and all R-modules B.
(3) TorR1 (A,B) = 0 for all R-modules B.
(4) TorR1 (R/I,A) = 0 for every ideal I ⊂ R.

Proof. To prove (1) ⇒ (2) we use dimension shifting. Take an exact sequence 0 →
K → P → B → 0 with P projective. The long exact sequence of Tor gives an exact
sequence

TorR1 (A,P )→ TorR1 (A,B)→ A⊗R K → A⊗R P

Here TorR1 (A,P ) = 0 because P is projective, hence TorR1 (A,B) = 0 as tensoring by
A is left exact by assumption. In view of Tori(A,P ) = 0 for i > 0 the continuation
of the sequence gives isomorphisms

TorRi (A,B)
∼→ TorRi−1(A,K)

for all i > 1, whence (2) by induction on i.
The implications (2)⇒ (3)⇒ (4) being obvious, only (4)⇒ (1) remains. Assume

φ : B0 → B is an injective map of R-modules. To prove that φ ⊗ idR : A ⊗R B0 →
A ⊗R B is also injective we may assume using Proposition 2.6 that B0 and B are
both finitely generated. In this case we find t1, . . . , tr ∈ B so thatB = 〈B0, t1, . . . , tr〉.
Setting Bj := 〈B0, t1, . . . , tj〉 for all 1 ≤ j ≤ r we obtain a finite filtration B0 ⊂ B1 ⊂
· · · ⊂ Br = B such that Bj/Bj−1

∼= 〈tj〉 ∼= R/Ij for the ideal Ij ⊂ R annihilating tj .
But then tensoring the exact sequence 0 → Bj−1 → Bj → R/Ij → 0 by A gives an
exact sequence

TorR1 (R/Ij, A)→ A⊗R Bj−1 → A⊗R Bj

where TorR1 (R/Ij, A) = 0 by assumption. Therefore A⊗R B0 → A⊗R B is injective,
being the composite of the injective maps A⊗R Bj−1 → A⊗R Bj . �

Using Proposition 5.3 it is easy to prove a structure theorem for finitely generated
flat modules over Noetherian local rings.
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Proposition 5.4. Let R be a Noetherian local ring with maximal ideal P and residue
field k, and let A be a finitely generated R-module. If A is flat over R, or more general-
ly Tor1(A, k) = 0, then A is free over R.

Proof. Let a1, . . . an ∈ A be elements such that their mod PA images form a basis
of the k-vector space A/PA. By Nakayama’s lemma they generate A, so the map
φ : Rn → A sending (r1, . . . , rn) to r1a1 + · · · + rnan is surjective, giving rise to
an exact sequence 0 → B → Rr → A → 0. Now tensor this sequence by k over
R. Since Tor1(A, k) = 0, the long exact sequence of Tor implies the exactness of
0→ B/PB → Rr/PRr → A/PA→ 0, whence B = PB. Since R is Noetherian, B is
finitely generated, hence 0 by Nakayama’s lemma. �

Finally we explain the origin of the names of the functors Tor and Ext. For Tor
the name comes from ‘torsion’:

Proposition 5.5. Let R be a ring and A an R-module. If r ∈ R is a non-zerodivisor, then

Tor1(R/(r), A) ∼= {a ∈ A | ra = 0}.

The module on the right hand side is called the r-torsion in A. The module A is
called torsion free if it has no r-torsion for any r. In the case R = Z and n ∈ Z we
get back the notion of n-torsion in an abelian group. It can be shown that in this
case the whole torsion subgroup is isomorphic to Tor1(Q/Z, A).

Proof. Consider the exact sequence 0 → R
r→ R → R/(r) → 0. Since R is projec-

tive as an R-module, part of the associated long exact Tor-sequence gives an exact
sequence

0 = TorR1 (R,A)→ TorR1 (R/(r), A)→ A
r→ A

whence the statement follows. �

Corollary 5.6. Over a principal ideal domain a module is torsion free if and only if it is flat.

Proof. If R is a principal ideal domain and I ⊂ R is an ideal, then I = (r) for some
r ∈ R and therefore TorR1 (R/I,A) = TorR1 (R/(r), A). The vanishing of this group for
all r ∈ R is equivalent to A being torsion free by the proposition and to A being flat
by Proposition 5.3. �

The Ext functor received its name from its relation to extensions. An extension of
an R-module C by A is an R-module B fitting in a short exact sequence

0→ A→ B
p→ C → 0.
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The extension is split if there is a map i : C → B with p ◦ i = idC . In this case B is
isomorphic to the direct sum A⊕ C.

Two extensions B and B′ are equivalent if there is an R-module map φ : B → B′

fitting in a commutative diagram

0 −−−→ A −−−→ B −−−→ C −−−→ 0yid

yφ yid

0 −−−→ A −−−→ B′ −−−→ C −−−→ 0.

The Snake Lemma shows that in this case φ must be an isomorphism, whence it
follows that we have indeed defined an equivalence relation. Denote by Ext(C,A)

the set of equivalence classes of extensions of C by A.

Construction 5.7. We construct a map Ext(C,A) → Ext1
R(C,A) as follows. Take a

projective resolution P• → C. By Lemma 3.9 the diagram

. . . −−−→ P2
p2−−−→ P1

p1−−−→ P0
p0−−−→ C −−−→ 0yid

. . . −−−→ 0
b2−−−→ A

b1−−−→ B
b0−−−→ C −−−→ 0

can be filled in as

. . . −−−→ P2
p2−−−→ P1

p1−−−→ P0
p0−−−→ C −−−→ 0y yα1

yα0

yid

. . . −−−→ 0
b2−−−→ A

b1−−−→ B
b0−−−→ C −−−→ 0

where α1◦p2 = 0. This shows that α1 ∈ HomR(P1, A) is contained inZ1(Hom(P1, A)),
whence a class e ∈ Ext1

R(C,A). Since any two projective resolutions of C are chain
homotopy equivalent by Corollary 3.10, the class e does not depend on the choice
of P•. Finally, equivalent extensions give rise to the same class e ∈ Ext1

R(C,A) by
construction.

In case of a split extension the splitting i : C → B induces a commutative diagram

. . . −−−→ P2
p2−−−→ P1

p1−−−→ P0
p0−−−→ C −−−→ 0y y0

yi◦p0 yid

. . . −−−→ 0
b2−−−→ A

b1−−−→ B
b0−−−→ C −−−→ 0

so that the associated class is 0.

Remark 5.8. There is another way to construct the extension class e: apply the func-
tor HomR(C, ) to the exact sequence 0 → A → B → C → 0. The resulting long
exact sequence gives rise to a coboundary map HomR(C,C) → Ext1

R(C,A). Define
e as the image of the identity map of C by this map. One can check that it depends
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only on the extension class of B and the resulting map Ext(C,A) → Ext1
R(C,A) is

the same as the one constructed above.

Proposition 5.9. The map Ext(C,A)→ Ext1
R(C,A) constructed above is a bijection send-

ing the class of the split extension A⊕ C to 0.

The proof uses the pushout construction: given an exact sequence of R-modules
0 → A → B → C → 0 and an R-module map φ : A → A′, define an R-module
X as the quotient of A′ ⊕ B by the submodule of elements of the form (φ(a),−a)

for a ∈ A. The natural projection A′ ⊕ B → B induces a map X → C sitting in a
commutative diagram with exact rows

0 −−−→ A −−−→ B −−−→ C −−−→ 0yφ y yid

0 −−−→ A′ −−−→ X −−−→ C −−−→ 0.

Moreover, X has the following universal property: for any X ′ sitting in a diagram
of the above type there is an R-module map X → X ′ inducing an equivalence of
extensions of C by A′. All this is straightforward to verify.

Sketch of proof of Proposition 5.9. We have already noted that the split extension class
goes to 0. We construct an inverse map Ext1

R(C,A)→ Ext(C,A) as follows. Choose
projective resolution P• → C as above. A class in Ext1

R(C,A) is then represented by
a homomorphism φ : P1/Im (p2)→ A. Now form the pushout of the extension 0→
P1/Im (p2)→ P0 → C → 0 by φ and take the associated class in Ext(C,A). As in the
above construction, one verifies using Lemma 3.9 that choosing another projective
resolution gives rise to the same extension class. It follows from the constructions
that the two maps are inverse to each other; we leave details to the reader. �

Remark 5.10. It is possible to define an abelian group structure on Ext(C,A) so that
the above bijection becomes an isomorphism of abelian groups. Besides pushout,
this also uses the analogous pullback construction: given an exact sequence of R-
modules 0 → A → B

p→ C → 0 and an R-module map ψ : C ′ → C, define an
R-module Y as the submodule of B ⊕ C ′ given by {(b, c′) : p(b) = ψ(c′)}. The
inclusion A → B induces an inclusion A → Y sitting in a commutative diagram
with exact rows

0 −−−→ A −−−→ Y −−−→ C ′ −−−→ 0yid

y yψ
0 −−−→ A −−−→ B

p−−−→ C −−−→ 0.

Here Y has a similar universal property as the pushout.
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Now assume 0 → A → B → C → 0 and 0 → A → B′ → C → 0 represent two
classes in Ext(C,A). Form first the direct sum extension

0→ A⊕ A→ B ⊕B′ → C ⊕ C → 0,

then take pushout by the map A ⊕ A → A, (a1, a2) 7→ a1 + a2, and finally take the
pullback of the resulting extension of C ⊕C by A by the diagonal map C → C ⊕C.
The resulting extension is the Baer sum of the extensions given byB andB′. It can be
checked that the construction respects the equivalence relation on extensions and
gives Ext(C,A) the structure of an abelian group with zero element A ⊕ C so that
the map Ext(C,A) → Ext1

R(C,A) is an isomorphism. (Note: it is enough to check
that the map Ext(C,A) → Ext1

R(C,A) respects addition, then the group axioms for
Ext(C,A) follow from those in Ext1

R(C,A).)

Remarks 5.11. 1. The above description of Ext1 via extensions works more gener-
ally in an abelian category having enough projectives, using the same arguments.

2. There is a generalization of the above construction to higher Ext groups due to
Yoneda. Elements of the Yoneda Ext groups YExtn(C,A) are represented by n-fold
extensions

0→ A→ B1 → B2 → · · · → Bn → C → 0

subject to a certain equivalence relation. We’ll discuss this construction later, in the
context of derived categories.

6. HOMOLOGICAL DIMENSION

In this section and the next we employ the notation A for rings and M,N for
A-modules.

Definition 6.1. Let A be a ring, M is an A-module. We say that M has a projective
resolution of length i if there exists an exact sequence

0→ Pi → · · · → P0 →M → 0

with all Pj projective.
The projective dimension pd(M) of M is defined as the smallest i for which M has

a projective resolution of length i; it may be infinite. The global dimension of A is

gldim(A) := sup{pd(M) |M is an A-module}.

It can be infinite as well.

Proposition 6.2. The following are equivalent for an A-module M :

(1) pd(M) ≤ d,
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(2) ExtiA(M,N) = 0 for all A-modules N and i > d,
(3) Extd+1

A (M,N) = 0 for all A-modules N ,
(4) If 0→ Md → Pd−1 → · · · → P0 → M → 0 is exact and the Pi are projective, then

Md is projective.

Proof. The implications (4) ⇒ (1) and (2) ⇒ (3) are obvious. (1) ⇒ (2) follows
because we may calculate the Ext functors using a projective resolution of length
≤ d. To prove (3)⇒ (4), we split the exact sequence of (4) in short exact sequences
of the form 0→Mi → Pi−1 →Mi−1 → 0 (here M0 = M). Since the Pi are projective,
the associated long exact sequences for Ext give isomorphisms Extd+2−i

A (Mi−1, N) ∼=
Extd+1−i

A (Mi, N) for all N and all 0 ≤ i ≤ d. Then (3) implies Ext1
A(Md, N) = 0 for

all N , so Md is projective by Proposition 5.1. �

Corollary 6.3. The global dimension of A is the smallest (possibly infinite) d such that
Extd+1

A (M,N) = 0 for all A-modules M,N .

Example 6.4. The global dimension of a field is 0. The global dimension of Z is 1.
Indeed, given an abelian group B, we may embed it in an injective abelian group
Q. For abelian groups being injective is the same as being divisible, whence we get
that the quotientQ/B is also injective. This means thatB has an injective resolution
of length 2, whence Ext2

Z(M,B) = 0 for every abelian group M . (Alternatively, we
could have deduced gldim(Z) = 1 from the fact that any subgroup of a free abelian
group is free.) We shall see a vast generalization of this fact in Theorem 7.4 below.

Remarks 6.5.
1. One can define the injective dimension of a module as the length of the shortest
possible injective resolution and prove an analogue of Proposition 6.2 for injective
dimension. This shows that the global dimension of A is also the supremum of
injective dimensions of modules because the previous corollary can be reproven
using injective resolutions.

2. Quite generally, one can define the homological dimension of an abelian category
A as the smallest d such that ExtiA(A,B) = 0 for all i > d and all objects A,B in A.
(Here the Ext-groups are defined, for instance, using the Yoneda method.) The
above notion is the special case of module categories.

The following proposition allows us to restrict to finitely generated modules.

Lemma 6.6. Let A be a ring and i ≥ 0 an integer. The following are equivalent:

(1) ExtiA(M,N) = 0 for all A-modules M , N .
(2) ExtiA(M,N) = 0 for all A-modules N and all finitely generated A-modules M .
(3) ExtiA(A/I,N) = 0 for all A-modules N and ideals I ⊂ A.
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Proof. The implications (1)⇒ (2)⇒ (3) being obvious, we show (3)⇒ (1). Take an
injective resolution 0→ N → Q• of N , and truncate it as

0→ N → Q0 → Q1 → · · · → Qi−2 → N i−1 → 0

By a similar dimension-shifting argument as in the previous proof we have an i-
somorphism ExtiA(M,N) ∼= Ext1

A(M,N i−1), so that ExtiA(M,N) = 0 for all M if
and only if Ext1

A(M,N i−1) = 0 for all M . By Proposition 5.2 this is equivalent to
N i−1 being injective, and also to Ext1

A(A/I,N i−1) = 0 for all ideals I ⊂ A. This
in turn is equivalent to saying that ExtiA(A/I,N) = 0 for all i, again by dimension
shifting. �

Corollary 6.7. gldim(A) = sup{pd(M) |M is a finitely generated A-module}.

In the local case projective dimension can also be calculated by Tor.

Proposition 6.8. Let A be a Noetherian local ring with maximal ideal P and M a finitely
generated A-module. Then pd(M) ≤ d if and only if TorAd+1(M,k) = 0, where k = A/P .

Proof. The ‘only if’ part follows by calculating Tor by means of a projective resolu-
tion of length ≤ d. We prove the ‘if’ part by induction on d. The case d = 0 follows
from Proposition 5.4. For the inductive step use the fact that M is finitely generated
to obtain an exact sequence 0 → N → An → M → 0 with some n. Here N is also
finitely generated because A is Noetherian. The associated long exact Tor-sequence
implies TorAd (N, k) ∼= TorAd+1(M,k) for d > 0, so pd(M) ≤ pd(N) + 1 ≤ d by induc-
tion (for the first inequality note that a projective resolution of N can be extended
by An to obtain a projective resolution of M ). �

We can now prove a characterization of global dimension for Noetherian local
rings which involves a single module.

Corollary 6.9. If A is a Noetherian local ring with residue field k, then

gldim(A) = pd(k) = max {d : TorAd (k, k) 6= 0}.

Proof. The second equality follows from Proposition 6.8 applied with M = k. To
prove the first one, note that by Corollary 6.7 and Proposition 6.8 we have gldim(A) ≤
d if and only if TorAd+1(M,k) = 0 for all finitely generated M over A. If pd(k) ≤ d,
then TorAd+1(M,k) = 0 follows by using a projective resolution of length ≤ d. Con-
versely, if TorAd+1(M,k) = 0 for all finitely generated M , then in particular this holds
for M = k, whence pd(k) ≤ d by Proposition 6.8. �

We now state one of the most important results about homological dimension.
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Theorem 6.10. (Serre) A Noetherian local ring A is regular if and only if gldim(A) <∞.
In this case gldim(A) = dim (A).

We shall give several proofs of Serre’s theorem in these notes. The proof given in
this section will use induction along regular sequences. In Section 8 we shall give
a second proof of one implication and prove a refined statement using the Koszul
complex. Finally, in Section 15 we shall present a recent proof that uses derived
categories.

We begin with some auxiliary statements.

Proposition 6.11. Let A be any ring, x ∈ A a non-zerodivisor and M an A/(x)-module
such that pdA/(x)(M) <∞. Then pdA(M) = pdA/(x)(M) + 1.

Proof. We proceed by induction on pdA/(x)(M). If it is 0, then M is projective over
A/(x). Since x is a non-zerodivisor, we have a short exact sequence

0 // A
·x // A // A/(x) // 0 .

This is a projective resolution ofA/(x) overA hence pdA(A/(x)) ≤ 1. Now pdA(A/(x)) =

0 would mean that A/(x) is projective over A, hence a direct summand of a free A-
module F . That is impossible because x is a non-zerodivisor in A, hence in F but
a zero-divisor on A/(x). So pdA(A/(x)) = 1 and therefore pdA(F ) = 1 for any free
A/(x)-module F . This also implies pdA(M) = 1 since M is a direct summand of a
free A/(x)-module.

For the inductive step assume pdA/(x)(M) > 0 and take an exact sequence of
A/(x)-modules

0 // K // P // M // 0

where P is projective over A/(x). We have two associated long exact Ext-sequences
of the form

(2) Exti(P,N) // Exti(K,N) // Exti+1(M,N) // Exti+1(P,N) ,

one over A/(x) and one over A. Over A/(x) we have Exti(P,N) = 0 for all i > 0

hence ExtiA/(x)(K,N) ∼= Exti+1
A/(x)(M,N) for all i > 0. This implies

(3) pdA/(x)(M) = pdA/(x)(K) + 1.

By induction, we then have

(4) pdA(K) = pdA/(x)(K) + 1.

On the other hand, over A we have Exti(P,N) = 0 for all i > 1 as we have proven
pdA(P ) = 1 above. Hence ExtiA(K,N) ∼= Exti+1

A (M,N) for all i > 1. This gives

pdA(M) = pdA(K) + 1
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provided that pdA(M) > 1. This proves the proposition for the case pdA(M) > 1.
To conclude, we show that pdA/(x)(M) > 0 implies pdA(M) > 1. Assume this is

not the case, i.e. pdA(M) = 1. This implies ExtiA(M,N) = 0 for i > 1 and all N .
Since P is projective over A/(x), we know it has projective dimension 1 over A, so
ExtiA(P,N) = 0 for i > 1 and all N as well. From the long exact sequence (2) we get
Ext2

A(K,N) = 0 for all N , and therefore pdA(K) ≤ 1. Here pdA(K) = pdA/(x)(M) by
equations (3) and (4). So we have to exclude the case pdA(M) = pdA/(x)(M) = 1.

Choose an exact sequence of A-modules

0 // C // F // M // 0

with F free. Then C is projective by Proposition 6.2 since pdA(M) = 1. So this is, in
fact, a projective resolution of M . Tensoring the sequence with A/(x) yields

TorA1 (F,A/(x)) // TorA1 (M,A/(x)) // C/xC // F/xF // M/xM // 0

where the first term is 0 because F is free and M/xM = M since M is an A/(x)-
module. Since C/xC and F/xF are already projective over A/(x) and pdA/(x)(M) =

1, we get that TorA1 (M,A/(x)) is projective over A/(x) by Proposition 6.2 (applied
with d = 2 > 1). By Proposition 5.5 we have TorA1 (M,A/(x)) = {m ∈ M | xm =

0} = M , and therefore M is projective over A/(x), a contradiction. �

Combining the proposition with Corollary 6.9 gives

Corollary 6.12. If A is a Noetherian local ring with maximal ideal P , x ∈ P is a non-
zerodivisor and gldim(A/(x)) <∞, then

gldim(A) = gldim(A/(x)) + 1.

