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1. DIMENSION OF RINGS, RINGS OF LOW DIMENSION

All rings are supposed to be commutative and have a unit element. We start with
the following basic definition.

Definition 1.1. Let A be a ring and P ⊆ A be a prime ideal. Define the height of P
by

ht(P ) := sup{r ∈ N | ∃P1 ( P2 ( · · · ( Pr ( P chain of prime ideals in P}

The Krull dimension of the ring A is

dim (A) := sup{ht(P ) | P ⊆ A prime}

In particular, when A is a local ring, i.e. it has a unique maximal ideal P , we have
dim (A) = ht(P ).

We shall prove later that over a field k both the polynomial ring k[x1, . . . , xn] and
the power series ring k[[x1, . . . , xn]] have Krull dimension n. In both cases (x1) ⊂
(x1, x2) ⊂ · · · ⊂ (x1, . . . , xn) is a chain of prime ideals of maximal length. Note,
however, that whereas k[x1, . . . , xn] is a finitely generated k-algebra and n is its
minimal number of generators, this is not the case for k[[x1, . . . , xn]].
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Remarks 1.2.
1. For A the coordinate ring of an affine variety X the chain P1 ( P2 ( · · · ( Pr

corresponds to a chain of irreducible subvarieties Z1 ) Z2 ) · · · ) Zr contained in
X . The dimension is thus the length of the longest such chain. This is a non-linear
version of the definition of the dimension of a vector space V as the length of a
maximal chain of subspaces in V .

2. Recall that for a prime ideal P ⊂ A the map Q 7→ QAP induces a bijection
between prime ideals Q ⊂ P and the prime ideals of the localization AP . This
implies ht(P ) = ht(PAP ) = dim (AP ).

Let us look at examples of rings of low Krull dimension. Obviously, a field has
Krull dimension 0. More generally, we have:

Proposition 1.3. A Noetherian local ring A is of Krull dimension 0 if and only if it is
Artinian.

Examples of such rings other than fields include the rings Z/pnZ for p a prime
number and n > 1 as well as k[t]/(tn) for t a field and n > 1. The maximal ideals
are generated by p and t, respectively.

For use in the proof below we recall the following lemma.

Lemma 1.4. The set of nilpotent elements in a ringA is an ideal, and equals the intersection
of the prime ideals in A.

The above ideal is called the nilradical of A.

Proof. The first statement is clear as the radical
√
I of any ideal is again an ideal. For

the second one, note first that a nilpotent element is contained in every prime ideal.
Conversely, assume f ∈ A is not nilpotent. We find a prime ideal not containing f .
Consider the partially ordered set of ideals in A that do not contain any power of f .
This set is not empty (it contains (0)) and satisfies the condition of Zorn’s lemma, so
it has a maximal element P . We contend that P is a prime ideal. Assume x, y ∈ A\P ;
we have to show that xy /∈ P . The ideals P +(x), P +(y) strictly contain P , hence by
maximality of P both contain some power of f . But (P + (x))(P + (y)) ⊂ P + (xy),
and therefore P + (xy) also contains some power of f , hence cannot equal P . This
means xy /∈ P .

Proof of Proposition 1.3. Assume A is of Krull dimension 0. Then by Lemma 1.4 the
maximal ideal P consists of nilpotent elements. Since A is Noetherian, P is finitely
generated so for a generating system y1, . . . , yk there is a big enough exponent N
such that yNi = 0 for all i. Hence all products of k · N elements in P are zero,i.e.
P kN = 0. Now we have a finite descending filtration A ⊇ P ⊇ P 2 ⊇ P 3 ⊇ · · · ⊇
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P kN = 0 of A where every quotient is a finite dimensional vector space over the
field A/P , hence an Artinian A-module. Since an extension of Artinian modules is
again Artinian, we are done by induction.

Conversely, assume A is Artinian, and Q ⊂ P is a prime ideal in A. We show
Q = P ; for this we may replaceA byA/Q and assume moreover thatA is an integral
domain. Suppose there were a nonzero element x ∈ P . As A is Artinian, the chain
(x) ⊃ (x2) ⊃ (x3) ⊃ · · · must stabilize, i.e we find n such that (xn) = (xn+1). In
particular, xn = rxn+1 for some r ∈ A. Since A is an integral domain, this implies
rx = 1 which is impossible for x ∈ P . �

Remark 1.5. In fact, the proposition is true without assuming A local; see e.g. the
book of Atiyah–MacDonald.

Next an important class of local rings of dimension 1.

Definition 1.6. A ring A is a discrete valuation ring if A is a local principal ideal
domain which is not a field.

Basic examples of discrete valuation rings are localizations of Z or k[x] at a (prin-
cipal) prime ideal as well as power series rings in one variable over a field.

In the proposition below we prove that discrete valuation rings are of Krull di-
mension 1 and much more. Observe first that if A is a local ring with maximal ideal
P , then the A-module P/P 2 is in fact a vector space over the field κ(P ) = A/P ,
simply because multiplication by P maps P into P 2.

Proposition 1.7. For a local domain A with maximal ideal P and fraction field K the
following conditions are equivalent:

(1) A is a discrete valuation ring.
(2) A is Noetherian of Krull dimension 1 and P/P 2 is of dimension 1 over κ(P ).
(3) The maximal ideal P is principal, and after fixing a generator t of P every element

x 6= 0 in K can be written uniquely in the form x = utn with u a unit in A and
n ∈ Z.

For the proof we need the following well-known lemma which will be extremely
useful in other situations as well:

Lemma 1.8 (Nakayama). Let A be a local ring with maximal ideal P and M a finitely
generated A-module. If PM = M , then M = 0.

Proof. Assume M 6= 0 and let m0, . . . ,mn be a minimal system of generators of M
over A. By assumption m0 is contained in PM and hence we have a relation m0 =

p0m0 + . . . , pnmn with all the pi elements of P . But here 1 − p0 is a unit in A (as
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otherwise it would generate an ideal contained in P ) and hence by multiplying the
equation by (1− p0)−1 we may write m0 as a linear combination of the other terms,
which is in contradiction with the minimality of the system.

Nakayama’s lemma is often used through the following corollary.

Corollary 1.9. Let A, P , M be as in the lemma and assume given elements t1, . . . , tm ∈
M whose images in the A/P -vector space M/PM form a generating system. Then they
generate M over A.