We now prove a similar transition statement for A-modules.

Proposition 6.13. Let A be a ring, M be an A-module and x a non-zerodivisor on both A
and M . Then

pdA(M) ≥ pdA/(x)(M/xM)

If moreover A is a Noetherian local ring with maximal ideal P , M is finitely generated and
x ∈ P , then equality holds.

Proof. We may assume d := pdA(M) < ∞. We proceed by induction on d. If d = 0,
then M is projective over A and then so is M/xM over A/(x). For d > 0, choose an
exact sequence of A-modules

(5) 0 // K // F // M // 0
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withF free. Then as in the previous proof pdA(K) = d−1 and hence pdA/(x)(K/xK) ≤
d − 1 by induction (note that since x is a non-zerodivisor on A, the same holds for
F and hence K). Tensoring the above sequence by A/(x) we get an exact sequence

TorA1 (M,A/(x)) // K/xK // F/xF // M/xM // 0

where TorA1 (M,A/(x)) = {m ∈ M | xm = 0} = 0 by Proposition 5.5. Therefore
either pd(M/xM) = 0 and the inequality holds trivially, or the argument with the
long exact sequence of Ext gives pdA/(x)(M/xM) = pdA/(x)(K/xK)+1 ≤ d. The first
statement is proven.

We prove the second statement by induction on n = pdA/(x)(M/xM) starting with
n = 0. In this case M/xM is projective over A/(x), hence free by Proposition 2.15.
We claim that M is also free over A, which will prove the case n = 0. Let m1, . . . ,mr

be a free generating system of M/xM over A/(x). By Nakayama’s lemma, it is also
a generating system over A since x ∈ P . Now, assume that a1m1 + · · · + armr = 0

for some ai ∈ A. We know that ai ∈ (x) since modulo (x) there is no nontrivial
relation. Therefore we find a′i ∈ A with ai = a′ix for all i and may rewrite the
relation as (a′1m1 + · · ·+ a′rmr)x = 0. Since x is a non-zerodivisor on M , this implies
a′1m1 + · · · + a′rmr = 0. But then a′i ∈ (x) and so, after repeating the argument
infinitely many times, finally obtain ai ∈ ∩n(xn) ⊂ ∩nP n for all i. This gives ai = 0

by Krull’s Intersection Theorem.
For the inductive step assume n > 0. From the proof of the first statement we

already know pdA/(x)(M/xM) = pdA/(x)(K/xK) + 1, and from exact sequence (5)
we get pdA(M) = pdA(K) + 1 since pdA(M) ≥ n > 0 by the first statement. We
conclude by applying the inductive hypothesis to K. �

Before starting the proof of Serre’s theorem we need to recall some basic facts
about associated primes.

Facts 6.14. An associated prime in a ring A is a prime ideal P ⊂ A such that P =

{x ∈ A : ax = 0} for some a ∈ A. Not every ideal of this form is a prime ideal but
every such ideal is contained in an associated prime. Consequently the union of all
associated primes is the set of zero-divisors in A. When A is Noetherian, there are
only finitely many associated primes in A.

Proof of Theorem 6.10. Assume first A is regular. We proceed by induction on d :=

dim (A). If d = 0 then A is a field, so every A-module is free and the global di-
mension is 0. If d > 0, then let x be a non-zerodivisor in the maximal ideal P (take
an element in a regular sequence). We know that A/(x) is a regular local ring of
dimension d− 1. On the other hand gldim(A/(x)) = gldim(A)− 1 by Corollary 6.12
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provided that gldim(A/(x)) <∞, but that is true by induction. By induction we al-
so know that dim (A/(x)) = gldim(A/(x)), so gldim(A) <∞ and gldim(A) = dim (A)

follow.
For the converse we use induction on gldim(A). If it is zero, then all A-modules

are projective, hence the finitely generated ones are free by Proposition 2.15. In
particular, the module k := A/P is free which is only possible if A = k, so A is
regular of dimension 0.

If gldim(A) =: d > 0, we prove first that there exists a non-zerodivisor x ∈ P \P 2.
For this it will be enough to show that P is not an associated prime of A, because
then the existence of x will follow from the Prime Avoidance Lemma applied to
P 2 and the associated primes of A. Suppose P is the annihilator of some x ∈ A.
Sending 1 to x induces a homomorphismA→ Awith kernel P ; letC be its cokernel.
We thus have an exact sequence of A-modules

0→ k → A→ C → 0.

Part of the associated long exact Tor-sequence reads

TorAd+1(C, k)→ TorAd (k, k)→ TorAd (A, k)

where TorAd (A, k) = 0 because A is a free A-module and TorAd (k, k) 6= 0 by Corollary
6.9. But then TorAd+1(C, k) 6= 0, contradicting the assumption gldim(A) = d.

So let x ∈ P \ P 2 be a non-zerodivisor. Assume for a moment that we know that
gldim(A/(x)) <∞. Then by Corollary 6.12 we have gldim(A/(x)) = gldim(A)−1, so
by induction A/(x) is regular. Lifting a regular sequence generating P mod (x) and
adding x we obtain a regular sequence generating P . This proves that A is regular.

We still have to justify that gldim(A/(x)) <∞ if gldim(A) <∞. In view of Propo-
sition 6.8 we have to prove pdA/(x)(k) <∞. Using the exact sequence

0 // P/(x) // A/(x) // k // 0

of A/(x)-modules we reduce to proving pdA/(x)(P/(x)) < ∞. By the second part of
Proposition 6.13,

pdA/(x)(P/xP ) = pdA(P ) <∞
But P/(x) is not the same as P/xP . So to finish the proof we shall show that the
exact sequence

0 // (x)/xP // P/xP // P/(x) // 0

splits. This will suffice, since then P/(x), being a direct summand of P/xP , will also
have finite projective dimension (use the Ext criterion provided by Proposition 6.2).

As x ∈ P\P 2 there exist x2, . . . , xr ∈ P such that x, x2, . . . , xr modulo P 2 is a basis
of P/P 2. Then (x) ∩ ((x2, . . . , xr) + P 2) ⊆ xP . Indeed, if not, then there would exist
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y ∈ (x2, . . . , xr) + P 2 such that y = xu where u ∈ A \ P is a unit. However, then
x = u−1y ∈ (x2, . . . , xr) + P 2, contradicting the choice of (x2, . . . , xr). Now consider
the sequence of maps

P/(x)
=→ ((x)+(x2, . . . , xr)+P

2)/(x)
∼=→ ((x2, . . . , xr)+P

2)/((x)∩((x2, . . . , xr)+P
2))→

→ P/xP → P/(x).

The composition is the identity as one can check, and we get the required splitting.
�

Remark 6.15. Notice that if we knew that the statement of Corollary 6.12 holds
without the assumption gldim(A/(x)) < ∞, the whole last section of the above
proof (and hence also Proposition 6.13) would be unnecessary.

This is what we shall prove in Section 15: more precisely, we shall construct a
direct sum decomposition

TorAi (k, k) ∼= Tor
A/(x)
i (k, k)⊕ Tor

A/(x)
i−1 (k, k)

assuming only that A is local with residue field k (but assuming x /∈ P 2 which is
harmless), from which the required statement follows in the Noetherian case by
Corollary 6.9.

7. APPLICATIONS OF SERRE’S THEOREM

We now discuss structural results for regular rings whose proof is enabled, or
at least greatly simplified, by homological methods. We begin with the following
statement.

Proposition 7.1. Let A be a Noetherian ring. Then

gldim(A) = sup {gldim(AQ) : Q ⊂ A is a prime ideal}

= sup {gldim(AQ) : Q ⊂ A is a maximal ideal}.

The proof uses a base change property for Ext groups.

Lemma 7.2. Let A be a Noetherian ring, B a flat A-algebra, M a finitely generated A-
module and N an arbitrary A-module.

We have isomorphisms

ExtiA(M,N)⊗A B ∼= ExtiB(M ⊗A B,N ⊗A B)

for all i ≥ 0.
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Proof. First we treat the case i = 0 and M free. Tensoring a homomorphism M → N

by B gives a map HomA(M,N)→ HomB(M ⊗AB,N ⊗AB) which factors through a
map HomA(M,N)⊗A B → HomB(M ⊗A B,N ⊗A B) since the target is a B-module.
For M = A this map identifies with the identity map of N ⊗A B and hence is an
isomorphism. Using compatibility of the Hom and tensor product functors with
finite direct sums we obtain an isomorphism when M is free.

SinceM is finitely generated andA is Noetherian there exists a resolution P• →M

with the Pi finitely generated and free. (Indeed, there is a surjection p : P0 � M

with a finitely generated free A-module P0; since A is Noetherian, the kernel K of
p is again finitely generated and we may repeat the process starting with K.) By
flatness of B we have

ExtiA(M,N)⊗A B = H i(HomA(P•, N))⊗A B ∼= H i(HomA(P•, N)⊗A B)

and by the previous paragraph the latter group identifies with

H i(HomB(P• ⊗A B,N ⊗A B)) = ExtiB(M ⊗A B,N ⊗A B).

�

Proof of Proposition 7.1. First we prove that gldim(AQ) ≤ gldim(A) for every prime
ideal Q ⊂ A. This is obvious when gldim(A) is infinite, so we may assume it is a
finite number d. Then the A-module A/Q has a projective resolution P• → A/Q

of length ≤ d. Here for each i the AQ-module Pi ⊗A AQ is projective (indeed, if
Pi is a direct summand of a free module, so is Pi ⊗A AQ). But then by flatness
of AQ over A the complex P• ⊗A AQ is a projective resolution of the residue field
AQ/QAQ ∼= (A/Q)⊗A AQ over AQ, and we conclude by Corollary 6.9.

On the other hand, suppose gldim(A) = d for some d. Then there are A-modules
M,N such that ExtdA(M,N) 6= 0; by Lemma 6.6 we may assume M is finitely gener-
ated. By Lemma 2.20 (1) we find a maximal idealQ such that ExtdA(M,N)⊗AAQ 6= 0.
Since AQ is flat over A, Lemma 7.2 (1) gives ExtdAQ(M ⊗A AQ, N ⊗A AQ) 6= 0, so that
gldim(AQ) ≥ d also holds. The same argument shows that gldim(A) = ∞ implies
that for any d we can find a maximal ideal Q with gldim(AQ) ≥ d. �

Combining the proposition with Theorem 6.10, we immediately get:

Corollary 7.3. Let A be a regular local ring and Q ⊂ A a prime ideal. Then AQ is also
regular.

Recall now that a Noetherian ring is regular if all of its localizations by maximal
ideals are regular local rings. By Corollary 7.3 this is the same as requiring that all
localizations by prime ideals are regular local rings. Now combining Theorem 6.10
with Proposition 7.1 we obtain:
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Corollary 7.4. If A is a Noetherian ring of finite Krull dimension d, then A is regular if
and only if gldim(A) = d.

In particular, since polynomial rings over fields are regular, we have:

Corollary 7.5. (Hilbert’s Syzygy Theorem) If k is a field, then gldim(k[x1, . . . , xd]) = d.

Remark 7.6. In fact, over k[x1, . . . , xd] every finitely generated projective module is
free. This was a conjecture of Serre, solved independently by Quillen and Suslin.
Consequently, every finitely generated module over k[t1, . . . , td] has a finite free res-
olution.

The last classical result about regular rings is:

Theorem 7.7. (Auslander – Buchsbaum) A regular local ring is a unique factorization
domain.

For the proof we need several auxiliary statements.

Lemma 7.8. A Noetherian integral domain A is a unique factorization domain (UFD) if
and only if every height 1 prime ideal in it is principal.

For the proof recall the following basic criterion for unique factorization: a do-
main A is a UFD if and only if the principal ideals satisfy the ascending chain con-
dition (this is automatic forANoetherian) and every irreducible element is a prime.
Here p ∈ A is called irreducible if it cannot be written as a product of two non-units
and a prime if (p) is a prime ideal.

Proof. If A is a unique factorization domain, every height 1 prime ideal P contains
a prime element p (take a prime divisor of some nonzero a ∈ P ), so that there is
an inclusion (p) ⊆ P of prime ideals which must be an equality since ht(P ) = 1.
Conversely, if every height 1 prime ideal is principal and p ∈ A is an irreducible
element, take a minimal prime ideal P containing p. Since A is a domain, the Haup-
tidealsatz gives ht(P ) = 1. By assumption we then have P = (a) for some a ∈ A

which must therefore divide p. As p is irreducible, we get P = (p). �

Remark 7.9. The criterion of the lemma has an interesting geometric interpretation:
for a local ring of some variety at a point P it means that every codimension 1
subvariety can be defined, at least locally around a point, by a single equation, or in
other words by cutting with a hypersurface. Therefore the theorem will imply that
this always holds around smooth points.

The next lemma is:
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Lemma 7.10. (Nagata) If A is a Noetherian integral domain such that Ax is a unique
factorization domain for some prime element x ∈ A, thenA is a unique factorization
domain.

Here Ax denotes the localization of A by the subset {1, x, x2, x3, . . . }.

Proof. We use the criterion of the previous lemma. Take a height 1 prime ideal
P ⊆ A. If x ∈ P , then P = (x) since (x) is a prime ideal and ht(P ) = 1, so we
are done. So assume x /∈ P . In this case the lemma shows that there exists p ∈ P
such that PAx = pAx. We may assume that p /∈ (x) ∩ P . Indeed, if p = ax for some
a ∈ A, then a ∈ P as P is a prime ideal and x /∈ P . If a ∈ (x) we repeat the process,
obtaining an ascending chain of prime ideals (p) ( (a) ( (a1) ( (a2) ( · · · which
must stop at some ideal (ai) as A is Noetherian. Here ai is not contained in (x) but
pAx = aiAx, so we may replace p by ai.

We now show P = (p). So far we know that for all y ∈ P there exists a ∈ A and
m,n > 0 such that y/xn = p(a/xm) since A is a domain. This means that xky ∈ (p)

for big enough k, so it is enough to show that xy ∈ (p) implies y ∈ (p). If xy = ap,
then a ∈ (x) as (x) is a prime ideal and p /∈ (x). Therefore a = bx for some b, hence
xy = ap = bxp and finally y = bp because A is a domain. �

Next a lemma which is basically linear algebra.

Lemma 7.11. (Kaplansky) If A is an integral domain and I1, . . . , In, J1, . . . , Jn ⊆ A

ideals such that
n⊕
i=1

Ii ∼=
n⊕
i=1

Ji

as A-modules, then I1 · · · · · In ∼= J1 · · · · · Jn as A-modules.

The lemma is easiest to prove using exterior products, about which we recall
some basics.

Facts 7.12. Let A be a ring, M an A-module and n ≥ 0. The n-th exterior power (or
wedge power) of M is defined by

ΛnM := M⊗n/〈m1 ⊗ · · · ⊗mn | ∃1 ≤ i < j ≤ n : mi = mj〉

where Λ0M = A and Λ1M = M . We denote the image of m1 ⊗ · · · ⊗mn in ΛnM by
m1 ∧ · · · ∧mn. The following properties hold:

(1) The A-module ΛnM is characterized by the following universal property:
for all A-modules N and all n-linear maps ϕ : M × · · · ×M → N such that
ϕ(m1, . . . ,mn) = 0 if mi = mj for some i 6= j there exists a factorization
M × · · · ×M → ΛnM → N where the first map is the natural surjection.

(2) Every A-module map M → N induces maps ΛnM → ΛnN for all n ≥ 0.
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(3) There are natural associative product maps ΛnM × ΛmM → Λn+mM. These
two properties follow from the corresponding properties of the tensor prod-
uct.

(4) If B is an A-algebra, there are canonical isomorphisms

Λn(M ⊗A B) ∼= (ΛiM)⊗A B.

Indeed, one checks that the right hand side verifies the universal property
characterizing the left hand side.

(5) In ΛnM we have the relations for all i:

m1 ∧ · · · ∧mi ∧mi+1 ∧ · · · ∧mn = −m1 ∧ · · · ∧mi+1 ∧mi ∧ · · · ∧mn

(6) If M ∼= Ar is free with basis e1, . . . , er, then ΛnM is free with basis

{ei1 ∧ · · · ∧ ein | 1 ≤ i1 < i2 < · · · < in ≤ r};

in particular, for r = n it is free of rank 1. If v1, . . . , vr are r elements in Ar,
then v1 ∧ · · · ∧ vr = det(aij)e1 ∧ · · · ∧ er, where [aij] is the matrix of the linear
map M →M given by ei 7→ vi for i = 1, . . . , r.

(7) For all A-modules M,N we have isomorphisms

Λn(M ⊕N) ∼=
⊕
i+j=n

ΛiM ⊗ ΛjN.

(The isomorphism is induced by the maps (m1 ∧ · · · ∧mi)⊗ (n1 ∧ · · · ∧nj) 7→
m1 ∧ · · · ∧mi ∧ n1 ∧ · · · ∧ nj for mi ∈ M , nj ∈ N . That this map is indeed an
isomorphism is easy to verify in the case when M and N are free modules
using the previous fact, and that will be the only case we’ll need. For general
M and N the argument is a bit more involved.)

Proof of Lemma 7.11. LetK be the fraction field ofA, and putM := I1⊕· · ·⊕In. Then
M ⊗A K ∼= Kn since I ⊗A K = K for all ideals I . Therefore by property (4) above
ΛnM⊗AK ∼= Λn(M⊗AK) ∼= K which, composed with the map ΛnM → ΛnM⊗AK
given by m 7→ m⊗ 1, gives a map φ : ΛnM → K. We now describe Im(φ) ⊂ K. Let
e1, . . . , en be the standard basis of Kn coming from the isomorphism M ⊗AK ∼= Kn.
Use property (6) above to write a generator m1 ∧ · · · ∧mn of ΛnM as

m1 ∧ · · · ∧mn = det(aij)e1 ∧ · · · ∧ en ∈ ΛnKn

with aij ∈ Ii for all i, so that φ(m1 ∧ · · · ∧ mn) = det(aij) ∈ K. Since I1 · · · · · In =

〈det(aij) | aij ∈ Ii〉 ⊆ K, we get Im(φ) = I1 · · · · · In. The same argument gives
Im(φ) = J1 · · · · · Jn, whence the lemma. �

Finally, a homological input.



NOTES ON HOMOLOGICAL ALGEBRA 37

Lemma 7.13. (Serre) If A is a ring and P is a projective A-module such that there exists
a finite free resolution of length n, then P is stably free, i.e. there exist free modules F and
F ′ such that P ⊕ F ′ ∼= F . If moreover A is Noetherian and P is finitely generated, then we
may find finitely generated F and F ′.