Proof. Let T be the A-submodule generated by the ti; we have M = T + PM by
assumption. Hence M/T = P (M/T ) and the lemma gives M/T = 0.

Before proving the proposition we need another easy lemma which we’ll prove
in a much more general form later (see Remark 5.17 below).

Lemma 1.10. Let A be a Noetherian integral domain and t ∈ A an element which is not a
unit. Then ∩n(tn) = (0).

Proof. The case t = 0 is obvious. Otherwise suppose a ∈ ∩n(tn) is a nonzero element.
Then a = a1t for some a1 ∈ A. Since a ∈ (t2), there is a2 such that a = a2t

2, so since
A is a domain we have a1 = a2t. Repeating the argument we obtain an increasing
chain of ideals (a1) ⊂ (a2) ⊂ (a3) ⊂ · · · with ai = ai+1t. Here the inclusions
are strict because an equality (ai) = (ai+1) would imply that for some s we have
ai+1 = ais = ai+1ts which is impossible as t is not a unit. This contradicts the
assumption that A is Noetherian.

Proof of Proposition 1.7. To prove (1)⇒ (2), assumeA is a discrete valuation ring and
P is generated by t. Since A is a principal ideal domain, every nonzero prime ideal
is generated by some prime element p. But (p) is contained in the maximal ideal
P = (t), which means that t divides p. But this is only possible if (p) = (t) = P ,
so A is of Krull dimension 1. Also, the image of t is a basis of the vector space
P/P 2, whence (2). Next, assume (2) and apply Corollary 1.9 with M = P . It follows
that the maximal ideal P of A is generated by some element t. To prove (3), it will
suffice to show that it holds for every nonzero element a ∈ A with n ≥ 0. To find
n, observe that by Corollary 1.10 there is a unique n ≥ 0 for which a ∈ P n \ P n+1

which means that a can be written in the required form. Moreover, if a = utn = vtn,
then u = v since A is a domain. Finally, assume (3) and take a nonzero ideal I of A.
Note that condition (3) also implies ∩n(tn) = (0), and therefore there is an n > 0 that
is maximal with the property that I ⊂ (tn). By maximality of n we find an element
a ∈ I not contained in (tn+1), whence (tn) = (a) ⊂ I , from which I = (tn) follows.

We now explain the origin of the name “discrete valuation ring”.
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Definition 1.11. For any field K, a discrete valuation is a surjection v : K → Z∪{∞}
with the properties

v(xy) = v(x) + v(y),

v(x+ y) ≥ min{v(x), v(y)},

v(x) =∞ if and only if x = 0.

The elements x ∈ K with v(x) ≥ 0 form a subring A ⊂ K called the valuation ring of
v.

Proposition 1.12. A domain A is a discrete valuation ring if and only if it is the valuation
ring of some discrete valuation v : K → Z ∪ {∞}, where K is the fraction field of A.

Proof. Assume firstA is a discrete valuation ring. Define a function v : K → Z ∪ {∞}
by mapping 0 to∞ and any x 6= 0 to the integer n given by Proposition 1.7 (3). It is
immediate to check that v is a discrete valuation with valuation ring A. Conversely,
given a discrete valuation v on K, the elements of A with v(a) > 0 form an ideal
P ⊂ A with the property that a ∈ P \ {0} if and only if a−1 /∈ A. It follows that
A \ P = {a ∈ A : v(a) = 0} is the set of units in a and hence A is local with maximal
ideal P . Note that if t is an element of P with v(t) = 1, then for every p ∈ P we have
v(p/t) = v(p)− 1 ≥ 0, so that p/t ∈ A and therefore (t) = P . Similarly, if a ∈ K is a
nonzero element with v(a) = n, we have v(a/tn) = 0 and condition (3) of the above
proposition follows.

Examples 1.13.

(1) The discrete valuation corresponding to k[[t]] is the function k((t)) → Z ∪
{∞} sending a power series to the order of its zero or pole at 0.

(2) The ring Z(p) is the valuation ring of the discrete valuation Q → Z ∪ {∞}
sending 0 to∞ and a rational number a/b 6= 0 to the unique integer n such
that a/b = pn(a′/b′) with a′, b′ prime to p. This defines an infinite number of
different discrete valuations on Q, one for each prime p.

(3) Similarly, one can consider the discrete valuation on k(t) sending 0 to∞ and
a rational function p/q 6= 0 to the unique integer n such that p/q = tn(p′/q′)

with p′(0) 6= 0, q′(0) 6= 0. Its valuation ring is the localization k[t](t) ⊂ k(t).
More generally, for each a ∈ k the localization k[t](t−a) ⊂ k(t) is a discrete

valuation ring corresponding to the discrete valuation taking the ’order of
zero or pole’ of a function at t = a.

There is another very useful characterization of discrete valuation rings which
uses the notion of integral closure. We begin by some reminders. Recall that given
an extension of rings A ⊂ B, an element b ∈ B is said to be integral over A if it is a
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root of a monic polynomial xn + an−1x
n−1 + · · · + a0 ∈ A[x]. There is the following

characterization of integral elements:

Lemma 1.14. LetA ⊂ B an extension of rings. The following are equivalent for an element
b ∈ B:

(1) The element b is integral over A.
(2) The subring A[b] of B is finitely generated as an A-module.
(3) There is a subring C of B containing b which is finitely generated as an A-module.
(4) There exists a faithful A[b]-module C that is finitely generated as an A-module.

Recall that an A-module C is faithful if there is no nonzero a ∈ A with aC = 0.

Proof. For the implication (1) ⇒ (2) note that if b satisfies a monic polynomial of
degree n, then 1, b, . . . , bn−1 is a basis of A[b] over A. The implication (2) ⇒ (3) is
trivial, and (3)⇒ (4) follows because if C is a subring as in (3) and a ∈ A[b] satisfies
aC = 0, then a = a · 1 = 0. Now only (4) ⇒ (1) remains. For this let c1, . . . , cm be
a system of A-module generators for C and consider the A-module endomorphism
of C given by multiplication by b. For all i we have bci = ai1c1 + · · · + aimcm with
some aij ∈ A. It follows that the system of homogeneous equations

ai1c1 + . . . (aii − b)ci + · · ·+ aimcm = 0

for i = 1, . . . ,m has a nontrivial solution in the ci, hence by Cramer’s rule the deter-
minant of the coefficient matrix annihilates the ci and therefore equals 0 by faithful-
ness of C. This determinant is, up to sign, a monic polynomial in A[x] evaluated at
x = b.

Corollary 1.15. Those elements of B which are integral over A form a subring in B.

Proof. Given two elements b1, b2 ∈ B integral over A, the elements b1 − b2 and b1b2

are both contained in the subring A[b1, b2] of B. This subring is a finitely generated
A-module since A[b1] and A[b2] are, so condition (3) holds.

If all elements ofB are integral overA, we say that the extensionA ⊂ B is integral.

Corollary 1.16. Given a tower of extensionsA ⊂ B ⊂ C withA ⊂ B andB ⊂ C integral,
the extension A ⊂ C is also integral.

Proof. Each c ∈ C satisfies a monic polynomial equation cn + bn−1c
n−1 + · · ·+ b0 = 0

with bi ∈ B and is therefore integral over the A-subalgebra A[b0, . . . , bn−1] ⊂ B. This
is a finitely generated A-module because the bi are integral over A, hence so is the
A-subalgebra A[b0, . . . , bn−1, c] ⊂ C.

For later use we note the following fact.
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Lemma 1.17. If A ⊂ B is an integral extension of integral domains, then A is a field if and
only if B is a field.

Proof. Assume first A is a field. If b ∈ B is a nonzero element, it satisfies a monic
polynomial equation

bn + an−1b
n−1 + · · ·+ a0 = 0

with ai ∈ A and a0 6= 0 (this latter fact uses that B is an integral domain). But then
(−a−1

0 )(bn−1 + bn−1b
n−2 + · · ·+ a1) is an inverse for b, which shows that B is a field.

For the converse, suppose B is a field and given a ∈ A, pick b ∈ B with ab = 1.
Since B is integral over A, we also find ai ∈ A with bn + an−1b

n−1 + · · ·+ a1b+ a0 = 0

by Lemma 1.14. Multiplying by an−1 we obtain b = −an−1−· · ·−a1a
n−2−a0a

n−1 ∈ A
as required.

If A is a domain with fraction field K and L is an extension of K, the integral
closure of A in L is the subring of L formed by elements integral over A. We say
that A is integrally closed if its integral closure in the fraction field K is just A. By
Corollary 1.16 the integral closure of a domain A in some extension L of its fraction
field is integrally closed.

Example 1.18. A unique factorization domain A is integrally closed. Indeed, we
may write every element of the fraction field K in the form a/b with a, b coprime. If
it satisfies a monic polynomial equation (a/b)n+an−1(a/b)n−1 +a1(a/b)+a0 = 0 with
coefficients in A, then after multiplying with bn we see that an should be divisible
by b, which is only possible when b is a unit.

In particular, the ring Z is integrally closed.

Now we can state:

Proposition 1.19. A local domain A is a discrete valuation ring if and only if A is Noe-
therian, integrally closed and its Krull dimension is 1.

Integrally closed Noetherian domains of Krull dimension 1 are usually called
Dedekind domains. So the proposition says that a local Dedekind domain is the same
thing as a discrete valuation ring.

For the proof recall the following lemma which is a starting point of the theory of
associated primes.

Lemma 1.20. LetA be a Noetherian ring,M a nonzeroA-module and I a maximal element
in the system of ideals ofA that are annihilators of nonzero elements ofM . Then I is a prime
ideal.

Recall that the annihilator of m ∈ M is the ideal {a ∈ A : am = 0} ⊂ A. A
maximal element I as in the lemma exists because A is Noetherian.
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Proof. Suppose I is the annihilator of m ∈ M and ab ∈ I but a /∈ I . Then am 6= 0

and its annihilator J contains b. But I is also contained in J , and hence I = J by
maximality of I . We conclude that b ∈ I .

Proof of Proposition 1.19. Necessity of the conditions has already been checked. For
sufficiency, let P be the maximal ideal of A and fix a nonzero x ∈ P . Applying the
lemma to the A-module A/(x) and using the fact that P is the only nonzero prime
ideal of A we find a ∈ A such that P is the annihilator of a mod (x) in A/(x) (note
that the annihilator of 1 mod (x) is nonzero). We next show that we may find y ∈ P
such that ay /∈ xP . Indeed, assume for contradiction that aP ⊆ xP . In the fraction
field K of A we then have (a/x)P ⊂ P , so P is a faithful A[a/x]-module (as both
A[a/x] and P are subrings of K). As A is Noetherian, P is finitely generated as
an A-module, so by Lemma 1.14 the element a/x ∈ K is integral over A. But A is
integrally closed, so a/x ∈ A and therefore a ∈ (x). But then the annihilator of a in
A/(x) is A and not P .

Finally, we show that for y as above we have P = (y) and hence the criterion
of Proposition 1.7 (2) holds. Since ay ∈ (x) by definition of P but ay /∈ xP , we
must have ay = xu with a unit u ∈ A \ P and hence there is an equality of ideals
(x) = (ay). So aP ⊂ (x) means that for every p ∈ P we have ap = ayb for some
b ∈ A. Since A is a domain, we must have p = yb and hence p ∈ (y) as claimed. �

Remark 1.21. Let K be a field of characteristic 0. It contains Q as its prime subfield;
let A be the integral closure of Z in K. Then A has Krull dimension 1. Indeed, if
P ⊂ A is a nonzero prime ideal and x ∈ P a nonzero element, then x satisfies an
irreducible monic polynomial equation xn + an−1x

n−1 + · · · + a0 = 0 over Z. Here
a0 ∈ P ∩ Z is a nonzero element by irreducibility of the polynomial, so P ∩ Z 6= (0)

and therefore P ∩ Z = (p) for some prime number p. But then Z/pZ ⊂ A/P is an
integral extension of integral domains, soA/P is a field by Lemma 1.17. This shows
that P is maximal.

Assume moreover K is a finite extension of Q; in this case K is called an algebraic
number field and A the ring of integers of K. Then it can be proven using arguments
from field theory thatA is a finitely generated Z-module; in particular, it is Noether-
ian. Thus the localizationAP by a maximal P as above is a discrete valuation ring by
Proposition 1.19 (one checks easily that localizations of integrally closed domains
are again integrally closed). We conclude that the ring of integers in a number field
is a Dedekind domain (in fact, this was the first example studied historically).