Proof. Pick a resolution

0 // Fn
ϕn // Fn−1

ϕn−1 // . . . // F1

ϕ1 // F0

ϕ0 // P // 0

where we may choose finitely generated Fi when A is Noetherian and P is finitely
generated. As P is projective, the map ϕ0 has a retraction, so F0

∼= P ⊕ Im(ϕ1) and
Im(ϕ1) is projective. We can iterate this, obtaining Fi ∼= Im(ϕi) ⊕ Im(ϕi+1) for all i,
hence finally

P ⊕ F ′ := P ⊕
n⊕
i=1

Im(ϕi) ∼= P ⊕
⊕
i odd

Fi ∼=
⊕
i even

Fi =: F

so the statement holds. �

Proof of Theorem 7.7. : Let A be a regular local domain of dimension d. We proceed
by induction on dim (A), the case dim (A) = 0 being clear. Pick an x ∈ P\P 2. It is
known that A/(x) is again regular and local,hence an integral domain. This means
that (x) is a prime ideal, so by Lemmas 7.8 and 7.10 it is enough to prove that every
prime ideal Q ⊆ Ax of height 1 is principal.

If M is a maximal ideal of Ax, then (Ax)M is the localization of A by the prime
ideal M ∩ A, hence it is also regular by Corollary 7.3. Here dim (Ax)M < dimA

because x /∈ M , so M ∩ A is not maximal. By induction (Ax)M is then a unique
factorization domain. Hence Q(Ax)M is a principal ideal, since either Q ⊂ M and
then Q(Ax)M is still of height 1, or else Q(Ax)M = (1). In other words, Q(Ax)M is a
free module of rank 1 over (Ax)M . This being true for all maximal ideals M ⊂ Ax,
we conclude from Proposition 2.19 that Q is projective as an Ax-module.

On the other hand, we know that Q ∩ A ⊂ A is a prime ideal satisfying Q =

(Q ∩ A)Ax. From Theorem 6.10 we also know that Q ∩ A considered as a finitely
generated A-module has a finite free resolution. But then Q has a finite free reso-
lution as well, since we can tensor the resolution of Q ∩ A with Ax. Therefore by
Lemma 7.13 there exist m and n such that Q ⊕ (Ax)

m ∼= (Ax)
n. Here m = n − 1

because tensoring with (Ax)M gives Q(Ax)M ⊕ (Ax)
m
M
∼= (Ax)

n
M where we have seen

above that Q(Ax)M is a free module of rank 1. Hence we can conclude by Lemma
7.11 applied with I1 = Q, Ii = Ax for i = 2, . . . , n and Ji = Ax for all i = 1, . . . , n. �
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8. THE KOSZUL COMPLEX

We now introduce a technical tool that is very useful for the study of regular
sequences.

Definition 8.1. Let A be a commutative ring, M an A-module and f : M → A an
A-linear map. The Koszul complex K(f) of f is defined as

. . . // ΛnM
dn−1
f // Λn−1M

dn−2
f // . . . // Λ2M

d1
f // M

d0
f // A ,

where d0
f = f and

dn−1
f (m1 ∧ · · · ∧mn) =

n∑
i=1

(−1)i+1 · f(mi) ·m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mn

Note that the map dn−1
f exists by the universal property of the wedge product. It

is straightforward to check that dn−1
f ◦ dnf = 0.

Remark 8.2. It follows from the definition that for x ∈ ΛiM and y ∈ ΛjM we have

(6) di+j−1
f (x ∧ y) = di−1

f (x) ∧ y + (−1)ix ∧ dj−1
f (y)

If we view the direct sum of the ΛnM as a graded A-algebra with multiplication
induced by the wedge product, the dn−1

f give it the structure of a differential graded
algebra: a graded A-algebra equipped with an A-module endomorphism d sending
the degree n part to the degree n − 1 part and satisfying the compatibility above
with respect to the multiplicative structure.

Example 8.3. Consider the caseM = A. EveryA-module homomorphism f : A→ A

is given by multiplication by the element x := f(1). The Koszul complex of K(f) is
of the form A

x→ A, with H0(K(f)) ∼= A/xA. Moreover, H1(K(f)) ∼= ker(A
x−→ A),

so that H1(K(f)) = 0 if and only if x is a non-zerodivisor.
Tensoring by a general A-module M we obtain

H0(M ⊗A K(f)) ∼= M/xM, H1(M ⊗A K(f)) ∼= ker(M
x−→M).

We shall be particularly interested in the case when M = Ar is a free A-module
of finite rank. In this case the Koszul complex of a map Ar → A has a particularly
simple form which we now proceed to determine. We first need the notion of tensor
products of complexes.

Definition 8.4. Let C• and D• two chain complexes of A-modules concentrated in
nonnegative degrees in the homological numbering. Their tensor product (C⊗D)•
is the complex whose degree n term is given by

(C ⊗D)n =
⊕
i+j=n

Ci ⊗A Dj
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and the differential by the formula

(7) dC⊗Dn (x⊗ y) = dCi (x)⊗ y + (−1)ix⊗ dDj (y).

Remarks 8.5.
(1) One defines the tensor product of two cohomological complexes concentrated
in nonnegative degrees in the same way.
(2) We note for later use that there are natural maps

Hi(C•)⊗A Hj(D•)→ Hi+j((C ⊗A D)•)

defined as follows. If x ∈ ker(dCi ) and y ∈ ker(dDj ), then x⊗ y defines an element in
ker(dC⊗Di+j ). If moreover x = dCi+1(x′) for some x′ ∈ Ci+1, then dC⊗Di+j+1(x′ ⊗ y) = x⊗ y,
so we have a map Hi(C•)⊗A ker(dDj )→ ker(dC⊗Di+j ). By a similar argument it factors
through the image of dDj+1 to give a map on homology as stated.

Example 8.6. Let f1, f2 : A→ A be two A-module homomorphisms. Then K(f1)⊗
K(f2) is the complex

(8) A
d1
f // A⊕ A

d0
f // A

where the differential d0
f is given by (x, y) 7→ f1(x) + f2(y) and d1

f by x ⊗ y 7→
(f1(x)y,−f2(y)x). Here we have identified A ⊗A A with A via the multiplication
map x⊗ y 7→ xy.

Now consider the A-module map (f1, f2) : A ⊕ A → A. Since we have canonical
isomorphisms Λ2(A ⊕ A) ∼= A ⊗A A ∼= A (see below or apply Fact 7.12 (6)), the as-
sociated Koszul complex K(f1, f2) has the shape (8). Moreover, one checks that the
differentials are the same as those described above, so we obtain an isomorphism
K(f1)⊗K(f2) ∼= K(f1, f2).

More generally, we have:

Proposition 8.7. Given A-modules M,N and A-module maps f1 : M → A, f2 : N → A,
set f = (f1, f2) : M ⊕N → A.

There is a canonical isomorphism K(f) ∼= K(f1)⊗K(f2).

Proof. The corresponding terms of K(f) and K(f1)⊗K(f2) are canonically isomor-
phic by Fact 7.12 (7). To show that the differentials are the same, notice that they are
the same in degree 0, and in both cases they can be built out of d0 using the formula
d(x ∧ y) = d(x) ∧ y + (−1)ix ∧ dy. �
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Now consider f = (f1, . . . , fr) : Ar → A and set xi := fi(1). We then have
f(a1, . . . , ar) = Σiaixi. Introduce the notation

K(x) = K(x1, . . . , xr) := K(f).

By Fact 7.12 (6) it is a complex of free A-modules of length r. The previous proposi-
tion gives:

Corollary 8.8. With notation as above we have an isomorphism of complexes

K(x) ∼= K(x1)⊗ · · · ⊗K(xr).

Now we come to the main result of this section.

Theorem 8.9. If x1, . . . , xr is a regular sequence in A, then K(x) is acyclic in degrees > 0

and therefore defines a finite free resolution of A/(x1, . . . , xr).

For the proof of the theorem we need:

Lemma 8.10. If C• is any complex of A-modules and x ∈ A, there exists an exact sequence
of complexes

(9) 0 // C• // C• ⊗A K(x) // C•[−1] // 0

where (C•[−1])i = Ci−1. Moreover, in the corresponding long exact sequence

. . . // Hi(C•) // Hi(C• ⊗A K(x)) // Hi−1(C•) // Hi−1(C•) // . . .

the map Hi−1(C•)→ Hi−1(C•) is multiplication by (−1)i−1x.

Proof. We know that K(x) = A
x→ A. Thus in the complex C• ⊗ K(x) the degree i

term is
(C• ⊗K(x))i = (Ci ⊗A A)⊕ (Ci−1 ⊗A A) ∼= Ci ⊕ Ci−1

with the differential Ci ⊕ Ci−1 → Ci−1 ⊕ Ci−2 given by[
∂ (−1)i−1x

0 ∂

]
where ∂ is the differential of C•. This differential is the middle vertical map in the
commutative diagram

0 // Ci //

∂
��

Ci ⊕ Ci−1
//

��

Ci−1
//

∂
��

0

0 // Ci−1
// Ci−1 ⊕ Ci−2

// Ci−2
// 0

whose rows assemble to the exact sequence of complexes (9). To compute the con-
necting homomorphism in the long exact sequence, we applying the Snake Lemma
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to the above diagram: take α ∈ Ker(Ci−1 → Ci−2), lift it to (0, α) ∈ Ci ⊕ Ci−1, map
this element to ((−1)i−1xα, 0) ∈ Ci−1⊕Ci−2 by applying the matrix above and finally
take the component in Ci−1. It is (−1)i−1xα as stated. �

The long exact sequence of the lemma gives:

Corollary 8.11. There exists an exact sequence

0→ Hi(C•)/xHi(C•)→ Hi(C• ⊗A K(x))→ Ker(Hi−1(C•)
x→ Hi−1(C•))→ 0.

Proof of Theorem 8.9. We proceed by induction on r, the case r = 1 being Example
8.3. Moreover, applying the results of Example 8.3 to M = Hi−1(C•) and M =

Hi(C•) we may rewrite the exact sequence of Corollary 8.11 as

0→ H0(Hi(C•)⊗A K(x))→ Hi(C• ⊗A K(x))→ H1(Hi−1(C•)⊗A K(x))→ 0.

For the inductive step, set C• = K(x1, . . . , xr−1), yielding K(x) ∼= C• ⊗A K(xr) in
view of Proposition 8.7. By the inductive hypothesis Hi(C•) = Hi−1(C•) = 0 for all
i > 1, so the above short exact sequence applied with x = xr gives Hi(K(x)) = 0

for all i > 1. We still need to compute H1(K(x)). Since H1(C•) = 0, the above
short exact sequence reduces to an isomorphism H1(K(x)) ∼= H1(H0(C•)⊗AK(xr)),
where H0(C•) ∼= A/(x1, . . . , xr−1). But then by Example 8.3

(10) H1(K(x)) ∼= Ker(A/(x1, . . . , xr−1)
xr→ A/(x1, . . . , xr−1))

which is 0 since x is a regular sequence. �

When A is a Noetherian local ring, the converse of Theorem 8.9 also holds. In
fact, the following is true:

Proposition 8.12. If a sequence x = (x1, . . . , xr) contained in the maximal ideal P of a
Noetherian local ring A satisfies H1(K(x)) = 0, then it is a regular sequence.

Proof. The case r = 1 is again Example 8.3, and for r > 1 we can use induction on
r. Apply Corollary 8.11 with C• := K(x1, . . . , xr−1). Since C• ⊗ K(xr) ∼= K(x), the
assumption H1(K(x)) = 0 gives H1(C•)/xrH1(C•) = 0. But xr ∈ P , hence H1(C•) =

0 by Nakayama’s lemma. Therefore by induction x1, . . . , xr−1 is a regular sequence,
and moreover xr is a non-zerodivisor modulo (x1, . . . , xr−1) by the vanishing of
H1(K(x)) and the isomorphism (10). �

Remark 8.13. The above proposition yields another proof of the fact that in a Noe-
therian local ring every permutation of a regular sequence is regular.

We shall use the theorem through the corollary:
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Corollary 8.14. If I = (x1, . . . , xr) with the xi forming a regular sequence, then

TorAi (A/I,M) ∼= Hi(K(x)⊗AM)

ExtiA(A/I,M) ∼= H i(Hom(K(x),M))

for all A-modules M .

Application 8.15. The corollary makes it possible to give a quick proof of one half
of Serre’s theorem: IfA is a regular local ring of dimension d, thenA has global dimension
d.

Indeed, note first that gldim(A) ≤ d already follows from Theorem 8.9 and Corol-
lary 6.9. To get equality, apply the first statement of the corollary with I the maximal
ideal ofA andM its residue field k. It follows that TorAi (k, k) is just the degree i term
of K(x) ⊗A k for all i; indeed, the differentials K(x) ⊗A k are all 0 since the xi map
to 0 in k. But by construction of the Koszul complex the degree i term of K(x)⊗A k

is a k-vector space of dimension
(
d

i

)
; in particular it is nonzero for i = d and 0 for

i > d.

We can use the above proof to give a ‘numerical’ criterion for a Noetherian local
ring to be regular.

Corollary 8.16. Let A be a Noetherian local ring with maximal ideal P and residue field k,
and set r := dim kP/P

2. The ring A is regular if and only if TorAi (k, k) is a k-vector space

of dimension
(
r

i

)
for all i.

Proof. When A is regular of Krull dimension d, we have r = d and we have seen the
conclusion above. Conversely, if the dimension of TorAi (k, k) is as in the statement,
it is 0 for i > r, and we conclude from Corollary 6.9 and Serre’s theorem. �

Remark 8.17. In the situation of the corollary there is a natural way to construct an
isomorphism TorA1 (k, k) ∼= kr, generalizing the argument in the regular case. This
is done using minimal resolutions: a free resolution F• → M of a finitely generated
A-module M is minimal if each Fi is finitely generated and Zi(F•) ⊂ PFi for all i. It
follows from the defining property that the differentials of the complex F• ⊗A k are
all 0. One can construct F• inductively. First one takes a k-basis x1, . . . , xn ofM/PM ,
sets F0 = An and defines the map F0 →M by lifting the obvious map F0 →M/PM .
In the inductive step the same procedure is applied to Zi(F•) in place of M . For
M = k one starts with F0 = A and then proceeds with a map Ar → A lifting the
natural map Ar → P/P 2 ∼= kr. Thus indeed TorA1 (k, k) ∼= H1(F• ⊗A k) ∼= kr.

To sum up: TorA1 (k, k) always has the ‘correct’ dimension, it is some of the higher
Tor’s that differ in the non-regular case.
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The isomorphisms TorAi (k, k) ∼= ΛiTorA1 (k, k) of Application 8.15 are part of an
even stronger statement. Quite generally, for a module M over a ring A one can
equip the direct sum

Λ•(M) :=
∞⊕
i=0

Λi(M)

with a product structure induced by the product maps of Fact 7.12 (3). The resulting
A-algebra is the exterior algebra of M .

For A regular and M = k we can consider the direct sum

TorA• (k, k) :=
∞⊕
i=0

TorAi (k, k)

which, as anA-module (or k-vector space) identifies with Λ•TorA1 (k, k) by the above.
On the other hand, the k-vector space TorA• (k, k) already carries a product structure
which is compatible with the wedge product structure on Λ•TorA1 (k, k). We now
explain the details. We shall need the easy lemma:

Lemma 8.18. If P1, P2 are projective A-modules, then so is P1 ⊗A P2.

Proof. We have to show that HomA(P1 ⊗A P2, ) is an exact functor. But

HomA(P1 ⊗A P2, ) ∼= HomA(P1,HomA(P2, ))

where the right hand side is a composition of two exact functors by assumption. �

Construction 8.19 (Internal product for Tor). Let A be a commutative ring and R an
A-algebra. We construct an associative A-linear multiplication

TorAi (R,R)× TorAj (R,R)→ TorAi+j(R,R)

for all i, j ≥ 0 called the internal product.
It will be enough to construct maps

(11) TorAi (M1, N1)× TorAj (M2, N2)→ TorAi+j(M1 ⊗AM2, N1 ⊗A N2)

for all A-modules M1,M2, N1, N2 (the external product). Indeed, setting M1 = M2 =

N1 = N2 = R and applying the multiplication map R ⊗A R → R in both variables
we then obtain the internal product.

Choose projective resolutions P 1
• → M1, P 2

• → M2, P• → M1 ⊗A M2. Recall that
the groups TorAi (M1, N1) and TorAj (M2, N2) are computed by tensoring P 1

• byN1 and
P 2
• by N2, respectively, and then taking homology. On the other hand, the tensor

product complex (P 1 ⊗S P 2)• has projective terms by Lemmas 8.18 and 2.12 (2).
Moreover, the maps P 1

0 → M1, P 2
0 → M2 induce a map (P 1 ⊗S P 2)• → M1 ⊗A M2,
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so by Lemma 3.9 the identity map of M1 ⊗A M2 induces a morphism of complexes
(P 1 ⊗A P 2)• → P•. It follows that we have a morphism of complexes

(12) (P 1
• ⊗A N1)⊗A (P 2

• ⊗A N2) ∼= (P 1 ⊗A P 2)• ⊗A (N1 ⊗A N2)→ P• ⊗A (N1 ⊗A N2)

On the other hand, by Remark 8.5 (2) we have a natural map

TorAi (M1, N1)× TorAj (M2, N2)→ Hi+j((P
1
• ⊗A N1)⊗A (P 2

• ⊗A N2))

whence the external product (11) arises by composition with the map induced by
(12) on Hi+j .

The above product has the following property (called graded-commutativity):

Proposition 8.20. For a ∈ TorAi (R,R) and b ∈ TorAj (R,R) denote by a·b ∈ TorAi+j(R,R)

their internal product. Then
a · b = (−1)ijb · a.

For the proof we need:

Lemma 8.21. Let C• be a homological complex. Taking a ∈ Ci and b ∈ Cj and sending
a⊗ b to (−1)ijb⊗ a induces a morphism of complexes τ : (C ⊗ C)• → (C ⊗ C)•.

Proof. We have

τ(d(a⊗ b)) = τ(da⊗ b+ (−1)ia⊗ db) = (−1)(i−1)jb⊗ da+ (−1)i+i(j−1)db⊗ a,

whereas

d(τ(a⊗ b)) = d((−1)ijb⊗ a) = (−1)ijdb⊗ a+ (−1)ij+jb⊗ da.

The two are equal since (−1)ij = (−1)i+i(j−1) and (−1)ij+j = (−1)(i+1)j = (−1)(i−1)j .
�

Proof of Proposition 8.20. In the construction of the internal product take P 1
• = P 2

• =:

C•. Then the map τ : (C ⊗ C)• → (C ⊗ C)• of the lemma gives a morphism
of complexes (P 2 ⊗A P 1)• → (P 1 ⊗A P 2)• which, composed with a morphism
(P 1 ⊗A P 2)• →P• given by Lemma 3.9, gives a morphism of complexes (P 2 ⊗A
P 1)• → P•. By construction, the first morphism computes a ⊗ b and the second
one (−1)ijb⊗ a. �

Proposition 8.22. Let A be a ring, I ⊂ A an ideal generated by a regular sequence
x1, . . . , xr and R := A/I . Then we have an isomorphism of graded R-algebras

Λ•TorA1 (R,R)
∼→ TorA• (R,R)

induced by the identity in degree 1 and the internal product on TorA• (R,R).
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In particular, if A is a regular local ring with residue field k, we have an isomorphism of
graded k-algebras

Λ•TorA1 (k, k)
∼→ TorA• (k, k).