We conclude this section with a structure theorem for ideals in Dedekind do-
mains, generalizing unique factorization in Z.
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Theorem 1.22. In a Dedekind domain every ideal I 6= 0 can be written uniquely as a
product I = P n1

1 · · ·P nr
r , where the Pi are prime ideals.

Recall the following basic property of Noetherian rings:

Lemma 1.23. IfA is a Noetherian ring and I ⊂ A is an ideal, there are finitely many prime
ideals P ⊃ I that are minimal with this property.

Proof. We first show that the radical
√
I is the intersection of finitely many prime

ideals. Indeed, assume this is not the case. Since A is Noetherian, we may assume
I is maximal with this property. Plainly

√
I cannot be a prime ideal, so we find

a1, a2 6∈
√
I with a1a2 ∈

√
I . For i = 1, 2 let Ii be the intersection of the prime ideals

containing I and ai. Then I1 ∩ I2 =
√
I by Lemma 1.4 applied to A/

√
I , but each Ii

is the intersection of finitely many prime ideals by maximality of I , contradiction.
Now if

√
I = P1 ∩ · · · ∩ Pr with some prime ideals Pi and P ⊃ I is a prime ideal

different from the Pi, then P ⊃ P1 · · ·Pr and therefore P ⊃ Pi for some i, so P is not
minimal above I . �

We shall need another easy lemma:

Lemma 1.24. Let A be an arbitrary ring, I, J ideals of A. We have I = J if and only if
IAP = JAP for all maximal ideals P ⊂ A.

Proof. For the nontrivial implication assume a ∈ J is not contained in I . Then
{x ∈ A : xa ∈ I} ⊂ A is an ideal different from A, hence contained in a maximal
ideal P . By definition, the image of a in JAP lies in IAP if and only if sa ∈ I for
some s ∈ A \ P but that’s not possible by choice of P , so IAP 6= JAP . �

Proof of Theorem 1.22. Since dim (A) = 1, there are only finitely many prime ideals
P1, . . . , Pr containing I by Lemma 1.23. Since APi

is a discrete valuation ring for all
i, we have IAPi

= (tni
i ) for some ni > 0, where ti generates PiAPi

. So IAPi
= P ni

i APi

for all i. Now consider J = P n1
1 · · ·P nr

r . If P is a prime ideal different from the Pi, it
does not contain I by assumption and therefore cannot contain any of the Pi. Since it
is a prime ideal, it cannot contain J either, so for P 6= Pi we have IAP = JAP = AP .
A similar reasoning shows that for i 6= j we have Pi 6⊃ P

nj

j , so P nj

j APi
= APi

and
therefore IAPi

= P ni
i APi

= JAPi
. Now the lemma above shows I = J . �

2. DIMENSION OF FINITELY GENERATED ALGEBRAS

In this section we compute the Krull dimension of fintely generated algebras by
means of another invariant.
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Definition 2.1. LetA be an integral domain containing a field k. Elements a1, . . . , ar ∈
A are called algebraically dependent if there exists a nonzero polynomial f ∈ k[x1, . . . , xr]

such that f(a1, . . . , ar) = 0; otherwise they are algebraically independent.
The transcendence degree of A over k is the maximal number of elements in A that

are algebraically independent over k; it may be infinite.

From now on we assume that A is a finitely generated k-algebra that is moreover
an integral domain. Under this assumption the transcendence degree is finite; we
denote it by tr.degk(A).

Theorem 2.2. Under the above assumptions tr.degk(A) = dimA.

The inequality tr.degk(A) ≥ dimA is easy to prove; indeed, it results from the
following lemma by induction along a chain of prime ideals.

Lemma 2.3. Let A be as above and P ⊂ A a nonzero prime ideal. Then tr.degk(A/P ) <

tr.degk(A).

Proof. Let ā1, . . . , ār be a system of algebraically independent elements inA/P , with
r = tr.degk(A/P ). Lift the āi to elements ai ∈ A and let a0 ∈ P be a nonzero element.
It suffices to show that a0, a1 . . . , ar are algebraically independent over k. Assume
not, and let f ∈ k[x0, x1, . . . , xr] be a nonzero polynomial with f(a0, a1, . . . , ar) = 0.
As A is a domain,we may assume that f is irreductible, and in particular not di-
visible by x0. But then f(0, x1, . . . , xr) ∈ k[x1, . . . , xr] is a nonzero polynomial with
f(0, ā1, . . . , ār) = 0, contradiction. �

The proof of the reverse inequality is based on two ingredients. The first is:

Lemma 2.4 (Noether’s normalization lemma). Assume A has transcendence degree d
over k. Then there exist algebraically independent elements x1, . . . , xd such that A is a
finitely generated module over the subring k[x1, . . . , xd] ⊂ A.

Here we mean the k-subalgebra of A generated by x1, . . . , xd; by algebraic inde-
pendence it is isomorphic to the polynomial ring k[x1, . . . , xd].

Proof. We only do the case where k is infinite; it is a bit easier. Let x1, . . . , xn be a sys-
tem of k-algebra generators for A; we may assume that the first d are algebraically
independent. We do induction on n starting from the case n = d which is obvious.
Assume the case n− 1 has been settled. Since n > d, there is a nonzero polynomial
f in n variables over k such that f(x1, . . . , xn) = 0. Denote by m the degree of f and
by fm its homogeneous part of degree m. Since k is infinite, we find a1, . . . , an−1 ∈ k
such that fm(a1, . . . , an−1, 1) 6= 0. Setting x′i := xi − aixn for i = 1, . . . , n − 1 we
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compute

0 = f(x1, . . . , xn) = f(x′1 + a1xn, . . . , x
′
n−1 + an−1xn, xn) =

= fm(a1, . . . , an−1, 1)xmn + gm−1x
m−1
n + · · ·+ g0

with some gi ∈ k[x′1, . . . , x
′
n−1]. Dividing by fm(a1, . . . , an−1, 1) we see that xn sat-

isfies a monic polynomial relation with coefficients in k[x′1, . . . , x
′
n−1], so that A =

k[x′1, . . . , x
′
n−1][xn] is a finitely generated module over its subalgebra k[x′1, . . . , x

′
n−1].

By induction we know that k[x′1, . . . , x
′
n−1] is a finitely generated module over the

polynomial ring k[x1, . . . , xd], and we are done.

Now we turn to the second ingredient.

Lemma 2.5. Suppose A ⊂ B is an integral extension of rings. Given a prime ideal P ⊂ A,
there exists a prime ideal Q ⊂ B such that Q ∩ A = P .

Proof. Localizing bothA andB by the multiplicatively closed subsetA\P we obtain
a ring extension AP ⊂ BP where AP is local with maximal ideal P . We contend that
PBP 6= BP . Indeed, otherwise we have an equation 1 = p1b1 + · · · + prbr with
pi ∈ P and bi ∈ BP . If C ⊂ BP is the AP -subalgebra generated by the bi, then C

satisfies PC = C and moreover is finitely generated as an AP -module because the
bi are integral over AP . Thus C = 0 by Nakayama’s lemma which is impossible
since 1 ∈ C. Therefore indeed PBP 6= BP and we find a maximal ideal QP ⊂ BP

containing PBP . By construction QP ∩AP ⊃ P , hence QP ∩AP = P by maximality
of P . Thus Q := QP ∩B will do.

Corollary 2.6 (Going up theorem of Cohen–Seidenberg). Under the assumptions of
the lemma given a chain P1 ( P2 ( · · · ( Pr of prime ideals in A, there exists a chain
Q1 ( Q2 ( · · · ( Qr of prime ideals in B such that Qi ∩ A = Pi for i = 1, . . . , r.

Proof. We use induction on r. By the lemma we find Q1 ⊂ B with Q1 ∩ A = P1.
Assume Q1 ( Q2 ( · · · ( Qr−1 have been constructed, and denote by P̄r the image
of Pr in A/Pr−1. Since B/Qr−1 is integral over A/Pr−1, the lemma gives a prime
ideal Q̄r in B/Qr−1 such that Q̄r ∩ (A/Pr−1) = P̄r. Now take Qr to be the preimage
of Q̄r in B. �

Proof of Theorem 2.2. By Noether’s normalization lemma we find a polynomial ring
R := k[x1, . . . , xd] contained as a k-subalgebra in A such that A is a finitely gener-
ated R-module, so in particular d = tr.degk(A). Since A is integral over R, by the
going up theorem we may extend the maximal chain (0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂
(x1, . . . xd) of prime ideals in R to a chain (0) ( Q1 ( Q2 ( · · · ( Qd of prime ideals
in A, whence dimA ≥ d. As already noted, the reverse inequality follows from
Lemma 2.3. �
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Remark 2.7. The theorem contains as a special case the weak form of Hilbert’s Null-
stellensatz: if A as in the theorem is a field, it has Krull dimension 0, hence has
transcendence degree 0 over k by the theorem, i.e. it is a finite extension. In par-
ticular, if moreover k is algebrically closed, it must be k itself. Consequently, if P
is a maximal ideal in the polynomial ring k[x1, . . . , xn] with k algebraically closed,
we have A := k[x1, . . . , xn]/P ∼= k, so denoting by ai the image of xi mod P we
get P ⊇ (x1 − a1, . . . , xn − an). Since (x1 − a1, . . . , xn − an) is a maximal ideal, this
inclusion is an equality. We have proven that every maximal ideal of k[x1, . . . , xn] is
of the form (x1 − a1, . . . , xn − an) with some ai ∈ k.

We now prove a stronger form of Theorem 2.2.

Theorem 2.8. Let A be an integral domain that is a finitely generated algebra of transcen-
dence degree d over a field k. Every maximal chain of prime ideals of A has length d.

As consequences we have:

Corollary 2.9. Let A be as in the theorem.

(1) Every prime ideal P ⊂ A satisfies the equality ht(P ) = tr.degk(A)−tr.degk(A/P ).
(2) Given two prime ideals P ⊂ Q of A, every maximal chain of prime ideals between

P and Q has length ht(P )− ht(Q).

Proof. For statement (1) choose a maximal chain of prime ideals P1 ( P2 · · · ( Pr (
P and extend it to a maximal chain P1 ( P2 · · · ( Pr ( P ( Q1 ( · · · ( Qs of
prime ideals in A. By construction ht(P ) = r and by the theorem dim (A) = r + s,
dim (A/P ) = s. Statement (2) follows from (1). �

Rings having the property in (2) above are called catenary rings.
The following proof of the theorem is based on:

Proposition 2.10 (Going down theorem of Cohen–Seidenberg). Let A ⊂ B be an
integral extension of integral domains such that A is integrally closed in its fraction field K
and the fraction field L of B is a finite extension of K.

Given prime ideals P1 ( P2 of A and a prime ideal Q2 ⊂ B with Q2 ∩ A = P2, there
exists a prime ideal Q1 ( Q2 of B with Q1 ∩ A = P1.

Remarks 2.11.
1. Of course, as in Corollary 2.6 one concludes by induction that for every finite
descending chain of prime ideals of A we can find a finite descending chain of
prime ideals of B lying above it.
2. The proposition also holds without the assumption L|K finite but we’ll only use
the finite case. The proof in the general case uses infinite Galois theory.
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We begin the proof of the going down theorem with some preliminary observa-
tions.

Remarks 2.12.

1. If A ⊂ B is an integral extension of rings and Q1 ( Q2 are prime ideals in B, then
the intersections Pi := Qi ∩A satisfy P1 ( P2. Indeed, if Q1 ∩A = Q2 ∩A = P , then
after localizing by A \ P we obtain an integral extension AP ⊂ BP with two prime
ideals Q1BP ( Q2BP whose intersection with A is the maximal ideal P . Passing
to the integral extensions AP/PAP ⊂ BP/QiBP we see from Lemma 1.17 that both
Q1BP and Q2BP must be maximal ideals, which is impossible.

2. Let A ⊂ B be an extension of integral domains and assume that the extension
K ⊂ L of their fraction fields is finite and purely inseparable. This means that both
have characteristic p > 0 and L = K( pr1

√
a1, . . . ,

prm
√
am) for some ai ∈ K and ri > 0.