Proof. By Corollary 8.14 and the same argument as in Application 8.15 we have
isomorphisms TorAi (R,R) ∼= Hi(K(x)⊗A R) ∼= Λi(Rr), where K(x) is the associated
Koszul complex. In particular, for i = 1 we get H1(K(x) ⊗A R) ∼= Rr, which yields
isomorphisms ΛiTorA1 (R,R)

∼→ TorAi (R,R) for all i.
It remains to check that the wedge product maps

(13) ΛiTorA1 (R,R)× ΛjTorA1 (R,R)→ Λi+jTorA1 (R,R)

become identified with the internal product maps

TorAi (R,R)× TorAj (R,R)→ TorAi+j(R,R)

via the above isomorphism. Taking P 1
• = P 2

• = K(x) in the construction of the inter-
nal product above, we have to consider the map K(x) ⊗A K(x) → K(x) lifting the
multiplication map R⊗A R→ R whose existence is stipulated by Lemma 3.9. Such
a morphism of complexes is given in degree n by the sum of the wedge product
maps ⊕

i+j=n

Λi(Ar)⊗ Λj(Ar)→ Λn(Ar);

that they induce a morphism of complexes follows from comparing formulas (6)
and (7). That this morphism of complexes induces the internal product on Tor fol-
lows from the uniqueness statement of Lemma 3.9; that it induces the map (13)
results from the construction. �

9. COHOMOLOGY OF GROUPS

We now briefly consider group cohomology, a case where cohomology groups
defined via derived functors have a concrete description. As an application, we
shall prove a classical theorem of Schur and Zassenhaus from the theory of finite
groups.

LetG be a group. By a (left)G-module we shall mean an abelian groupA equipped
with a left action by G, i.e. a map G × A → A, (σ, a) 7→ σa satisfying σ(a1 + a2) =

σa1+σa2 and (σ1σ2)a = (σ1(σ2a)). Notice that this equivalent to giving a left module
over the integral group ring Z[G]: indeed, for elements

∑
nσσ ∈ Z[G] and a ∈ A

we may define (
∑

nσσ)a :=
∑

nσσ(a) and conversely, a Z[G]-module structure
implies in particular the existence of “multiplication-by-σ” maps onA for all σ ∈ G.
A morphism of G-modules is a map of abelian groups A1 → A2 compatible with
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the G-action; this also extends uniquely to a map of Z[G]-modules. Thus we can
identify the category of left G-modules with the category of left Z[G]-modules.

We say that A is a trivialG-module if G acts trivially on A, i.e. σa = a for all σ ∈ G
and a ∈ A. The abelian group HomG(Z, A) of G-module homomorphisms from the
trivial G-module Z to a G-module A (or else the group HomZ[G](Z, A)) identifies
with the subgroup AG of G-invariant elements in A.

Definition 9.1. Let G be a group and A a G-module. We define the i-th cohomology
group of A with coefficients in G as

H i(G,A) := ExtiZ[G](Z, A)

where Z is, as before, equipped with the trivial G-action.

Thus the H i(G, ) are covariant functors from the category of G-modules to that
of abelian groups. Notice that here we are dealing with Ext groups over non-
commutative rings but, as remarked above, everything is defined in the same way
as in the commutative case. By the above discussion we may also define H i(G, )

as the i-th right derived functor of the functor A 7→ AG.
The cohomology groups H i(G,A) thus satisfy H0(G,A) = AG for all G-modules

A, and given a short exact sequence

0→ A→ B → C → 0

of G-modules, there exists an infinite long exact sequence

· · · → H i(G,A)→ H i(G,B)→ H i(G,C)→ H i+1(G,A)→ . . .

of abelian groups, starting from i = 0.

Remark 9.2. Similarly, the groups Hi(G,A) := Tor
Z[G]
i (Z, A) define a homology the-

ory for groups. It is somewhat less useful in applications than group cohomology.

To calculate the groups H i(G,A) explicitly, one uses concrete projective resolu-
tions. The most useful of these is the following one, inspired by simplicial con-
structions in topology.

Construction 9.3 (The standard resolution). Consider for each i ≥ 0 the Z[G]-
module Z[Gi+1], where Gi+1 is the (i + 1)-fold direct power of G and the action
of G is determined by σ(σ0, . . . , σi) = (σσ0, . . . , σσi). These are free Z[G]-modules,
generated by the free Z[G]-basis formed by the elements (1, σ1, . . . , σi) ∈ Gi+1. For
i > 0 define G-homomorphisms δi : Z[Gi+1] → Z[Gi] by δi =

∑
j

(−1)jsij , where

sij : Z[Gi+1]→ Z[Gi] is the map determined by sending

(σ0, . . . , σi) 7→ (σ0, . . . , σj−1, σj+1, . . . , σi).
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In this way, we get a projective resolution

· · · → Z[G3]
δ2−→ Z[G2]

δ1−→ Z[G]
δ0−→ Z→ 0,

where δ0 sends each σi to 1. This resolution is called the standard resolution of Z.
To see that the sequence is indeed exact, an immediate calculation shows first that
δi ◦ δi+1 = 0 for all i. Then fix σ ∈ G and define hi : Z[Gi+1] → Z[Gi+2] by sending
(σ0, . . . , σi) to (σ, σ0, . . . , σi). Another calculation shows δi+1◦hi+hi−1◦δi = idZ[Gi+1],
i.e. the hi define a chain homotopy of the identity map of the standard resolution
with the zero map, whence the claim.

For a G-module A, one calls the elements of HomG(Z[Gi+1], A) i-cochains, whereas
those ofZi+1(HomG(Z[G•], A)) andBi+1(HomG(Z[G•], A)) i-cocycles and i-coboundaries,
respectively. We shall denote these respective groups by Ci(G,A), Zi(G,A) and
Bi(G,A). The cohomology groupsH i(G,A) then arise as the groupsH i+1(HomG(Z[G•], A)).

For calculations, another expression is very useful.

Construction 9.4 (Inhomogeneous cochains). In Z[Gi+1] consider the particular ba-
sis elements

[σ1, . . . , σi] := (1, σ1, σ1σ2, . . . , σ1 . . . σi).

From the definition of the G-action on Z[Gi+1] we get that Z[Gi+1] is none but the
free Z[G]-module generated by the elements [σ1, . . . , σi]. A calculation shows that
on these elements the differentials δi are expressed by

δi([σ1, . . . , σi]) = σ1[σ2, . . . , σi] +
i∑

j=1

(−1)j[σ1, . . . , σjσj+1, . . . , σi]+

(14) +(−1)i+1[σ1, . . . , σi−1].

Therefore we may identify i-cochains with functions [σ1, . . . , σi]→ aσ1,...,σi and com-
pute the maps δ∗i−1 : Ci−1(G,A)→ Ci(G,A) by the formula

aσ1,...,σi−1
7→ σ1aσ2,...,σi +

i∑
j=1

(−1)jaσ1,...,σjσj+1,...,σi + (−1)i+1aσ1,...,σi−1
.

The functions aσ1,...,σi are called inhomogeneous cochains.

Here is how to calculate the groups H i(G,A) in low dimensions by means of
inhomogeneous cochains.

Examples 9.5.
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(1) A 1-cocycle is given by a function σ 7→ aσ satisfying aσ1σ2 =σ1aσ2 + aσ1 . It is
a 1-coboundary if and only if it is of the form σ 7→ σa − a for some a ∈ A.
Note that in the special case when G acts trivially on A, i.e. σ(a) = a for
all a ∈ A, we have Z1(G,A) = Hom(G,A) and B1(G,A) = 0, so finally
H1(G,A) = Hom(G,A).

(2) A 2-cocycle is given by a function (σ1, σ2) 7→ aσ1,σ2 satisfying

σ1aσ2,σ3 − aσ1σ2,σ3 + aσ1,σ2σ3 − aσ1,σ2 = 0.

It is a 2-coboundary, i.e. an element of Im (∂1∗) if it is of the form σ1aσ2 −
aσ1σ2 + aσ1 for some 1-cochain σ 7→ aσ.

Example 9.6. For some questions (e.g. as in the example of group extensions below)
it is convenient to work with normalized cochains. These are obtained by considering
the free resolution

· · · → L2

δn2−→ L1

δn1−→ L0

δn0−→ Z→ 0,

where Li is the free G-submodule of Z[Gi+1] generated by those [σ1, . . . σi] where
none of the σj is 1. The morphisms δni are defined by the same formulae as for the
δi in (14), except that if we happen to have σjσj+1 = 1 for some j in [σ1, . . . σi], we
set the term involving σjσj+1 on the right-hand side to 0. This indeed defines a map
Li → Li−1, and a calculation shows that we again have ker(δni ) = Im (δni+1). So we
have obtained a free resolution of Z and may use it for computing the cohomology
of a G-module A. Elements in HomG(Li, A) may be identified with inhomogeneous
i-cochains aσ1,...,σi which have the value 0 whenever one of the σj equals 1.

Construction 9.7 (Group extensions). An important example of 2-cocycles arising
‘in nature’ comes from the theory of group extensions. Consider an exact sequence
of groups 0 → A → E → G

π→ 1, with A abelian. The conjugation action of E on A
passes to the quotient in G and gives A the structure of a G-module. Now associate
with E a 2-cocycle as follows. Choose a normalized set-theoretic section of π, i.e. a
map s : G → E with s(1) = 1 and π ◦ s = idG. For elements σ1, σ2 ∈ G the element
aσ1,σ2 := s(σ1)s(σ2)s(σ1σ2)−1 maps to 1 in G, and therefore defines an element of
A. An immediate calculation shows that (σ1, σ2) 7→ aσ1,σ2 is a 2-cocycle of G with
values in A, which is in fact normalized, i.e. satisfies a1,σ = aσ,1 = 1 for all σ ∈ G. If
t : G → E is another normalized section, then for each σ ∈ G we find aσ ∈ A such
that t(σ) = aσs(σ); note that a1 = 1. So

t(σ1)t(σ2)t(σ1σ2)−1 = aσ1s(σ1)aσ2s(σ2)s(σ1σ2)−1a−1
σ1σ2

=

(15) = aσ1(s(σ1)aσ2s(σ1)−1)(s(σ1)s(σ2)s(σ1σ2)−1)a−1
σ1σ2

= aσ1,σ2(σ1(aσ2)a
−1
σ1σ2

aσ1)



NOTES ON HOMOLOGICAL ALGEBRA 49

by commutativity of A and the definition of the G-action on A. This means that
t(σ1)t(σ2)t(σ1σ2)−1 differs from aσ1,σ2 by a 2-coboundary, i.e. the cohomology class
of aσ1,σ2 does not depend on the choice of the section. In this way one associates
with E a class c(E) ∈ H2(G,A). Furthermore, we see that in the case when there
is a section s which is a group homomorphism, i.e. the extension E splits as a
semidirect product of G by A, we have c(E) = 0. Conversely, we see from the
calculation in (15) that if c(E) = 0 and s : G → E is a normalized section, then
we may modify s by a normalized 1-cochain so that the resulting section becomes
multiplicative.

In fact, once we fix a G-action on A, we have a non-commutative analogue of
the theory of module extensions. Consider the set Ext(G,A) of equivalence classes
of extensions E of G by A inducing the given action of G on A and declare two
extensions E and E ′ equivalent if there is an isomorphism λ : E

∼→ E ′ inducing a
commutative diagram

0 −−−→ A −−−→ E −−−→ G −−−→ 1yid

yλ yid

0 −−−→ A −−−→ E ′ −−−→ G −−−→ 1.

Proposition 9.8. The map E 7→ c(E) preserves the above equivalence relation and induces
a bijection between Ext(G,A) and H2(G,A).

Sketch of proof. The first statement follows because composing a section s : G → E

with λ gives rise to the same 2-cocycle G → A as s. Thus we have an induced map
Ext(G,A) → H2(G,A). The inverse map is constructed as follows: one represents
a class in H2(G,A) by a normalized cocycle aσ1,σ2 and defines a group E with un-
derlying set A × G and group law (a1, σ1) · (a2, σ2) := (a1 + σ1(a2) + aσ1,σ2 , σ1σ2),
where we have written the group law of A additively. The cocycle relation im-
plies that this product is associative, and the fact that aσ1,σ2 is normalized implies
that (0, 1) is a unit element. The element (−σ−1(a)− σ−1(aσ,σ−1), σ−1) yields a two-
sided inverse for (a, σ) (note that the cocycle relation implies σ−1(aσ,σ−1) = aσ−1,σ).
Therefore E is indeed a group, and the map a 7→ (a, 1) realizes A as a subgroup
which is the kernel of the surjective homomorphism E → G given by (a, σ) 7→ σ.
The map σ 7→ (0, σ) is a normalized section whose associated 2-cocycle is exact-
ly aσ1,σ2 . Finally, if we change the 2-cocycle aσ1,σ2 by adding the normalized 2-
coboundary σ1(aσ2)− aσ1σ2 + aσ1 and denote the resulting extension by E ′, the map
(a, σ) 7→ (a + aσ, σ) defines a homomorphism E → E ′ inducing the identity on A

and G (note that a1 = 0 as aσ is normalized), so that E and E ′ are equivalent. �
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Let H be a subgroup of G and A an H-module. Then Z[G] with its canonical
G-action is an H-module as well, and we can associate with A the G-module

MG
H (A) := HomH(Z[G], A)

where the action of G on an H-homomorphism φ : Z[G]→ A is given by (σφ)(g) :=

φ(gσ) for a basis element g of Z[G]. One sees that σφ is indeed anH-homomorphism.

Lemma 9.9. Assume moreover given a G-module M . We have a canonical isomorphism

HomG(M,HomH(Z[G], A))
∼→ HomH(M,A)

induced by mapping a G-homomorphism m → φm in the left-hand side group to the H-
homomorphism m 7→ φm(1).

Proof. Given an H-homomorphism λ : M → A, consider the map m 7→ λm, where
λm ∈ HomH(Z[G], A) is the map determined by g 7→ λ(gm). The kind reader will
check that we get an element of HomG(M,HomH(Z[G], A)) in this way, and that the
two constructions are inverse to each other.

Now apply the lemma to the terms of a projective Z[G]-resolution P• of Z. Note
that this is also a resolution by projective H-modules because Z[G] is free as a Z[H]-
module (a system of coset representatives yields a basis). Passing to cohomology
groups, we get:

Corollary 9.10 (Shapiro’s Lemma). Given a subgroup H of G and an H-module A, there
are canonical isomorphisms

H i(G,MG
H (A))

∼→ H i(H,A)

for all i ≥ 0.

The case when H = {1} is particularly important. In this case an H-module A is
just an abelian group; we denote MG

H (A) simply by MG(A) and call it the co-induced
module associated with A.

Corollary 9.11. The group H i(G,MG(A)) is trivial for all i > 0.

Proof. In this case the right hand side in Shapiro’s lemma is trivial (e.g. because
0→ Z→ Z→ 0 gives a projective resolution of Z).

Using Shapiro’s lemma we may define two basic maps relating the cohomology
of a group to that of a subgroup.

Construction 9.12 (Restriction maps). Let G be a group, A a G-module and H a
subgroup of G. There are natural maps of G-modules

A
∼→ HomG(Z[G], A)→ HomH(Z[G], A) = MG

H (A),
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the first one given by mapping a ∈ A to the unique G-homomorphism sending 1
to a and the second by considering a G-homomorphism as an H-homomorphism.
Taking cohomology and applying Shapiro’s lemma we thus get maps

Res : H i(G,A)→ H i(H,A)

for all i ≥ 0, called restriction maps. One sees that for i = 0 we get the natural
inclusion AG → AH .

When the subgroup H has finite index, there is a natural map in the opposite
direction.

Construction 9.13 (Corestriction maps). Let H be a subgroup of G of finite index n
and let A be a G-module.

Given an H-homomorphism φ : Z[G]→ A, define a new map Z[G] → A by the
assignment

φGH : x 7→
n∑
j=1

ρjφ(ρ−1
j x),

where ρ1, . . . , ρn is a system of left coset representatives for H in G. This is man-
ifestly a group homomorphism which does not depend on the choice of the ρj ;
indeed, if we replace the system of representatives (ρj) by another system (ρjτj)

with some τj ∈ H , we get ρjτjφ(τ−1
j ρ−1

j x) = ρjφ(ρ−1
j x) for all j, the map φ being an

H-homomorphism. Furthermore, the map φGH is also a G-homomorphism, because
we have for all σ ∈ G

n∑
j=1

ρjφ(ρ−1
j σx) = σ

(
n∑
j=1

(σ−1ρj)φ((σ−1ρj)
−1x)

)
= σ

(
n∑
j=1

ρjφ(ρ−1
j x)

)
,

as the σ−1ρj form another system of left coset representatives.
The assignment φ 7→ φGH thus defines a well-defined map

HomH(Z[G], A)→ HomG(Z[G], A) ∼= A,

so by taking cohomology and applying Shapiro’s lemma we get maps

Cor : H i(H,A)→ H i(G,A)

for all i ≥ 0, called corestriction maps.

An immediate consequence of the preceding constructions is the following basic
fact.

Proposition 9.14. LetG be a group,H a subgroup of finite index n inG andA aG-module.
Then the composite maps

Cor ◦ Res : H i(G,A)→ H i(G,A)
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are given by multiplication by n for all i ≥ 0.

Proof. Indeed, if φ : Z[G]→ A is a G-homomorphism, then for all x ∈ Z[G] we have
φGH(x) =

∑
ρjφ(ρ−1

j x) =
∑

ρjρ
−1
j φ(x) = nφ(x).

In the case H = {1}we get:

Corollary 9.15. Let G be a finite group of order n. Then the elements of H i(G,A) have
finite order dividing n for all G-modules A and integers i > 0.

Corollary 9.16 (Schur–Zassenhaus). Let 0 → A → E → G → 1 be an extension of
finite groups, with A abelian. If the orders of A and G are coprime, the extension is split.

Proof. By Example 9.7 the conclusion is equivalent to H2(G,A) = 0. If A has or-
der m, then mH2(G,A) = 0 (since mHomG(Pi, A) = HomG(Pi,mA) = 0 for the
terms of a projective resolution P• → Z). On the other hand, if G has order n,
then nH2(G,A) = 0 by the previous corollary. Since by assumption (n,m) = 1, the
vanishing of H2(G,A) follows. �

Remark 9.17. The Schur–Zassenhaus theorem holds without assuming A abelian.
Here is how to reduce the case of general A to abelian A (after Wikipedia).

We prove by induction on the order of E that it contains a subgroup of order n;
this subgroup must then map isomorphically onto G by the assumption (n,m) = 1.
Assume first A is solvable. Then it has an abelian characteristic subgroup A′ ⊂ A

(e.g. the last nontrivial subgroup in the commutator series). Then A′ is normal in
E, so we may consider the quotient E/A′ which is an extension of G by A/A′. By
induction it contains a subgroup of H order n; let H ′ be its preimage in E. Then
H ′ ⊂ E is an extension of H by A′, and so by Corollary 9.16 contains a subgroup of
order n.

Now if there is a p-Sylow subgroup of A whose normalizer N in E is strictly
smaller than E, then by the Frattini argument1 E = AN , whence N/N ∩A ∼= E/A ∼=
G has order n. Applying induction to the extension 1→ N∩A→ N → N/N∩A→ 1

we get that N ⊂ E contains a subgroup of order n. Finally, if all p-Sylow subgroups
of A are normal in E (hence in A), then A is their direct product, hence solvable,
and we are done by the solvable case.

10. HOCHSCHILD HOMOLOGY AND COHOMOLOGY

Hochschild (co)homology is a generalization of group (co)homology theory for
modules over arbitrary rings defined via a simplicial method.