In particular, for r large enough Lp
r ⊂ K. Assume moreover that B ∩K = A (this is

the case e.g. in the situation of the proposition). Then it is straightforward to check
that if P ⊂ A is a prime ideal, then PB := {b ∈ B : bp

r ∈ P} is a prime ideal of B.
Moreover PB ∩ A = P and for a prime ideal Q ⊂ B we have (Q ∩ A)B = Q. Thus
the assignment P → PB gives an inclusion-preserving bijection between the prime
ideals of A and B.

Recall the following basic lemma that will serve many times.

Lemma 2.13. (Prime avoidance) Let A be any ring, and I1, . . . , In, J ⊂ A ideals such
that all Ij are prime ideals except perhaps for In−1 and In. If J 6⊆ Ij for all j, then there
exists x ∈ J such that x 6∈ Ij for all j ≤ n.

Equivalently, J ⊆ ∪Ij implies J ⊆ Ij for some j ≤ n.

Proof. Induction on n: the case n = 1 is clear. For n > 1, assume that J 6⊆ Ij for all
j. By induction, for i = 1, . . . , n there exist xi ∈ J such that xi /∈ Ij for all j 6= i. If
for some i we also have xi 6∈ Ii, we are done, so assume xi ∈ Ii for all i. Then for
n = 2 we also get x1 + x2 6∈ I1 and x1 + x2 6∈ I2, so x1 + x2 works. If n > 2, then I1 is
necessarily a prime ideal, so x2 · · ·xn 6∈ I1 and therefore x1 + x2 · · ·xn works. �

We also need the following lemma generalizing a well-known fact from algebraic
number theory.

Lemma 2.14. In the situation of the proposition assume moreover that B is the integral
closure of A in L and the extension L|K is Galois with group G. If P ⊂ A is a prime ideal,
then G acts transitively on the set of prime ideals Q ⊂ B with Q ∩ A = P .
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Note that if σ ∈ G and b ∈ B, then σ(b) ∈ B because it is integral over A (in
fact it satisfies the same monic polynomial) and B is the integral closure of A in L.
Furthermore, if Q ⊂ B is a prime ideal, then σ(Q) := {σ(b) ∈ B : b ∈ Q} is a prime
ideal in B with σ(Q) ∩ A = Q ∩ A = P , which defines the G-action in the lemma.

Proof. Let Q,Q′ ⊂ B be prime ideals with Q ∩ A = Q′ ∩ A = P and assume that
σ(Q) 6= Q′ for any σ ∈ G. Here Q′ * σ(Q) for any σ ∈ G by Remark 2.12 (1), so by
prime avoidance (Lemma 2.13) we find b ∈ Q′ such that b /∈ σ(Q) for any σ ∈ G.
Then NL|K(b) := Πσ∈Gσ(b) ∈ B ∩K = A because b is fixed by G and A is integrally
closed. But since G contains the identity map of L, we have NL|K(b) ∈ Q′ ∩ A = P .
But then NL|K(b) ∈ Q, so since Q is a prime ideal, we have σ(b) ∈ Q for some σ ∈ G,
whence b ∈ σ−1(Q), a contradiction. �

Proof of Proposition 2.10. Assume first the extension L|K is separable. Embed L in a
finite Galois extension L′ of K with group G, and let B′ be the integral closure of
A in L′. By the going up theorem we find prime ideals Q′1 ( Q′2 in B′ such that
Q′i ∩ A = Pi for i = 1, 2. Furthermore, by Lemma 2.5 we find a prime ideal Q′ ⊂ B′

with Q′ ∩ B = Q2. Since Q′ ∩ A = Q′2 ∩ A = P2, by Lemma 2.14 we find σ ∈ G with
σ(Q′2) = Q′. It follows that σ(Q′1) ⊂ Q′ is a prime ideal satisfying σ(Q′1) ∩ A = P1,
and therefore Q1 := σ(Q′1) ∩B has the required properties.

In the general case let K ⊂ Ls ⊂ L be the maximal separable subextension and
set Bs := B ∩ Ls. The proposition holds for the extension A ⊂ Bs by the previous
paragraph. Since L|Ls is a purely inseparable extension, we conclude by applying
Remark 2.12 (2) to the extension Bs ⊂ B. �

Now that the going down theorem is proven, we can turn to:

Proof of Theorem 2.8. We use induction on d = dim (A) = tr.degk(A). The case d = 0

is clear because then A is a field. Assume d > 0 and use the Noether normalization
lemma to find a polynomial ring R := k[x1, . . . , xd] over which A is finitely generat-
ed as a module. Consider a maximal chain (0) ( Q1 ( · · · ( Qm of prime ideals of
A, and set Pi := Qi∩R for all i. Since P1 6= (0) by Remark 2.12 (1), we find a nonzero
irreducible polynomial f ∈ P1. The principal ideal (f) ⊂ P1 is a prime ideal as f is
a prime element in the unique factorization domain R = k[x1, . . . , xd]. If (f) 6= P1,
then applying the going down theorem to (f) ⊂ P1 and Q1 we find a prime ideal
Q0 ⊂ Q1 in A with Q0 ∩ R = (f). But then (0) ( Q1 ( · · · ( Qm cannot be a
maximal chain, so we have (f) = P1. In this case Ā := A/Q1 is a finitely generated
R/(f)-module, hence of transcendence degree d − 1. By induction every maximal
chain of prime ideals in Ā has length d − 1, so every maximal chain in A starting
with (0) ⊂ Q1 has length d. As Q1 was arbitrary, the theorem is proven. �
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3. KRULL’S HAUPTIDEALSATZ

Our next topic is a fundamental theorem that gives a relation between the height
of a prime ideal and the number of its generators.

Theorem 3.1. (Krull’s Hauptidealsatz) Let A be a Noetherian ring and x ∈ A. If P is a
minimal prime ideal such that x ∈ P , then ht(P ) ≤ 1.

Note that the statement of the theorem is non-vacuous only if x is not a unit, so
this is implicitly assumed. The following is Krull’s original proof.

Proof. We show that if Q ( P is a prime ideal, then ht(Q) = 0. Replacing A by AP
we may assume that A is local with maximal ideal P . Define the n-th symbolic power
of Q by

Q(n) := {q ∈ A | ∃s /∈ Q such that sq ∈ Qn}.