1Here is the argument: if P is a p-Sylow of A and g ∈ E, then gPg−1 is another p-Sylow of A since
A is normal in E. But then by the conjugacy of Sylow subgroups gPg−1 = aPa−1 for some a ∈ A.
Hence a−1g ∈ N , i.e. g ∈ AN .
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Let R be a not necessarily commutative ring with unit. An R − R bimodule is
an abelian group M that has a left and a right module structure over R satisfying
(rm)s = r(ms) for r, s ∈ R, m ∈M . When R is commutative, an R− R bimodule is
the same thing as an R-module if we define right multiplication via mr := rm.

Construction 10.1. Suppose that the ring R is an A-algebra for a commutative ring
A. All tensor products in this construction will be taken over A. For an R − R

bimodule M set
Mi := M ⊗R⊗i

for i ≥ 0, with M0 = M . Define maps δji : Mi →Mi−1 by

δji (m⊗ r1 ⊗ · · · ⊗ ri) =


mr1 ⊗ r2 ⊗ · · · ⊗ ri j = 0

m⊗ r1 ⊗ · · · ⊗ rjrj+1 ⊗ · · · ⊗ ri 0 < j < i

rim⊗ r2 ⊗ · · · ⊗ ri−1 j = i.

A calculation shows that together with the maps δi :=
∑
j

(−1)jδji the Mi form a

homological complex M•. The group HHi(R,M) := Hi(M•) is the i-th Hochschild
homology group of R with coefficients in M .

Similarly, define
M i := HomA(R⊗i,M)

for i ≥ 0, with M0 = M . For i > 0 the elements of M i can be identified with A-
multilinear maps R×i → M . Now define maps ∂ij : M i → M i+1 by sending a map
f : R×i →M to ∂ijf satisfying

∂ij(f)(r1, r2, · · · , ri+1) =


r1f(r2, r3, . . . , ri+1) j = 0

f(r1, . . . , rjrj+1, . . . , ri+1) 0 < j < i+ 1

f(r1, . . . , ri)ri+1 j = i+ 1.

One again checks that together with the maps ∂i :=
∑
j

(−1)j∂ij the M i form a co-

homological complex M•. The group HH i(R,M) := H i(M•) is the i-th Hochschild
cohomology group of R with coefficients in M .

As usual, we shall employ the terminology i-cycles for ker(δi) and i-boundaries
for im(δi+1). Similarly, we have cocycles and coboundaries in the cohomological
setting.

Example 10.2.

(1) A Hochschild 1-cocycle is an A-linear map f : R → M satisfying r1f(r2) −
f(r1r2) + f(r1)r2 = 0 for all r1, r2 ∈ R. It is a 1-coboundary if there is m ∈M
with f(r) = rm−mr for all r.
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(2) A Hochschild 2-cocycle is an A-bilinear map f : R×R→M satisfying

(16) r1f(r2, r3)− f(r1r2, r3) + f(r1, r2r3)− f(r1, r2)r3 = 0.

It is a 2-coboundary if it is of the form

(17) f(r1, r2) = r1g(r2)− g(r1r2) + g(r1)r2

for an A-linear map R→M .

Example 10.3. In the case A = Z, R = Z[G] for a group G we may equip any left
Z[G]-module M with a bimodule structure by declaring the right action of G to be
trivial. In this case the complex M• identifies with the complex HomZ(Z[G•+1],M)

with Z[G•+1] the standard resolution of Z. The differentials in M• translate to those
used for calculating group cohomology via inhomogeneous cochains in Construc-
tion 9.4. Thus in this case we recover group cohomology with coefficients in M .

Similarly, the Hochschild homology groups in this case translate to the group
homology groups mentioned before.

Under restrictive assumptions we may give more conceptual definitions for Hochschild
(co)homology. Introduce the opposite ring Rop in which addition is the same but
multiplication is given by (r1, r2) 7→ r2r1. Left R-modules may be identified with
right Rop-modules, and similarly for right modules. If we set S := R ⊗A Rop,
then R − R bimodules give rise to left S-modules via the group law induced by
(r1 ⊗ r2)m := r1mr2 and right S-modules via m(r1 ⊗ r2) := r2mr1. In particular, R
itself becomes an S − S-bimodule. Of course, in the case when R is commutative,
R = Rop and S = R⊗R.

Proposition 10.4. Assume R is projective as an A-module and set S := R ⊗A Rop. For
every R−R bimodule M we have canonical isomorphisms

HHi(R,M) ∼= TorSi (M,R), HH i(R,M) ∼= ExtiS(R,M).

Proof. Consider the Hochschild complex M• for M = R⊗2. The degree i term is
R⊗i+2. Define an S-module structure on R⊗i+2 via

(r ⊗ r′)(r1 ⊗ r2 ⊗ · · · ⊗ ri+2) = rr1 ⊗ r2 ⊗ · · · ⊗ ri+1 ⊗ ri+2r
′.

Since R⊗i is projective over A by Lemma 8.18, R⊗i+2 is projective over S. On the
other hand, setting ki(r1 ⊗ r2 ⊗ · · · ⊗ ri+2) = 1 ⊗ r1 ⊗ r2 ⊗ · · · ⊗ ri+2 defines a
chain homotopy of the identity map of (R⊗2)• with 0 as in the special case of group
(co)homology. So (R⊗2)• is acyclic in degrees> 0 and defines a projective resolution
of the S-module R via the multiplication map R⊗A R→ R. We may thus compute
TorSi (M,R) ∼= HHi(M ⊗S (R⊗2)•). On the other hand, M ⊗S (R⊗2)• ∼= M• via the
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isomorphisms M ⊗R⊗ARop R⊗i+2 ∼= M ⊗A R⊗i, whence the statement for homology.
The proof for cohomology is similar, using HomS(R⊗i+2,M) ∼= HomA(R⊗i,M). �

As a first application of this description, we prove a localization statement that
will serve later.

Proposition 10.5. Let R be a commutative A-algebra that is projective as an A-module. If
M is an R-module and T ⊂ R is a multiplicatively closed subset, then

HHi(RT ,M ⊗R RT ) ∼= HHi(R,M)⊗R RT

for all i ≥ 0.

The proof uses some general properties of the Tor functor.

Lemma 10.6. Let B be a commutative ring, C a flat B-algebra and M a B-module.

(1) For every B-module N we have canonical isomorphisms

TorBi (M,N ⊗B C) ∼= TorBi (M,N)⊗B C.

(2) For every C-module NC we have canonical isomorphisms

TorBi (M,NC) ∼= TorCi (M ⊗B C,NC).

for all i ≥ 0.

Proof. For (1) take a projective resolution P• →M . Then by flatness of C over B

TorBi (M,N ⊗B C) ∼= Hi(P•⊗B (N ⊗B C)) ∼= Hi(P•⊗B N)⊗B C ∼= TorBi (M,N)⊗B C.

For (2) the same projective resolution P• →M gives

TorBi (M,NC) ∼= Hi(P• ⊗B NC) ∼= Hi(P• ⊗B C)⊗C NC) ∼= TorCi (M ⊗B C,NC)

as P• ⊗B C →M ⊗B C is a projective resolution by flatness of C over B. �

Proof of Proposition 10.5. As RT is flat over R, so is RT ⊗A R over R⊗A R and finally
(RT ⊗A R) ⊗R RT

∼= RT ⊗A RT over (R ⊗A R) ⊗R R ∼= R ⊗A R. We view M as an
R-module via the multiplication map R⊗A R→ R. Lemma 10.6 (1) thus gives

TorR⊗ARi (R,M ⊗R⊗AR (RT ⊗A RT ) ∼= TorR⊗ARi (R,M)⊗R⊗AR (RT ⊗A RT )

which we may rewrite as

TorR⊗ARi (R,M ⊗R RT ) ∼= TorR⊗ARi (R,M)⊗R RT
∼= HHi(R,M)⊗R RT

using Proposition 10.4. On the other hand, Lemma 10.6 (2) gives

TorR⊗ARi (R,M ⊗R RT ) ∼= TorRT⊗ARTi (R⊗R⊗AR (RT ⊗A RT ),M ⊗R RT )

∼= TorRT⊗ARTi (RT ,M ⊗R RT )

which is HHi(RT ,M ⊗R RT ), again by Proposition 10.4. �
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Hochschild 2-cocyles are related to extensions as in the special case of group co-
homology.

Definition 10.7. Let M be an R − R-bimodule. A Hochschild extension of R by M is
an A-algebra E together with a split exact sequence of A-modules

0→M → E
π→ R→ 0

such that π : E → R is a ring homomorphism and M viewed as a two-sided ideal
in E satisfies M2 = 0.

Two Hochschild extensions E, E ′ of R by M are called equivalent if there is an
A-algebra homomorphism E → E ′ inducing the identity on M and R.

Note that ifM ⊂ E is a two-sided ideal satisfyingM2 = 0, thenM has anR−R bi-
module structure over E/M . Also, the splitting condition is automatically satisfied
when R is projective over A (e.g. when A is a field).

Construction 10.8. Let 0 → M → E
π→ R → 0 be a Hochschild extension of R by

M , and let s : R→ E be an A-linear section of π. For all r1, r2 ∈ R the formula

f(r1, r2) := s(r1)s(r2)− s(r1r2) ∈M

defines an A-bilinear function f : R × R → M which is in fact a 2-cocycle. Indeed,
if we identify R with s(R), then E ∼= M ⊕R as an A-module and the multiplication
on E is given by

(18) (m1, r1)(m2, r2) = (r1m2 +m1r2 + f(r1, r2), r1r2)

because M2 = 0. The A-submodule s(R) ⊂ E is identified with the submod-
ule of elements of the form (0, r). Now for r1, r2, r3 ∈ R we have (0, r1)(0, r2) =

(f(r1, r2), r1r2), so

[(0, r1)(0, r2)](0, r3) = (f(r1, r2), r1r2)(0, r3) = (f(r1, r2)r3 + f(r1r2, r3), r1r2r3)

and

(0, r1)[(0, r2)(0, r3)] = (0, r1)[(f(r2, r3), r2r3)] = (r1f(r2, r3) + f(r1, r2r3), r1r2r3).

These two elements are equal by associativity of the multiplication in E, so the
cocycle relation (16) holds as claimed. Now if t : R → E is another section of π
giving rise to the 2-cocyle g(r1, r2) := t(r1)t(r2)− t(r1r2), then

f(r1, r2)− g(r1, r2) = t(r1r2)− t(r1)t(r2)− s(r1r2) + s(r1)s(r2) =

= t(r1)[s(r2)− t(r2)]− [s(r1r2)− t(r1r2)] + [(s(r1)− t(r1)]s(r2)

which is a 2-coboundary according to (17).
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Thus our Hochschild extension 0→M → E
π→ R→ 0 gives rise to a well-defined

cohomology class c(E) ∈ HH2(R,M). Note that in the case the extension is trivial,
i.e. π has a section that is also multiplicative, we have c(E) = 0.

Proposition 10.9. The assignment E 7→ c(E) induces a bijection between equivalence
classes of Hochschild extensions of R by M and elements of the Hochschild cohomology
group HH2(R,M).

Sketch of proof. Equivalent Hochschild extensions give rise to the same cohomology
class because composing a section s : R → E with the map E → E ′ inducing the
equivalence of extensions yields the same 2-cocycle. Given a class in HH2(R,M)

represented by a 2-cocycle f(r1, r2), we define a ring structure on the A-module
direct sum M ⊕ R via the formula (18). One checks that we indeed obtain a ring
in which M is an ideal of square zero. By construction the associated 2-cocycle is
f(r1, r2). Finally, a similar argument as in the case of group extensions shows that
cohomologous cocycles give rise to equivalent extensions. �

Now assume R is commutative. In this case we infer from formula (18) that
the extension E is a commutative ring if and only if the 2-cocycle f(r1, r2) satis-
fies f(r1, r2) = f(r2, r1); such 2-cocycles are called symmetric. Classes of symmetric
2-cocycles form a subgroup in HH2(R,M); let us denote it by HH2

s (R,M). The
following corollary is immediate:

Corollary 10.10. If R is commutative, the assignment E 7→ c(E) induces a bijection
between equivalence classes of commutative Hochschild extensions of R by M and elements
of the Hochschild cohomology group HH2

s (R,M).

To conclude this topic, recall that a commutative A-algebra R is called formally
smooth if it satisfies the following property: given a commutative diagram

(19)
R

λ̄−−−→ B/Mx x
A

µ−−−→ B

with a commutative ring B and an ideal M ⊂ B satisfying M2 = 0, the map λ̄ lifts
to a map λ : R→ B making the diagram commute.

Corollary 10.11. Let R be a commutative A-algebra that is projective as an A-module.
Then R is formally smooth over A if and only if HH2

s (R,M) = 0 for all R-modules M .

Proof. IfR is formally smooth andB is a commutative Hochschild extension ofR by
M , then the formal smoothness property shows that the extension 0 → M → B →
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R → 0 has a multiplicative splitting, so its class in HH2
s (B,M) is 0. Now apply the

previous corollary.
Conversely, given a diagram as above, take the pullback of the A-module exten-

sion 0→M → B → B/M → 0 by λ̄ : R→ B/M as in the diagram

0 −−−→ M −−−→ E −−−→ R −−−→ 0

id

y y yλ̄
0 −−−→ M −−−→ B −−−→ B/M −−−→ 0.

Then E inherits a commutative ring structure from B and R in which M is still
an ideal of square zero and the projection π : E → R is a ring homomorphism.
Moreover, since R is projective over A, the extension 0 → M → E → R → 0 splits
as an A-module extension, hence is a Hochschild extension. Now by the previous
corollary HH2

s (R,M) = 0 implies that there is a multiplicative splitting s : R → E

of π. Composing s with the map E → B gives the required lifting λ : R→ B. �

In the rest of this section all rings considered will be commutative. We shall prove
the Hochschild–Kostant–Rosenberg theorem which asserts that if k is a field and R

a localization of a finitely generated k-algebra which is formally smooth over k,
there are isomorphisms

HHi(R,R) ∼= Ωi
R/k

where Ωi
R/k := ΛiΩ1

R/k is the module of differental i-forms over R.
In fact, more is true. We shall see that the direct sum

HH•(R,R) :=
∞⊕
i=0

HHi(R,R)

has a multiplicative structure making it a (non-commutative) gradedR-algebra. On
the other hand,

Ω•R/k :=
i⊕
i=0

Ωi
R/k

has a graded R-algebra structure induced by the wedge product (see Facts 7.12).
We shall in fact construct an isomorphism

HH•(R,R) ∼= Ω•R/k

of graded R-algebras.
We begin with a baby case.

Lemma 10.12. Let R be a commutative A-algebra. We have a canonical isomorphism of
R-modules

HH1(R,R) ∼= Ω1
R/A.
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Proof. The degree 1 term of the Hochschild complex for R is R ⊗A R. Since R is
commutative, the outgoing differential δ1 : r1 ⊗ r2 7→ r1r2 − r2r1 is 0, and

HH1(R,R) ∼= R⊗A R/〈rr1 ⊗ r2 − r ⊗ r1r2 + r2r ⊗ r1〉.

Now define a surjective map χ : R⊗A R→ Ω1
R/A by r1 ⊗ r2 7→ r1dr2. We then have

χ(rr1 ⊗ r2 − r ⊗ r1r2 + r2r ⊗ r1) = r(r1dr2 − d(r1r2) + r2dr1) = 0

by the Leibniz rule, so χ induces an isomorphism HH1(R,R)
∼→ Ω1

R/A as required.
�

Let now k be a field and R a k-algebra. Recall from Proposition 10.4 that we then
have isomorphisms HHi(R,R) ∼= TorSi (R,R) for all i, where S = R⊗k R. Therefore
HH•(R,R) is an R-algebra equipped with an R-linear multiplication introduced in
Construction 8.19. If the characteristic of k is not 2, then Proposition 8.20 implies
that this multiplication is alternating, i.e. satisfies a ⊗ a = 0 for a ∈ HH1(R,R). It
then follows from the universal property of the wedge product that the R-module
map Ω1

R/k → HH1(R,R) coming from Lemma 10.12 induces a map of graded R-
algebras

(20) Ω•R/k → HH•(R,R).

It can be proven that the multiplication on HH•(R,R) is alternating even in char-
acteristic 2, so the above map exists in arbitrary characteristic. We omit the some-
what involved proof in the characteristic 2 case.

Theorem 10.13 (Hochschild–Kostant–Rosenberg). Assume that R is a localization of a
finitely generated k-algebra and moreover R is formally smooth over k. Then the map (20)
is an isomorphism of graded R-algebras.

We shall need the following easy lemma.

Lemma 10.14. Let S be a regular local ring and I ⊂ S an ideal such that S/I is also a
regular local ring. Then I is generated by a regular sequence.

Proof. Let Q be the maximal ideal of S and κ := S/Q. From the isomorphism
of κ-vector spaces Q/(I + Q2) ∼= (Q/I)/(Q/I)2 we infer that we may find a κ-
basis of Q/Q2 by completing a κ-basis of (Q/I)/(Q/I)2 with a κ-basis s̄1, . . . , s̄r
of (I + Q2)/Q2. Choosing preimages si ∈ I of the s̄i we obtain I = (s1, . . . , sr)

from Nakayama’s lemma. By construction the si form part of a minimal system of
generators of Q, hence they form a regular sequence by the theory of regular local
rings. �
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Proof of Theorem 10.13. By a basic property of formal smoothness, if R is formal-
ly smooth over k, then so is S = R ⊗k R. Also, every localization of R or S is
still formally smooth over k. On the other hand, R is Noetherian by assumption
and so is S. Indeed, since R is a localization of some finitely generated k-algebra
k[a1, . . . , am], it follows that S = R ⊗k R is a localization of the finitely generated
R-algebra R[a1, . . . , am]. Therefore every localization of R or S by a prime ideal is a
Noetherian local ring which is formally smooth over k. It is known from commuta-
tive algebra that these are then regular local rings.

If P ⊂ R is a maximal ideal, then HHi(RP , RP ) ∼= HHi(R,R) ⊗R RP for all i
by Proposition 10.5. On the other hand, Ω1

RP /k
∼= Ω1

R/k ⊗R RP by the localization
property of differentials, and therefore also Ωi

RP /k
∼= Ωi

R/k ⊗R RP for all i > 0. WE
conclude that the theorem holds for R if and only if it holds for RP for all P ⊂ R

maximal by Lemma 2.20. Thus we may replace R by RP and assume R is local.
Then taking the preimage Q ⊂ S of P in S, we may replace S by SQ. By the lemma
above we are now in the situation of Proposition 8.22, and the theorem follows from
that proposition together with Lemma 10.12. �

11. THE HOMOTOPY CATEGORY AND ITS EXACT TRIANGLES

To start our work towards the construction of derived categories, we first present
some auxiliary constructions for complexes in an abelian category A that are im-
portant in their own right. We denote the category of complexes in A by C(A).

Construction 11.1. Given a morphism of complexes f : A• → B• in C(A), the cone
C(f) of f is the complex with termsC(f)i = Ai+1⊕Bi and differentials df : C(f)i →
C(f)i+1 given by the 2× 2 matrix of morphisms

df =

[
−dA 0

f dB

]

where dA and dB are the differentials of A• and B•, respectively. (Thus for A the
category of abelian groups, a ∈ Ai+1, b ∈ Bi we have df ((a, b)) = (−dA(a), f(a) +

dB(b)).) This is indeed a complex because

[
−dA 0

f dB

]2

=

[
dA ◦ dA 0

−f ◦ dA + dB ◦ f dB ◦ dB

]

which is 0 because A•, B• are complexes and f is a morphism of complexes.
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Given a commutative diagram

A•
f−−−→ B•y y

A′•
g−−−→ B′•

of morphisms in C(A), there is an obvious induced morphism C(f)→ C(g); this is
the functoriality of the cone construction.

Quite generally for a complex A• and n ∈ Z the shifted complex A•[n] is defined
by

A[n]i := Ai+n, dA[n]• = (−1)ndA• .

With this notation we have an exact sequence of complexes

(21) 0→ B• → C(f)→ A•[1]→ 0.

Lemma 11.2. Let f : A• → B• be a morphism in C(A).

(1) The morphisms H i+1(A•) → H i+1(B•) in the long exact cohomology sequence of
(21) equal H i+1(f).

(2) The morphism f is a quasi-isomorphism if and only if C(f) is acyclic.

Proof. For (1), we may assume A is a category of modules and take a ∈ Zi(A[1]•) =

Zi+1(A•). By the proof of Proposition 3.5 the image of its class in the long ex-
act sequence can be constructed by lifting it to (a, 0) ∈ C(f)i and then taking
df ((a, 0)) = −dA(a) + f(a) = f(a), which indeed represents H i+1(f)(a). Statement
(2) follows by the long exact cohomology sequence associated with (21). �

The other standard construction is:

Construction 11.3. Given a morphism of complexes f : A• → B• in C(A), the cylin-
der Cyl(f) of f is the complex with terms Cyl(f)i = Ai+1 ⊕Bi ⊕Ai and differentials
dcyl : Cyl(f)i → Cyl(f)i+1 given by the 3× 3 matrix of morphisms

dcyl =

−dA 0 0

f dB 0

idA 0 dA


where dA and dB are the differentials of A• and B•, respectively. For A a category
of modules we have the formula

(22) dcyl(ai+1, bi, ai) = (−dA(ai+1), f(ai+1) + dB(bi), ai+1 + dA(ai)).

Note that

(23) Cyl(f) = C(C(f)[−1]→ A)
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where the morphism C(f)[−1] → A• comes from (21) after shifting by −1; it is
given by (idA, 0). Indeed, the terms of the two complexes are equal and equality of
the differentials can be read off the matrices. From this it follows that Cyl(f) is a
complex (which can also be checked directly) and that there is an exact sequence

(24) 0→ A• → Cyl(f)→ C(f)→ 0

in C(A), by combining (21) and (23).

The cylinder has important chain-homotopical properties:

Proposition 11.4. Let f : A• → B• be a morphism of complexes.

(1) The natural map of complexes i : B• → Cyl(f) induced by the inclusion of B• in
the second component gives a chain homotopy equivalence between B• and Cyl(f).

(2) Another morphism of complexes g : A• → B• is homotopic to f if and only if there
is a morphism of complexes Cyl(−idA) → B• which composed with the natural
inclusions A• → Cyl(−idA) in the second and third component gives back f and g,
respectively.

Proof. For (1), define a morphism of complexes p : Cyl(f)→ B• by sending (ai+1, bi, ai)

to −f(ai) + bi. This is a morphism of complexes because

(p ◦ dcyl)(ai+1, bi, ai) = f(ai+1) + dB(bi)− f(ai+1)− f(dA(ai)) = dB(−f(ai) + bi).

By construction p ◦ i = idB, and now we check idCyl(f) − i ◦ p = k ◦ dcyl + dcyl ◦ k,
where k : Cyl(f)i → Cyl(f)i−1 is given by k(ai+1, bi, ai) = (ai, 0, 0). Indeed,

(k ◦ dcyl)(ai+1, bi, ai) = (ai+1 + dA(ai), 0, 0),

(dcyl ◦ k)(ai+1, bi, ai) = dcyl(ai, 0, 0) = (−dA(ai), f(ai), ai);

on the other hand,

(ai+1, bi, ai)− (0,−f(ai) + bi, 0) = (ai+1, f(ai), ai).

For (2) suppose k induces a chain homotopy between f and g and consider the
map Cyl(−id) → B• induced by the triple (k, f, g); it indeed gives back f and g

after composing with the natural inclusions. We compute using formula (22) for
(ai+1, āi, ai) ∈ Ai+1 ⊕ Ai ⊕ Ai

((k, f, g)◦dcyl)((ai+1, āi, ai) = −(k◦dA)(ai+1)−f(ai+1)+f(dA(āi))+g(ai+1)+g(dA(ai))

and
(dB ◦ (k, f, g))((ai+1, āi, ai) = (dB ◦ k)(ai+1) + dB(f(āi)) + dB(g(ai))

Since f and g are morphisms of complexes, equality of the two is equivalent to

g(ai+1)− f(ai+1) = (dB ◦ k + k ◦ dA)(ai+1)
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which holds precisely because f and g are homotopic via k. The converse follows
by reversing the argument.

As a first application, note the following. Given an exact sequence

0→ A• → B• → C• → 0

in C(A), we have a commutative diagram with exact rows

0 −−−→ A• −−−→ Cyl(f) −−−→ C(f) −−−→ 0

id

y −p
y h

y
0 −−−→ A•

f−−−→ B•
g−−−→ C• −−−→ 0

where the upper row is (24), p : (ai+1, bi, ai)→ −f(ai)+bi is the homotopy inverse of
i constructed in the above proof and h is the map induced on cokernels (explicitly,
h(ai+1, bi) = −g(bi)).

Corollary 11.5. The map h : C(f)→ C• is a quasi-isomorphism.

Proof. This follows from Proposition 11.4 (1) and Corollary 3.7.

Remark 11.6. In general h is not a homotopy equivalence, even though id and i are
(see Remark 11.13 below).

We now come to a crucial definition:

Definition 11.7. The homotopy category K(A) is the category with the same objects
as C(A) but with morphisms

HomK(A)(A,B) := HomC(A)(A,B)/{φ ∈ HomC(A)(A,B) : φ ∼ 0}

where ∼ denotes homotopy equivalence of morphisms of complexes. The quotient
makes sense because the φ homotopic to 0 form a subgroup in HomC(A)(A,B). Com-
position is induced from composition of morphisms in C(A).

Remark 11.8. The category K(A) is additive but not abelian general. Example: let
A be the category of abelian groups, and consider the morphism φ : Z → Z/2Z as
a morphism in C(A) of complexes concentrated in degree 0. This morphism has a
kernel in C(A), namely 2Z viewed again as a complex, but not in K(A). Indeed,
if φ had a kernel in K(A), it would be represented by 2Z because every morphism
Z → A with A an abelian group induces a morphism in K(A) . Now consider the
morphism of complexes ψ given by

· · · −−−→ 0 −−−→ Z −−−→ Z/2Z −−−→ 0 −−−→ · · ·y y y y
· · · −−−→ 0 −−−→ Z −−−→ 0 −−−→ 0 −−−→ · · ·
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Then φ ◦ ψ ∼ 0, a homotopy being given by the identity of Z/2Z in degree 1 and
by the zero map elsewhere. Now if 2Z were a kernel for φ, then ψ would factor
through a morphism

· · · −−−→ 0 −−−→ Z −−−→ Z/2Z −−−→ 0 −−−→ · · ·y y y y
· · · −−−→ 0 −−−→ 2Z −−−→ 0 −−−→ 0 −−−→ · · ·

in K(A) but that’s impossible (there is no such factorization in C(A) and no homo-
topy to help as the only map Z/2Z→ Z is the zero map).

Since exact sequences do not make sense in K(A) by the above remark, we con-
sider a substitute. A triangle in K(A) is a sequence of morphisms

A• → B• → C• → A•[1]

in K(A). The basic example to have in mind is the triangle

A• → B• → C(f)→ A•[1]

coming from (21). An exact (or distinguished) triangle in K(A) is a triangle

A• → B• → C• → A•[1]

for which there is a commutative diagram

A• −−−→ B• −−−→ C• −−−→ A•[1]yα yβ yγ yα[1]

A′• −−−→ B′• −−−→ C(f ′) −−−→ A′•[1]

with some f ′ : A′• → B′• in K(A) such that all vertical maps are isomorphisms
in K(A). (Note that, viewed as a diagram in C(A), the squares only commute
up to homotopy!). The following statements are more or less immediate from the
definition:

Lemma 11.9.

(1) The composition of any two consecutive maps in an exact triangle is 0 in K(A).
(2) If A• → B• → C• → A•[1] is an exact triangle, there is an associated long exact

sequence

· · · → H i(A•)→ H i(B•)→ H i(C•)→ H i+1(A•)→ · · ·

in A.
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Proof. In (1) the triviality of the composite map B• → C• → A•[1] follows from exact
sequence (21), and that of A• → B• → C• from exact sequence (24) and Proposition
11.4 (1). The sequence in (2) identifies with the long exact sequence associated with
the exact sequence of complexes (24).

The next lemma is a bit less straightforward.

Lemma 11.10.

(1) A triangle

A• → B• → C• → A•[1]

in K(A) is exact if and only if the shifted triangle

C•[−1]→ A• → B• → C•

is exact.
(2) Given a commutative diagram

A• −−−→ B• −−−→ C• −−−→ A•[1]yα yβ yα[1]

A′• −−−→ B′• −−−→ C ′• −−−→ A′•[1]

of exact triangles in K(A), there is a morphism γ : C• → C ′• in K(A) making the
diagram commute.

Proof. The ‘if’ part of (1) follows by applying the ‘only if’ part twice and shifting.

So suppose A• f→ B• → C• → A•[1] is exact. We may assume C• = C(f) and by
Proposition 11.4 (1) we may replace B• by Cyl(f) in K(A). But

C(f)[−1]→ A• → Cyl(f)• → C(f)

is an exact triangle by the isomorphism (23).
For statement (2) we may again assumeC• = C(f) (and similarly forC ′•), whence

the statement follows by functoriality of C(f).

The two statements of the proposition are parts of the general formalism of tri-
angulated categories, an axiomatic theory extracted from properties of exact triangles
in K(A). To show the power of the formalism we derive some consequences.

Corollary 11.11.

(1) For every object X• in K(A) applying the functor HomK(A)(X
•, ) to the first row

of the diagram in Lemma 11.10 (2) induces an exact sequence of abelian groups

HomK(A)(X
•, A•)→ HomK(A)(X

•, B•)→ HomK(A)(X
•, C•).
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Similarly, applying the contravariant functor HomK(A)( , X•) to the first row of
the diagram in Lemma 11.10 (2) induces an exact sequence

HomK(A)(C
•, X•)→ HomK(A)(B

•, X•)→ HomK(A)(A
•, X•).

(2) If any two of the maps α, β, γ in Lemma 11.10 (2) are isomorphisms in K(A), then
so is the third one.

Proof. The sequence of statement (1) is a complex by Lemma 11.9 (1), so assume
f : X• → B• becomes 0 in K(A) after composing with the map B• → C•. Noting
that C(X• → 0) = X•[1], we have a diagram of exact triangles

(25)

X• −−−→ 0 −−−→ X•[1]
id−−−→ X•[1]yf y0

yf [1]

B• −−−→ C• −−−→ A•[1] −−−→ B•[1].

By Lemma 11.10 (2) there is a map X•[1]→ A•[1] making the diagram commute, so
after shifting we obtain a map X• → A• whose composition with A• → B• is f . The
proof of the contravariant case is similar.

To prove (2) it is enough to consider the case where α, β are isomorphisms by
Lemma 11.10 (1). We apply the contravariant form of statement (1) with X• = C•

to the triangles in Lemma 11.10 (2). Combined with Lemma 11.10 (1) we obtain a
commutative diagram with exact rows

Hom(A•, C•) ←−−−−− Hom(B•, C•) ←−−−−− Hom(C•, C•) ←−−−−− Hom(A•[1], C•) ←−−−−− Hom(B•[1], C•)xα∗

xβ∗ xγ∗ xα∗[1]

xβ∗[1]
Hom(A′•, C•) ←−−−−− Hom(B′•, C•) ←−−−−− Hom(C′•, C•) ←−−−−− Hom(A′•[1], C•) ←−−−−− Hom(B′•[1], C•).

If α, β are isomorphisms, so are all vertical maps in the diagram by the five lemma,
so there is γ′ : C ′• → C• in K(A) with γ′ ◦ γ = idC′ . This γ′ makes the diagram

A′• −−−→ B′• −−−→ C ′• −−−→ A′•[1]yα−1

yβ−1

yγ′ yα−1[1]

A• −−−→ B• −−−→ C• −−−→ A•[1]

commute, so repeating the argument gives γ′′ : C• → C ′• in K(A) with γ′′ ◦ γ′ =

idC• . But then composing with γ on the right gives γ′′ = γ, so γ′ is an inverse of γ in
K(A).

We can now prove a stronger form of Lemma 11.2 (2).

Corollary 11.12. A morphism f : A• → B• in C(A) is a homotopy equivalence if and
only if C(f) is homotopically trivial (i.e. the identity map of C(f) is homotopic to 0).
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Proof. Apply the second statement of the previous corollary to the commutative di-
agram of exact triangles

A• −−−→ A• −−−→ 0 −−−→ A•[1]yid

yf y0

yid

A• −−−→ B• −−−→ C(f) −−−→ A•[1]

where the upper triangle is obtained by applying Lemma 11.10 (1) to the upper
triangle in (25).

Remark 11.13. We can now give an example showing that an exact sequence 0 →
A• → B• → C• → 0 in C(A) does not necessarily give rise to an exact trian-
gle A• → B• → C• → A•[1] in K(A). Consider the exact sequence of abelian

groups 0 → Z/2Z
f→ Z/4Z → Z/2Z → 0 viewed as an exact sequence of com-

plexes concentrated in degree 0. We have C(f) = [Z/2Z → Z/4Z] which is in-
deed quasi-isomorphic to [0 → Z/2Z] via the natural projection p but not homo-
topy equivalent. Indeed, the only possible homotopy inverse could be the nat-
ural injection i : [0 → Z/2Z] → C(f) which indeed satisfies p ◦ i = id, but
i ◦ p : [Z/2Z → Z/4Z] → [Z/2Z → Z/4Z] cannot be homotopic to the iden-
tity because it is not surjective in degree 0 and no homotopy induced by a map
Z/4Z→ Z/2Z can remedy that.

Now were there a map g : Z/2Z → Z/2Z[1] such that the triangle Z/2Z
f→

Z/4Z → Z/2Z
g→ Z/2Z[1] is isomorphic in K(A) to some A′• f ′→ B′• → C(f ′) →

A′•[1], the isomorphisms identifying the sources and targets of f and f ′ would
induce a map C(f) → C(f ′) in K(A) by Lemma 11.10 (2) which would be an i-
somorphism by Corollary 11.11 (2). But C(f ′) ∼= Z/2Z by assumption whereas
C(f) 6∼= Z/2Z by the above.

12. THE DERIVED CATEGORY

There is another way of constructing the homotopy category, via localization.

Proposition 12.1. Let C be a category and S a collection of morphisms in C containing all
identity maps of objects and all compositions s ◦ t when t ∈ HomC(A,B), s ∈ HomC(B,C)

are both in S.
There is a category S−1C and a functor Q : C → S−1C such that

(1) For every s ∈ S the morphism Q(s) is an isomorphism;
(2) Every functor F : C → D that sends the elements of S to isomorphisms inD factors

uniquely through Q.
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The category S−1C is called the localization of Cwith respect to S. The pair (S−1C, Q)

is unique up to unique isomorphism.

Proof. One construction is as follows. Let S−1C have the same objects as C. For two
objects A,B we define HomS−1C(A,B) as follows. Consider all possible chains of
morphisms A · · · ←←→ · · · ←→→ · · ·B where leftward morphisms are in S. We
let HomS−1C(A,B) be the quotient of this set by the coarsest equivalence relation
containing the following equivalences:

(1) A · · · f→ g→ · · ·B ∼ A · · · g◦f→ · · ·B;

(2) A · · · s← t← · · ·B ∼ A · · · s◦t← · · ·B;

(3) A · · · s← s→ · · ·B ∼ A · · · id→ · · ·B for s ∈ S;
(4) A · · · s← f→ · · ·B ∼ A · · · g→ t← · · ·B whenever g ◦ s = t ◦ f .

Morphisms are composed in the obvious way and there is a natural functor Q from
C to this category that sends elements of S to isomorphisms by property (3). It sat-
isfies the universal property (send a chain to a composition of F (s)−1’s and F (f)’s
for each leftward s and rightward f in the chain).

Lemma 12.2. If A is an abelian category, then K(A) is the localization of C(A) by the
collection of homotopy equivalences.

Proof. Suppose F : C(A) → D is a functor sending homotopy equivalences to iso-
morphisms. Recall from Proposition 11.4 (1) that for each complex A• the natural
map i : a 7→ (0, a, 0) induces a homotopy equivalence between A• and Cyl(−idA)

with homotopy inverse p : (ai+1, āi, ai) 7→ āi + ai. Thus F (p) = F (i)−1.
Now consider the map j : A• → Cyl(−idA) given by a 7→ (0, 0, a). We have

p ◦ j = idA, so

F (i) = F (i) ◦ F (p ◦ j) = F (i) ◦ F (p) ◦ F (j) = F (j).

Now suppose f, g : A• → B• are homotopic via a map k. By Proposition 11.4 (2) the
map (k, f, g) induces a morphism of complexes φ : Cyl(−idA)→ B• with φ ◦ i = f ,
φ ◦ j = g. But then

F (f) = F (φ) ◦ F (i) = F (φ) ◦ F (j) = F (g)

which means that F factors through the homotopy category K(A).

Definition 12.3. The derived category D(A) of an abelian category A is the localiza-
tion of C(A) with respect to the collection of quasi-isomorphisms of complexes.

Corollary 12.4. One can also obtain D(A) as the localization of K(A) with respect to the
collection of morphisms represented by quasi-isomorphisms of complexes.



NOTES ON HOMOLOGICAL ALGEBRA 69

Proof. The universal functor Q : C(A) → D(A) factors through K(A) by Lemma
12.2 and satisfies the universal property for the collection of quasi-isomorphisms in
K(A) by definition. �

The description of morphisms in the derived category furnished by the general
localization construction is impractical. Here is a notion which brings it closer to
the calculus of fractions for rings.

Definition 12.5. A collection S of morphisms in a category C is a multiplicative system
if it satisfies the following axioms.

(1) All identity morphisms of objects of A are in S and if t ∈ HomC(A,B), s ∈
HomC(B,C) are both in S, so is s ◦ t;

(2) Given f ∈ HomC(A,B) and a morphism s : A → A′ in S, there are mor-
phisms f ′ ∈ HomC(A

′, B′) and t : B → B′ in S making the diagram

A
f−−−→ B

s

y yt
A′

f ′−−−→ B′

commute. Similarly, if f ′ and t are given, we may complete the diagram with
f and s.

(3) Given f, g ∈ HomC(A,B), there exists a morphism s ∈ S with target A such
that f ◦ s = g ◦ s if and only if there exists t ∈ S with source B such that
t ◦ f = t ◦ g.

Construction 12.6. Given a multiplicative system S of morphisms in a category C,
we construct a category S−1C as follows. The objects of S−1C are to be the same as
those of C. Morphisms in S−1C are to be equivalence classes of pairs

A
s← A1

f→ B

with s ∈ S, f ∈ HomC(A1, B), subject to the following equivalence relation: two

pairs A s1← A1
f1→ B and A

s2← A2
f2→ B are equivalent if there is a third such pair

A
s3← A3

f3→ B fitting in a commutative diagram

A
s1←−−− A1

f1−−−→ B

id

x x xid

A
s3←−−− A3

f3−−−→ B

id

y y yid

A
s2←−−− A2

f2−−−→ B.
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Composition of morphisms in S−1C is defined as follows. Given A s← A1
f→ B and

B
t← B1

g→ C, we first use property (2) of multiplicative systems to find a diagram

(26)

A′
f ′−−−→ B1

g−−−→ C

t′

y yt
A

s←−−− A1
f−−−→ B.