This is in fact the preimage of (QAQ)n by the localization map A→ AQ.
Since P is minimal over (x), the ring A/(x) is local of Krull dimension 0, hence

Artinian by Proposition 1.3. Therefore the chain

(x,Q) ⊇ (x,Q(2)) ⊇ (x,Q(3)) ⊇ · · ·

stabilizes at some level n. So if f ∈ Q(n) ⊆ (x,Q(n)) = (x,Q(n+1)) then f = ax+ q for
some a ∈ A and q ∈ Q(n+1). Then ax = f − q ∈ Q(n) but x /∈ Q because Q ( P and
P is minimal over x. By definition, there exists s /∈ Q such that sax ∈ Qn but then
a ∈ Q(n) since sx /∈ Q because Q is a prime ideal.

In summary, we got thatQ(n) ⊆ (x)Q(n) +Q(n+1) and the reverse inclusion is auto-
matic. Therefore, Q(n)/Q(n+1) = P (Q(n)/Q(n+1)) because x ∈ P and we just proved
that every element of Q(n)/Q(n+1) can be expressed as an element of (x)Q(n)/Q(n+1).
So by Nakayama’s lemma we get Q(n)/Q(n+1) = 0. In other words, (QAQ)n =

(QAQ)n+1 as ideals in AQ. Now we can apply Nakayama’s lemma in AQ where
the maximal ideal is QAQ, and obtain (QAQ)n = 0. Now we are left with a local
ring with a nilpotent maximal ideal. By Lemma 1.4 this implies that QAQ is the
only prime ideal in AQ, whence ht(Q) = 0 as required. �

Remark 3.2. Equality does not always hold in the theorem. For instance, in the 0-
dimensional ring k[x]/(x2) the image of x generates a prime ideal, and so does the
image of 2 in the 0-dimensional ring Z/6Z.

In these examples, the generators of the principal ideal are zero-divisors. Howev-
er, if x is not a zero-divisor and P is a minimal prime ideal above (x), then ht(P ) = 1.
This is because the minimal prime ideals in A consist of zero-divisors. Indeed, if P
is a minimal prime ideal, then AP is local of dimension 0, so PAP is a nilpotent
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ideal. But then for every y ∈ P we have yn = 0 in AP , i.e. syn = 0 for some s 6∈ P ,
and therefore y is a zero-divisor.

Theorem 3.3. (Generalization of Krull’s Hauptidealsatz) Let A be a Noetherian ring
and x1, . . . , xr ∈ A . If P is a prime ideal which is minimal among the prime ideals with
xi ∈ P for all i then ht(P ) ≤ r.

Proof. We proceed by induction on r. The case r = 1 is exactly the Hauptidealsatz.
For r > 1 pick any prime ideal P1 ( P such that there does not exist P ′: P1 (
P ′ ( P . We show that there exist y1, . . . , yr−1 ∈ A such that P1 is minimal over
(y1, . . . , yr−1), and then we can use induction.

We may assume that P is maximal by replacing A by AP . Since P1 ( P and P is
minimal above (x1, . . . , xr), there exists an i such that xi /∈ P1, say i = r. Then P is
a minimal prime ideal such that (xr, P1) ⊆ P , hence A/(xr, P1) has Krull dimension
0 with nilradical the image of P . Therefore for all i ≤ r − 1 we have xmi = aixr + yi
for some yi ∈ P1, ai ∈ A and big enough m. Thus the image of (x1, . . . , xr) in
A/(y1, . . . , yr−1, xr) is nilpotent; on the other hand the image of P in A/(x1, . . . , xr)

is the nilradical. We conclude that the image of P in A/(y1, . . . , yr−1, xr) is nilpotent,
hence the image of P in A/(y1, . . . , yr−1) is minimal over (xr). As such it has height
≤ 1 by the Hauptidealsatz, so the image of P1 in A/(y1, . . . , yr−1) has height 0 as
required. �

Remark 3.4. The previous theorem has the following geometric interpretation. Take
I = (f1, . . . , fr) ⊂ k[x1, . . . , xn] and consider X = V (I) ⊂ An. The irreducible
components of X correspond to the minimal prime ideals above I . The theorem
then says that each of these components has dimension ≥ n − r (it would be much
easier to prove that some component has dimension ≥ n− r).

More generally, we may consider an affine variety Y ⊂ An. The ideal I induces
an ideal Ī = (f̄1, . . . , f̄r) ⊂ AY . The irreducible components of X ∩ Y correspond to
the minimal prime ideals above Ī . The theorem applied to Ī then says that each of
these components has dimension ≥ dimY − r.

Corollary 3.5. In a Noetherian ring every prime ideal has finite height, hence the prime
ideals satisfy the descending chain condition. Also, a Noetherian local ring has finite Krull
dimension.

Remark 3.6. The corollary does not imply that a Noetherian ring has finite Krull
dimension; there are counterexamples to this statement.

The Hauptidealsatz has the following converse.

Theorem 3.7. If A is Noetherian and P ⊂ A is a prime ideal with ht(P ) = r > 0, there
exist x1, . . . , xr ∈ P such that P is minimal above (x1, . . . , xr).
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Proof. We construct inductively a sequence x1, . . . , xr of elements of P with the
property that for all 1 ≤ i ≤ r all minimal prime ideals above (x1, . . . , xi) will
have height ≥ i (hence exactly i by the generalized Hauptidealsatz). For i = r it
will follow that P is minimal above (x1, . . . , xr), for otherwise its height would be
> r.

For 1 < i ≤ r assume we have already constructed x1, . . . , xi−1. Consider the
ideal

Ii−1 :=

(x1, . . . , xi−1) i > 1

(0) i = 1.

Choose an xi ∈ P not contained in the minimal primes above Ii−1. By Lemma 2.13
such an xi exists; otherwise the lemma would give that one of the minimal primes
above Ii−1 contains P , but then Theorem 3.3 would give ht(P ) ≤ i− 1 < r which is
impossible. Now a minimal prime ideal Qi above (x1, . . . , xi) is not minimal above
Ii−1 by our choice of xi, so it contains a prime ideal Qi−1 minimal above Ii−1 which
has height at least i− 1 by induction. Therefore ht(Qi) ≥ i as required. �

Corollary 3.8. The height of a nonzero prime ideal P is the smallest integer r such that P
is minimal above an ideal generated by r elements.