We then define the composite to be the equivalence class of A s◦t′←− A′
g◦f ′−→ C. One

checks that this composition rule indeed preserves equivalence classes.
Finally, define a functor Q : C → S−1C to be the identity on objects and sending

each morphism f ∈ HomC(A,B) to the class ofA id← A
f→ B. This is indeed a functor

because the composition of A id← A
f→ B and B

id← B
g→ C is A id← A

g◦f−→ B, as can
be seen by taking f ′ = f and t′ = id in the above diagram.

Remark 12.7. Property (3) of multiplicative systems is used during the verifications
that the equivalence relation introduced above is transitive, and that composition
of morphisms does not depend on choices of representatives. For instance, let us
check that composition of morphisms as defined via diagram (26) does not depend
on the choice of the object A′ and the morphisms f ′, t′. Suppose we worked with a
diagram

(27)

A′′
f ′′−−−→ B1

g−−−→ C

t′′

y yt
A

s←−−− A1
f−−−→ B.

instead. Applying property (2) of multiplicative systems we get a commutative
diagram

(28)

A′′′
u′′−−−→ A′′

u′

y yt′′
A′

t′−−−→ A1.

with u′ ∈ S. The pair A s◦t′◦u′←− A′′′
g◦f ′′◦u′′−→ B would induce an equivalence between

A
s◦t′←− A′

g◦f ′−→ C and A
s◦t′′←− A′′

g◦f ′′−→ C if the diagram

(29)

A′′′
u′′−−−→ A′′

u′

y yf ′′
A′

f ′−−−→ B1
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were also commutative. This is not true in general. However, the composite maps

A′′′
u′→ A′

f ′→ B1
t→ B and A′′′ u

′′
→ A′′

f ′′→ B1
t→ B are equal because the first is equal to

A′′′
u′→ A′

t′→ A1
f→ B by diagram (26), which in turn equals A′′′ u

′′
→ A′′

t′′→ A1
f→ B by

diagram (29). Finally, this composite map equals A′′′ u
′′
→ A′′

f ′′→ B1
t→ B by diagram

(27). Now property (3) of multiplicative systems implies that there is some map
u : A′′′′ → A′′′ such that replacing u′ and u′′ by u′ ◦ u and u′′ ◦ u in diagram (29)
it becomes commutative. Of course, diagram (28) remains commutative after this
substitution.

Proposition 12.8 (Gabriel–Zisman). Together with the functorQ the category S−1C con-
structed above is the localization of C with respect to S.

Proof. We check the properties in Proposition 12.1. Property (1) follows because the
two-sided inverse of the class of A id← A

s→ B is represented by B s← A
id→ A. Prop-

erty (2) holds, because if F : C → D sends the morphisms in S to isomorphisms,

we may factor it uniquely through S−1C by sending the class of A s← A1
f→ B

to F (f) ◦ F (s)−1. That this construction respects equivalence classes follows from
the definition of the equivalence relation. For it to define a functor S−1C → D we

have to check that the composition of A s← A1
f→ B and B

t← B1
g→ C is sent to

F (g ◦ f ′) ◦ F (s ◦ t′)−1, with f ′, t′ as in diagram (26). This is because applying F to
the diagram implies

F (g) ◦ F (t)−1 ◦ F (f) ◦ F (s)−1 = F (g) ◦ F (f ′) ◦ F (t′)−1 ◦ F (s)−1

and F preserves composition.

Remarks 12.9.
1. In the above constructions only ’half’ of properties (2) and (3) were used. The
other half can be used for defining localization via ‘right fractions’ represented by

pairs of morphisms A f→ B1
t← B; the argument is similar. Since both left and right

satisfy the defining universal property of localization, the resulting categories are
isomorphic.
2. One can prove the stronger property that the Hom-sets in the category S−1C arise
as filtered direct limits of Hom-sets in C.

Proposition 12.10. If S is a multiplicative system of morphisms in an additive category
A, then S−1A is also additive.
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Sketch of proof. Given two morphisms A s← A1
f→ B and A

s′← A′1
f ′→ B, we define

their sum by introducing a ‘common denominator’. Apply axiom (2) of multiplica-
tive systems to find a commutative diagram

C
r′−−−→ A1

r

y ys
A′1

s′−−−→ A

with r ∈ S. By axiom (1) t := s′ ◦ r = s ◦ r′ ∈ S and we may represent the two

morphisms above by the equivalent morphisms A t← C
f◦r′→ B and A

t← C
f ′◦r→ B.

Define their sum by the equivalence class of A t← C
f◦r′+f ′◦r−→ B. One checks that this

definition is well posed and the axioms for an additive category hold (0 and A⊕ B
are the same objects as in A). �

Now we apply the above to the derived category.

Proposition 12.11. LetA be an abelian category and let K(A) be the associated homotopy
category. The collection of quasi-isomorphisms in K(A) is a multiplicative system.

Consequently, every morphism in D(A) can be represented by a pair A s← A1
f→ B with

s a quasi-isomorphism and f a morphism in K(A).

Proof of Proposition 12.11. We first check property (2) of multiplicative systems. As-
sume given morphisms f : A• → B• and s : A• → A′• in K(A), with s a quasi-
isomorphism. Using Lemma 11.10 (1) we have an exact triangle

C(s)[−1]
g→ A• → A′• → C(s)

which, using Lemma 11.10 (2), can be inserted in a commutative diagram of exact
triangles

C(s)[−1]
g−−−→ A•

s−−−→ A′• −−−→ C(s)yid

yf y yid

C(s)[−1]
f◦g−−−→ B• −−−→ C(f ◦ g) −−−→ C(s).

We claim that the middle square of the diagram is the one we were looking for
(in particular we may take B′ = C(f ◦ g)). For this we have to check that the
map B• → C(f ◦ g) in the lower triangle is a quasi-isomorphism. Since s is a
quasi-isomorphism, the cone C(s) is acyclic by Lemma 11.2, but then the long exact
sequence associated with the lower triangle implies the claim. The proof for the
other part of the square is similar.

Since K(A) is an additive category, we can replace f by f − g in property (3) and
check it in the following equivalent form: there exists a morphism s ∈ S with target
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A such that f ◦s = 0 if and only if there exists t ∈ S with sourceB such that t◦f = 0.
Suppose indeed that t ◦ f = 0 for some t : B → C in S. We may insert it in the exact
triangle

C(t)[−1]
g→ B•

t→ C• → C(t)

as above. Since t ◦ f = 0, by exactness of the sequence HomK(A)(A
•, C(t)[−1]) →

HomK(A)(A
•, B•)→ HomK(A)(A

•, C•) (Corollary 11.11 (1)) we find f ′ : A• → C(t)[−1]

with g ◦ f ′ = f . Now insert f ′ in the exact triangle

C(f ′)[−1]
s→ A•

f ′→ C(t)[−1]→ C(f ′).

Here f ′ ◦ s = 0 by Lemma 11.9 (1), hence also f ◦ s = 0. Moreover, since t is a
quasi-isomorphism, the cone C(t) is acyclic, hence s is also a quasi-isomorphism by
the long exact sequence of the triangle above. The other implication is proven in a
similar way. �

Corollary 12.12. The derived category D(A) is additive.

Proof. This follows from the two previous propositions.

For all i ∈ Z the functors H i : C(A)→ A given by A• 7→ H i(A•), f 7→ H i(f) map
quasi-isomorphisms to isomorphisms by definition, so by the universal property
of localization induce functors H i : D(A) → A. Also, as in K(A), define an exact
triangle in D(A) to be a triangle isomorphic in D(A) to a triangle of the form A• →
B• → C(f) → A•[1]. Then the statements of Lemmas 11.9 and 11.10 and their
corollaries all hold for exact triangles in D(A). But notice a new feature:

Corollary 12.13. An exact sequence

0→ A• → B• → C• → 0

in C(A) gives rise to an exact triangle

A• → B• → C• → A•[1]

in D(A).

Proof. This follows from Corollary 11.5.

Remark 12.14. Given a morphismA• → B• inD(A), we may insert it in an exact tri-
angle A• → B• → C• → A•[1] in D(A) as follows. First we represent the morphism

by a pair A• s← A•1
f→ B• of morphisms in K(A) with s a quasi-isomorphism. Set-

ting C• := C(f) we have an exact triangle A•1
f→ B•

g→ C•
h→ A•1[1] in K(A), hence

in D(A), and we may construct a triangle A• → B•
g→ C•

h→ A•[1] isomorphic to
it in D(A) via s and the identity maps. Note that C• is unique up to isomorphism
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in D(A) but not up to unique isomorphism. One sometimes calls C• a cone of the
morphism A• → B• in D(A).

Using the above remark we can verify:

Corollary 12.15. A morphism φ : A• → B• in D(A) is an isomorphism in D(A) if and
only if it induces isomorphisms H i(φ) : H i(A•)→ H i(B•) for all i.

Note that the corollary does not imply that φ comes from a quasi-isomorphism in
C(A)!

Proof. The ‘only if’ part follows because the H i are functors on D(A). Assume now
the H i(φ) are all isomorphisms, and let C• be a cone of φ as in the above remark.
Then H i(C•) = 0 for all i, and so the map 0→ C• in C(A) induces an isomorphism
in D(A). In the commutative diagram of exact triangles

A•
id−−−→ A• −−−→ 0 −−−→ A•[1]

id

y φ

y y yid

A•
φ−−−→ B• −−−→ C• −−−→ A•[1]

three of the vertical maps are then isomorphisms, and hence so is φ by the derived
category version of Corollary 11.11 (2).

Now that we have introduced the derived category, we can define Ext-groups in
a general abelian category.

Definition 12.16. If A is an abelian category and A•, B• two objects in C(A), we define

ExtiA(A•, B•) := HomD(A)(A
•, B•[i]).

We shall verify in Proposition 14.12 below that in the case of one-term complexes
this definition agrees with the earlier derived functor definition; in this case we
simplify the notation to ExtiA(A,B), with A, B two objects of A. What we can do
right now is to interpret elements in ExtiA(A,B) as classes of i-fold extensions.

Construction 12.17 (Yoneda extensions). LetA be an abelian category, andA,B two
objects of A. An i-fold (Yoneda) extension of A by B is an exact sequence

(30) 0→ B → E−i+1 → E−i+2 → · · · → E0 → A→ 0

of objects inA. Two extensions 0→ B → E−i+1 → E−i+2 → · · · → E0 → A→ 0 and
0 → B → E ′−i+1 → E ′−i+2 → · · · → E ′0 → A → 0 are Yoneda equivalent if there is
a third extension 0 → B → E ′′−i+1 → E ′′−i+2 → · · · → E ′′0 → A → 0 fitting into a
commutative diagram
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0 −−−→ B −−−→ E−i+1 −−−→ · · · −−−→ E0 −−−→ A −−−→ 0

id

x x x xid

0 −−−→ B −−−→ E ′′−i+1 −−−→ · · · −−−→ E ′′0 −−−→ A −−−→ 0

id

y y y yid

0 −−−→ B −−−→ E ′−i+1 −−−→ · · · −−−→ E ′0 −−−→ A −−−→ 0.
In the case i = 1 this gives back the earlier definition of equivalence of extensions.
It is not hard to check that this is indeed an equivalence relation but it also follows
from the lemma below.

We now associate with an i-fold extensionE as in (30) an element c(E) ∈ ExtiA(A,B)

as follows. The exact sequence (30) defines a quasi-isomorphism of complexes
s : [0 → B → E−i+1 → E−i+2 → · · · → E0 → 0] → A. The natural projection
gives a map f : [0 → B → E−i+1 → E−i+2 → · · · → E0 → 0] → B[i] and the pair
(s, f) represents a morphism c(E) ∈ HomD(A)(A,B[i]).

Note, in particular, that the above construction gives rise to nonzero morphisms
A→ B[i] in D(A), whereas there is no such morphism in C(A).

Proposition 12.18. Let A and B be as above.

(1) Two i-fold extensions E and E ′ of A by B are Yoneda equivalent if and only if
c(E) = c(E ′).

(2) Each morphism φ ∈ HomD(A)(A,B[i]) is of the form c(E) for some i-fold extension
E.

To sum up, we have:

Corollary 12.19. The assignmentE 7→ c(E) induces a bijection between equivalence class-
es of i-fold extensions and elements in ExtiA(A,B).

For the proof we use the all-important truncation functors, defined as follows.

Construction 12.20. Given a complex A• in C(A) and an integer n ∈ Z, define the
(canonical) truncations in degree n by

τ≤n(A•) := [· · · → Ai → Ai+1 → · · · → An−1 → Zn(A•)→ 0→ 0→ · · · ]

and

τ≥n(A•) := [· · · → 0→ 0→ An/Bn(A•)→ An+1 → · · · → Ai → Ai+1 → · · · ]

By definition, there are natural morphisms of complexes τ≤n(A•) → A• and A• →
τ≥n(A•) which are quasi-isomorphisms in degrees ≤ n and ≥ n, respectively, and
zero maps elsewhere (notice that Hn(τ≤n(A•)) = Hn(τ≥n(A•) = Hn(A•).) Also,
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given a quasi-isomorphism A• → B•, the induced maps τ≤n(A•) → τ≤n(B•) and
τ≥n(A•)→ τ≥n(B•) are quasi-isomorphisms as well. Thus τ≤n and τ≥n induce func-
tors D(A)→ D(A).

For later use, note that for each n we have an exact sequence of complexes

0→ τ≤n−1(A•)→ τ≤n(A•)→ [An−1/Zn−1(A•)→ Zn(A•)]→ 0

where the last complex is concentrated in degrees n − 1 and n. The natural mor-
phism of complexes

[An−1/Zn−1(A•)→ Zn(A•)]→ [0→ Hn(A•)]

(where the second complex is placed in the same degrees) is a quasi-isomorphism.
Thus using Corollary 12.13 we have an exact triangle

(31) τ≤n−1(A•)→ τ≤n(A•)→ Hn(A•)[−n]→ τ≤n−1(A•)[1]

in D(A), where Hn(A•) is considered as a complex concentrated in degree 0.
Similarly, there is an exact triangle

(32) Hn(A•)[−n]→ τ≥n(A•)→ τ≥n+1(A•)→ Hn(A•)[−n+ 1].

coming from the exact sequence of complexes

0→ [An/Bn(A•)→ Bn+1(A•)]→ τ≥n(A•)→ τ≥n+1(A•)→ 0.

These exact triangles are very useful in inductive arguments on complexes.

Proof of Proposition 12.18. We first prove (2). Represent φ by a pair A s← L•
f→ B[i],

where s is a quasi-isomorphism. Replacing L• by τ≥−i−1τ≤0L
• we may assume Li =

0 for i < −i − 1 and i > 0. Now take the pushout of the extension 0 → L−i−1 →
L−i → B−i+1L→ 0 by the composite mapL−i−1 → L−i

f→ B, obtaining an extension
0 → B → L′−i → B−i+1L → 0. Replacing L• in degrees (−i − 1,−i) by the map
B → L′−i and leaving the other maps unchanged gives an i-fold extension

0→ B → L′−i+1 → L−i+2 → · · · → L0 s→ A→ 0

of A by B with class φ.
It remains to prove (1). The ‘only if’ part being obvious, we assume E and E ′ are

two extensions with c(E) = c(E ′). Represent c(E) and c(E ′) by pairsA s← E•
f→ B[i]

and A
s′← E ′•

f ′→ B[i] as in the construction above. By the definition of morphisms
in D(A), these two are equal if there is a pair A t← L•

g→ B[i] equipped with mor-
phisms E• ← L• → E ′• compatible with the maps to A and B[i]. Truncating and
modifying L• as in the previous paragraph we obtain an i-fold extension of A by B
equipped with maps to E and E ′ inducing a Yoneda equivalence. �
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Remark 12.21. It follows from the definition that there are natural product map-
s ExtiA(A,B) × ExtjA(B,C) → Exti+jA (A,C) induced by composing morphisms in
D(A). Via the Yoneda construction they correspond to splicing i-fold and j-fold
extensions together.

13. DESCRIPTION IN THE PRESENCE OF ENOUGH PROJECTIVES

Now consider full subcategories of C(A) defined as follows: C+(A) is the full
subcategory spanned by objects A• such that Ai = 0 for all i � 0. Similarly, C−(A)

is spanned by objects A• with Ai = 0 for all i � 0 and Cb(A) is spanned by objects
with Ai 6= 0 for all but finitely many i. Denote their respective essential images in
K(A) and D(A) by K+(A), K−(A) and Kb(A) as well as D+(A), D−(A) and Db(A).
Here the essential image of a functor F : C → D is defined as the full subcategory
of D spanned by objects D isomorphic in D to some F (C) with C an object of C; we
apply this notion with F the natural functors C(A)→ K(A) and C(A)→ D(A).

Lemma 13.1. The category D+(A) is the full subcategory of D(A) spanned by objects A•

such that H i(A•) = 0 for all i� 0; similar statements hold for D−(A) and Db(A).

Proof. If H i(A•) = 0 for i < n, then the natural morphism A• → τ≥n(A•) is an
isomorphism in D(A), and by definition τ≥n(A•) is in the essential image of C+(A)

in D(A). The other proofs are similar.

Recall now that two categories C and D are equivalent if there are functors F :

C → D and G : D → C such that F ◦G ∼= idD and G ◦ F ∼= idC as functors. Here F is
called a quasi-inverse for G and vice versa.

Lemma 13.2. The category D+(A) is equivalent to the localization of K+(A) with respect
to the collection of quasi-isomorphisms in K+(A). Similar statements hold for D−(A) and
Db(A).

Proof. Denote by S+ the collection of quasi-isomorphisms in K+(A). The natural
functor K+(A)→ D+(A) maps the elements in S+ to isomorphisms in D(A), hence
factors through a functor S−1

+ K+(A) → D+(A). We construct a quasi-inverse as
follows. For every object A• in D+(A) the natural map φA : A• → τ≥n(A•) is an iso-
morphism inD(A) for suitable n; we fix such an isomorphism φA for eachA•. Given
a morphism φ : A• → B• inD+(A), the composite φB ◦φ◦φ−1

A can be represented by

a pair τ≥n(A•)
f→ B•1

t← τ≥m(B•) of morphisms in K(A) by Remark 12.9 (1). Since t
is a quasi-isomorphism here, the canonical map t1 : B•1 → τ≥m(B•1) must be a quasi-

isomorphism as well. So the pair τ≥n(A•)
t1◦f−→ τ≥m(B1)•

t1◦t←− τ≥m(B•) represents the
same morphism in D(A) but in fact represents a morphism in S−1

+ K+(A). Sending
A• to τ≥n(A•) and φ to the above morphism gives the required quasi-inverse.
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Assume now A has enough projectives and define K−(P) to be the full subcat-
egory of K−(A) spanned by complexes with projective terms. Similarly, if A has
enough injectives, define K+(I) to be the full subcategory of K+(A) spanned by
complexes with injective terms.

Proposition 13.3. If A has enough projectives, the composite functor

K−(P)→ K−(A)
Q→ D−(A)

induces an equivalence of categories between K−(P) and D−(A).
Similarly, if A has enough injectives, we have an equivalence of categories between

K+(I) and D+(A).

We need a lemma.

Lemma 13.4. Assume A has enough projectives (resp. injectives).

(1) Every complex C• in C−(A) is quasi-isomorphic to a complex P • with projective
terms.

Similarly, every complex in C+(A) is quasi-isomorphic to a complex I• with
injective terms.

(2) An acyclic complex in C−(A) with projective terms is homotopically trivial, and so
is an acyclic complex in C+(A) with injective terms.

Proof. We postpone the proof of (1) to the end of this section. As for (2) in the pro-
jective case, notice that an acyclic complex A• breaks up in short exact sequences
0 → Bi(A•) → Ai → Bi+1(A•) → 0 for all i. If n is the largest index for which
An 6= 0, we have An = Bn(A•); in particular, Bn(A•) is projective and the above
sequence for i = n − 1 splits as a direct sum An−1 ∼= Bn−1(A•) ⊕ Bn(A•). But then
Bn−1(A•) is also projective, so continuing inductively we have decompositionsAi ∼=

Bi(A•)⊕Bi+1(A•) for all i. Now

[
0 0

idBi 0

]
: Bi(A•)⊕Bi+1(A•)→ Bi−1(A•)⊕Bi(A•)

induces the required homotopy Ai → Ai−1 between idA• and 0. The proof in the in-
jective case is similar.

Corollary 13.5. Every quasi-isomorphism in K−(P) (or K+(I)) is an isomorphism.

Proof. Let s : P •1 → P •2 be a quasi-isomorphism in K−(P). By Lemma 11.2 (1) the
cone C(s) is acyclic, hence homotopically trivial by part (2) of the above lemma. We
conclude by Corollary 11.12.

Proof of Proposition 13.3. We do the case of K−(P). If S−1K−(P) denotes its local-
ization by the collection of quasi-isomorphisms in K−(P), the canonical functor
K−(P) → S−1K−(P) is an isomorphism by the previous corollary, so since the
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functor K−(P) → D−(A) of the proposition factors through S−1K−(P), it will be
enough to construct a quasi-inverse for the induced functor S−1K−(P)→ D−(A).

The method is the same as in the proof of Lemma 13.2. For each object A• in
D−(A) fix an isomorphism φA : P •A

∼→ A• in D−(A) with an object of D−(P); this
is possible by Lemma 13.4 (1). Given a morphism ρ : A• → B• in D−(A), the
composite φ−1

B ◦ ρ ◦ φA is a morphism P •A → P •B in D−(A). Thus we may represent

φ−1
B ◦ ρ ◦ φA by a pair P •A

s← C•
f→ P •B in K−(A), with s a quasi-isomorphism. Use

again Lemma 13.4 (1) to find a quasi-isomorphism t : P •C → C• where P •C is an

object in K−(P). Then P •A
s◦t← P •C

f◦t→ P •B still represents φ−1
B ◦ρ◦φA in D−(A) but s◦ t,

f ◦ t are now morphisms in K−(P), so we have in fact a morphism in S−1K−(P);
note that it does not depend on the choice of t. Now the required quasi-inverse is
defined by A• 7→ P •A, ρ 7→ (s ◦ t, f ◦ t). �

It remains to prove Lemma 13.4 (1). It could be done via a direct construction,
but we prefer to introduce a general technique that will also serve later.

Definition 13.6. A double complex A•,• in an abelian category A is a system of ob-
jects Ai,j indexed by Z × Z together with morphisms di,jh : Ai,j → Ai+1,j (horizontal
differentials) and di,jv : Ai,j → Ai,j+1 (vertical differentials) satisfying

(33) di+1,j
h ◦ di,jh = 0, di,j+1

v ◦ di,jv = 0, di+1,j
v ◦ di,jh + di,j+1

h ◦ di,jv = 0

for all i, j.
A morphism of double complexes ϕ : A•,• → B•,• is a family of morphisms

ϕi,j : Ai,j → Bi,j for all pairs (i, j) compatible with the horizontal and vertical
differentials.

A picture of a double complex looks like:
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...
...

...x x x
· · · −−−→ Ai,j+2 di,j+2

h−−−→ Ai+1,j+2 di+1,j+2
h−−−−−→ Ai+2,j+2 −−−→ · · ·

di,j+1
v

x di+1,j+1
v

x di+2,j+1
v

x
· · · −−−→ Ai,j+1 di,j+1

h−−−→ Ai+1,j+1 di+1,j+1
h−−−−−→ Ai+2,j+1 −−−→ · · ·

di,jv

x di+1,j
v

x di+2,j
v

x
· · · −−−→ Ai,j

di,jh−−−→ Ai+1,j di+1,j
h−−−→ Ai+2,j −−−→ · · ·x x x

...
...

...

Construction 13.7. A double complex A•,• is called biregular if for all n ∈ Z the set
{(i, j) : i + j = n andAi,j 6= 0} is finite. This is the case, for example, if there exists
k ∈ Z such that Ai,j = 0 for i < k, j < k or if Ai,j = 0 for i > k, j > k.

Given a biregular double complexA•,•, we define the associated simple complex sA•

by setting
sAn :=

⊕
i+j=n

Ai,j

and dn : sAn → sAn+1 given in the (i, j)-component by di,jh + di,jv . The formulas (33)
ensure that this is indeed a complex.

A morphism ϕ : A•,• → B•,• of double complexes induces a morphism sϕ :

sA• → sB• of associated simple complexes. It is defined in degree n by the direct
sum of the maps ϕi,j . Thus s is a functor from the category of biregular double
complexes to that of simple complexes. This functor is exact because a direct sum
of exact sequences is exact (exact sequences of double complexes are defined term
by term, as for usual complexes).

Proposition 13.8. Let ϕ : A•,• → B•,• be a morphism of biregular double complexes.
If ϕ induces quasi-isomorphisms A•,j → B•,j for each row, then sϕ : sA• → sB• is a
quasi-isomorphism.

Same conclusion if ϕ induces quasi-isomorphisms Ai,• → Bi,• for each column.

Proof. We do the case of columns. We have to show that the mapsHn(sϕ) : Hn(sA•)→
Hn(sB•) are isomorphisms for all n. Since the double complexes are biregular, only
finitely many Ai,j and Bi,j contribute to Hn(sA•) and Hn(sB•) for fixed n. So we
may assume Ai,j = Bi,j = 0 except for finitely many pairs i, j by setting the terms
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in the uninteresting range to 0. In particular, we may assume that Ai,• = Bi,• = 0

for i outside an interval [a, b] ⊂ Z. Thus the morphism ϕ can be represented by the
diagram

(34)

0 −−−→ Aa,• −−−→ Aa+1,• −−−→ · · · −−−→ Ab,• −−−→ 0y y y
0 −−−→ Ba,• −−−→ Ba+1,• −−−→ · · · −−−→ Bb,• −−−→ 0

We proceed by induction on b − a. If b − a = 0, then A•,• and B•,• are both con-
centrated in a single column and the assertion holds by assumption. Now assume
we have proven the cases with b − a < n. Introduce the notation A≥a+1,• for the
double complex obtained from A•,• by setting Ai,j = 0 for i < a + 1, and similarly
for B≥a+1,•. We have a commutative diagram of morphisms of double complexes
with exact rows

0 −−−→ Aa,• −−−→ A•,• −−−→ A≥a+1,• −−−→ 0y y y
0 −−−→ Ba,• −−−→ B•,• −−−→ B≥a+1,• −−−→ 0

where on the left hand side we have the a-th columns of A•,• and B•,• considered
as double complexes with 0’s elsewhere. Applying the exact functor s we obtain a
commutative diagram of morphisms of simple complexes with exact rows

0 −−−→ Aa,• −−−→ sA•,• −−−→ sA≥a+1,• −−−→ 0y y y
0 −−−→ Ba,• −−−→ sB•,• −−−→ sB≥a+1,• −−−→ 0

Here the first vertical map is a quasi-isomorphism by assumption and the last
one by induction. Hence so is the middle one by Corollary 3.7. �

Corollary 13.9. If A•,• is a biregular double complex whose rows (resp. columns) are
acyclic, then sA•,• is acyclic.

Proof. Apply the proposition with B•,• = 0.

Remark 13.10. There is a variant of the proposition which is often useful. Denote
the cohomology groups of the j-th row of A•,• by H i,j

h (A•,•) for all i and the co-
homology groups of the i-th column of A•,• by H i,j

v (A•,•) for all j. The identity
di+1,j
v ◦ di,jh + di,j+1

h ◦ di,jv = 0 implies that the differentials ‘in the other direction’
induce complexes

· · · → H i,j−1
h (A•,•)→ H i,j

h (A•,•)→ H i,j+1
h (A•,•)→ · · ·

and
· · · → H i−1,j

v (A•,•)→ H i,j
v (A•,•)→ H i+1,j

v (A•,•)→ · · ·
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called the i-th column and j-th row of cohomology, respectively. Now the variant
states: if ϕ : A•,• → B•,• induces quasi-isomorphisms on each row (or column) of
cohomology, then sϕ : sA• → sB• is a quasi-isomorphism. The proof is similar to
the above, using canonical truncations τ≥a+1,•(A

•,•) of rows, instead of the ‘stupid’
ones used above.

Proof of Lemma 13.4 (1). We may assume Ai = 0 for i > 0. We shall construct a dou-
ble complex P •,• with P i,j = 0 for i > 0 or j > 0 whose terms are projective and
is equipped with a morphism of double complexes P •,• → A•, where A• is consid-
ered as a double complex with a single nonzero row. This morphism will induce a
quasi-isomorphism on columns, i.e. each column of cohomology of P •,• will give
a projective resolution of Ai. Proposition 13.8, together with the fact that finite di-
rect sums of projectives are projective, will then show that the induced morphism
sP •,• → A• is a quasi-isomorphism we were looking for.

To construct P •,• we revert to homological indexing. For each i consider the exact
sequence

0→ Bi(A•)→ Zi(A•)→ Hi(A•)→ 0.

Choose projective resolutions PB
i,• → Bi(A•) and PH

i,• → Hi(A•), respectively. By
Lemma 4.4 there is a projective resolution PZ

i,• → Zi(A•) fitting in an exact sequence
of complexes

0→ PB
i,• → PZ

i,• → PH
i,• → 0.

Now repeat the procedure with the exact sequence

0→ Zi(A•)→ Ai → Bi−1(A•)→ 0.

and the projective resolutions PB
i−1,• → Bi−1(A•) and PZ

i,• → Zi(A•). It gives a pro-
jective resolution PZ

i,• → Ai fitting in an exact sequence of complexes

0→ PZ
i,• → Pi,• → PB

i−1,• → 0.

Now construct a double complex P•,• out of the Pi,• with horizontal differentials
induced by the composite maps

Pi,j → PB
i−1,j → PZ

i−1,j → Pi−1,j

coming from the above diagrams and vertical maps those of the Pi,• multiplied by
(−1)i. With this sign rule P•,• becomes a double complex and by construction there
is a morphism P•,• → A• with the required property. The proof in the injective case
is similar. �

Remark 13.11. The proof shows that P•,• satisfies much more than stated in the
beginning: it induces projective resolutions of each Ai, Zi(A•), Bi(A•) and Hi(A•)

as well. Such double complexes are called Cartan–Eilenberg resolutions.
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14. TOTAL DERIVED FUNCTORS

Let F : A → B be an additive functor between abelian categories. It then extends
uniquely to an additive functor C(A) → C(B) and also to a functor K(A) → K(B)

on the associated homotopy categories (any homotopy between maps f and g in-
duces a homotopy between F (f) and F (g)). Moreover, F : K(A) → K(B) is a
triangulated functor, i.e. it sends exact triangles to exact triangles (this property is
the natural analogue of exactness for functors between homotopy or derived cate-
gories). Now consider the following question: does there exist a triangulated func-
tor D(A)→ D(B) making the diagram

K(A)
Q−−−→ D(A)

F

y
K(B)

Q−−−→ D(B)

commute?
When F : A → B is an exact functor, the answer is yes. Indeed, notice first that

if A• is an acyclic complex in C(A), then F (A•) is also acyclic (because F preserves
exactness of the short exact sequences 0 → Zi(A•) → Ai → Zi+1(A•) → 0), so by
Lemma 11.2 (2) F preserves quasi-isomorphisms. But then the composite functor
K(A)

F→ K(B)
Q→ D(B) factors through D(A) by the universal property of localiza-

tion and the resulting functor is triangulated because F and Q are.
In general such an extension to D(A) does not exist and even in good cases one

has to restrict to the full subcategories D+(A) or D−(A). Moreover, we shall have
to weaken the requirement of commutativity for the diagram above. Here is the
formal definition.

Definition 14.1. Let F : K−(A) → K−(B) be a triangulated functor. A left de-
rived functor for F is a triangulated functor LF : D−(A) → D−(B) together with
a morphism of functors ε : LF ◦ Q → Q ◦ F that is universal in the following
sense: For every pair (G, η) with G : D−(A) → D−(B) a triangulated functor and
η : G ◦ Q → Q ◦ F there is a unique morphism of functors α : G → LF with
η = ε ◦ α ◦Q.

Similarly, if F : K+(A) → K+(B) is a triangulated functor, a right derived functor
for F is a triangulated functor RF : D+(A)→ D+(B) together with a morphism of
functors ε : Q◦F → RF ◦Q such that for every pair (G, η) withG : D+(A)→ D+(B)

a triangulated functor and η : Q◦F → G◦Q there is a unique morphism of functors
α : RF → G with η = ε ◦ α ◦Q.
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Of course, when LF or RF exists, it is unique up to unique isomorphism. In the
case where F comes from an additive functor A → B, one sometimes calls LF and
RF total derived functors of F .

Proposition 14.2. If A has enough projectives (resp. injectives), the left (resp. right)
derived functors of F exist.

Proof. We do the case of LF . Let R : D−(A) → K−(P) be a quasi-inverse to the
functor of Proposition 13.3, and set LF := Q ◦ F |K−(P) ◦ R. To define ε, pick
A• ∈ K−(A) and take the quasi-isomorphism φA : P • → A• in K−(A) used in
the construction of R, where P • has projective terms. Now φA induces a mor-
phism F (φA) : F (P •) → F (A•); applying Q we have the required morphism
εA : (LF ◦ Q)(A•) → (Q ◦ F )(A•). The definition of ε on morphisms is similar,
using the induced morphisms in K−(P) constructed in the proof of Proposition
13.3.

To construct α : G → LF , consider again the above A• and φA. The inverse of
(G ◦ Q)(φA) in D−(A) induces an isomorphism (G ◦ Q)(A•)

∼→ (G ◦ Q)(P •) which
we may compose with (G ◦Q)(P •)

η→ (Q ◦ F )(P •) = LF (Q(A•)). This defines α on
objects; the definition on morphisms is left to the reader.

We still have to check that LF is a triangulated functor. Suppose

(35) A• → B• → C• → A•[1]

is an exact triangle in D−(A). Then

(36) R(A•)
g→ R(B•)→ R(C•)→ R(A•)[1]

is a triangle in K−(P) isomorphic in D−(A) to the previous one. Moreover, it is also
isomorphic in D−(A) to the triangle

R(A•)→ R(B•)→ C(g)→ R(A•)[1]

by the version of Lemma 11.10 (2) and Corollary 11.11 (2) for derived categories.
But these last two triangles have terms in K−(P), so they are also isomorphic in
K−(P) by Corollary 13.5. In particular, (36) is an exact triangle inK−(A), and hence
applying the triangulated functor F to it we obtain an exact triangle inK−(B). Since
Q is a triangulated functor by definition, we have proven that LF maps (35) to an
exact triangle.

In the course of the above proof we have shown:

Corollary 14.3. When A has enough projectives, for each object A• ∈ K(A) we have
LF (A•) ∼= F (P •), where P • → A• is a quasi-isomorphism and P • has projective terms.
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Similarly, when A has enough injectives, for each object A• ∈ K(A) we have RF (A•) ∼=
F (Q•), where A• → Q• is a quasi-isomorphism and Q• has injective terms.

Note that by construction if we choose two quasi-isomorphisms P • → A• ← P ′•

in the corollary above, P • and P ′• will be homotopy equivalent and hence so will
be F (P •) and F (P ′•), giving isomorphic objects in D(B). This independence of P •

was built in the construction.

Definition 14.4. For i ∈ Z define the i-th left (resp. right) derived functor of F by
LiF := H−i ◦ LF (resp. RiF := H i ◦RF ) assuming that LF or RF exists.

Since LF and RF are triangulated functors, we have:

Corollary 14.5. Given an exact triangle A• → B• → C• → A•[1] in D−(A), there is a
long exact sequence

· · · → LiF (A•)→ LiF (B•)→ LiF (C•)→ Li−1F (A•)→ · · ·

Similarly, for an exact triangle in D+(A) there is a long exact sequence

· · · → RiF (A•)→ RiF (B•)→ RiF (C•)→ Ri+1F (A•)→ · · ·

Remark 14.6. There is a natural functor E : A → Db(A) sending an object A to the
object in Db(A) represented by the complex with A in degree 0 and 0 elsewhere.
When A has enough projectives or injectives and F is an additive functor A →
B, the composite functors LiF ◦ E and RiF ◦ E are exactly the derived functors
introduced in Section 4. This follows from Corollary 14.3.

In the remainder of the section assume A is the category of modules over a fixed
commutative ring R; in particular it has enough injectives and projectives. Recall
that the tensor product of two complexes in C−(A) was defined in Definition 8.4.
Using the language of double complexes it can be restated as follows: (A⊗R B)• is
the simple complex associated with the double complex C•,• with Ci,j = Ai ⊗R Bj ,
horizontal differentials given by diA⊗ idB and vertical differentials by (−1)iidA⊗djB.

Proposition 14.7. For a fixed complex B• in K−(A) the functor K−(A)→ K−(A) given
byA• 7→ A•⊗B• has a left derived functorD−(A)→ D−(A) denoted byA• 7→ A•⊗LB•.

Moreover, the functor B• 7→ A• ⊗L B• respects quasi-isomorphisms, inducing a trian-
gulated functor D−(A)→ D−(A).

All in all, (A•, B•) 7→ A•⊗LB• induces a triangulated bifunctorD−(A)×D−(A)→
D−(A) (i.e. a triangulated functor in both variables).
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Proof. Only the second statement needs a proof. By Corollary 14.3 A• ⊗L B• is com-
puted by P • ⊗ B•, where P • → A• is a quasi-isomorphism and P • has projec-
tive terms. If B• → B′• is a quasi-isomorphism of complexes in C−(A), then so is
P i⊗RB• → P i⊗RB′• for each i ∈ Z because P i is flat over R. Now Proposition 13.8
implies that P •⊗B• → P •⊗B′• is a quasi-isomorphism. That the resulting functor
is triangulated will follow from the remark below, together with the last part of the
proof of Proposition 14.2.

One defines Tori(A
•, B•) := H−i(A• ⊗L B•). In the case when A• and B• are

one-term complexes, this is the same Tor as before.

Remark 14.8. Notice that if P •A → A• and P •B → B• are quasi-isomorphisms with
complexes having projective terms, we have isomorphisms in D−(A)

A• ⊗L B• ∼= P •A ⊗B• ∼= P •A ⊗ P •B
by the proposition above. Moreover, by the same argument in the above proof,
tensoring with P •B on the right also respects quasi-isomorphisms, hence we also
have

A• ⊗L B• ∼= P •A ⊗ P •B ∼= A• ⊗ P •B.
This shows that we may compute A• ⊗L B• and hence also the groups Tori(A

•, B•)

indifferently by using P •A in the first variable or P •B in the second.