As a first application of the above results we can compute the dimensions of
some concrete rings. We begin by studying the behaviour of heights of prime ideals
under homomorphisms.

Proposition 3.9. Let ϕ : A → B be a homomorphism of Noetherian rings, Q ⊆ B be a
prime ideal, and P := ϕ−1(Q). Then ht(Q) ≤ ht(P ) + dimBQ/PBQ.

Here, as usual, the notation PBQ stands for ϕ(P )BQ.

Proof. Without loss of generality we may replace A by AP , P by PAP , B by BQ and
Q by QBQ since the heights of P and Q do not change under these localizations.
(Note also that the composite A

ϕ→ B → BQ induces a map AP → BQ by the
universal property of localization.) So we may assume that A and B are local and
then we have to prove that dimB ≤ dimA + dimB/PB. Set r := ht(P ) and s :=

ht(Q mod PB). By Proposition 3.7 we find x1, . . . , xr ∈ A such that P is minimal
above them and similarly, we find y1, . . . , ys ∈ B such thatQmodulo PB is minimal
above y1 . . . , ys modulo PB. As in the proof of the Hauptidealsatz we obtain that for
N andM sufficiently largeQN ⊆ PB+(y1, . . . , ys) and PM ⊆ (x1, . . . , xr). Therefore
QNM ⊆ (ϕ(x1), . . . ϕ(xr), y1, . . . , ys) and therefore Q is a minimal prime ideal above
(ϕ(x1), . . . ϕ(xr), y1, . . . , ys).

To sum up, we have dim(B) = ht(Q) ≤ r + s = ht(P ) + dim (B/PB), where the
inequality is a consequence of the Generalized Hauptidealsatz (Theorem 3.3). �
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Remark 3.10. The proposition has an important geometric interpretation. We dis-
cuss an easy special case first. Suppose k is an algebraically closed field and A =

k[x], B = k[x, y] with ϕ the natural inclusion. From the Nullstellensatz we know
that maximal ideals of k[x, y] are of the form Q = (x − a, y − b) for a, b ∈ K. Here
P = φ−1(Q) = (x−a), so geometrically φ corresponds to the projection π : A2

k → A1
k

given by (a, b) 7→ a. We have B/PB = k[x, y]/(x − a) ∼= k[y] which is a ring of
dimension 1, and so is the localization BQ/PBQ. The maximal ideals of B/PB cor-
respond to points with first coordinate a, i.e. the points in the fibre of π above
the point x = a of A1

k. The Proposition says that this fibre has dimension at least
ht(Q)− ht(P ) = 2− 1 = 1 which is indeed true.

In general, a homomorphism φ : A → B of finitely generated k-algebras corre-
sponds to a map of affine varieties X → Y and the proposition translates as the fact
that every fibre of such a morphism has dimension at least dim (X) − dim (Y ). In
the above example equality holds for all fibres but not in general; for instance, there
are morphisms of surfaces that contract whole curves.

As a consequences of the proposition we can determine the Krull dimension of
polynomial and power series rings.

Corollary 3.11. If A is a Noetherian ring, then dimA[x] = dimA + 1. Consequently,
dimA[x1, . . . , xn] = dimA+ n.

Here by convention “∞+ 1 =∞”.

Proof. The inequality dimA[x] ≥ dimA+1 is easy: a chain of prime ideals P0 ( P1 (
· · · ( Pn in A can be considered as a chain of prime ideals in A[x] using the natural
embedding A ↪→ A[x] since the quotients A[x]/PiA[x] ∼= (A/Pi)[x] are again integral
domains. However, a maximal ideal Pn ⊂ A will not be maximal in A[x] because
the quotient (A/Pn)[x] is not a field, so the Krull dimension of A[x] is strictly larger.

Conversely, it is enough to show that for a maximal ideal Q ⊂ A[x] we have
ht(Q) ≤ ht(A ∩Q) + 1. For this, set P := A ∩Q which is a prime ideal in A. By the
previous proposition we know that

ht(Q) ≤ ht(P ) + dim (A[x]Q/P · A[x]Q)

So we need to prove that the second term on the right is ≤ 1 (in fact it equals 1). We
compute

A[x]Q/PA[x]Q ∼= (A[x]/PA[x])Q̄
∼= ((A/P )[x])Q̄

∼= ((A/P )P [x])Q̄
∼= (κ(P )[x])Q̄

using the notation Q̄ := Q mod PA[x] and κ(P ) := AP/PAP for the residue field
at P . Since κ(P )[x] is a one-variable polynomial ring over a field, it has dimension
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1 (every irreducible polynomial generates a maximal ideal) and localizing at Q can
only lower the dimension.

This proves the first statement. The second statement follows by induction from
the first, noting that polynomial rings over a Noetherian ring are Noetherian by the
Hilbert Basis Theorem. �

Remark 3.12. Without the Noetherian property the statement is not true: For a ring
A, the polynomial ring A[x] can have arbitrary dimension between dimA + 1 and
2dimA + 1. The point where we rely on the Noetherian property is in Proposition
3.9 and its proof.

Similarly, we obtain:

Corollary 3.13. If A is a Noetherian ring, then dimA[[x]] = dimA+ 1.

Proof. As in the previous proof, an increasing chain of prime ideals in A gives an
increasing chain of prime ideals in A[[x]] as well, whence dimA[[x]] ≥ dimA + 1.
Conversely, for a maximal ideal Q ⊂ A and P = A ∩Q we again have

ht(Q) ≤ ht(P ) + dim (A[[x]]Q/P · A[[x]]Q)

by Proposition 3.9. As before, we compute

A[[x]]Q/P · A[[x]]Q ∼= ((A/P )[[x]])Q̄
∼= ((A/P )P [[x]])Q̄

∼= (κ(P )[[x]])Q̄

It remains to recall that κ(P )[[x]] has dimension 1 because it is a discrete valuation
ring. �

Corollary 3.14. For A Noetherian we have dimA[[x1, . . . , xn]] = dimA+ n.

This follows by induction from the preceding corollary, combined with the fol-
lowing proposition:

Proposition 3.15. If A is a Noetherian ring, the formal power series ring A[[x]] is also
Noetherian.

Proof. This is similar to the proof of the Hilbert basis theorem. Fix an ideal I ⊂ A

and write Ir for the ideal in A generated by the leading coefficients ar of power
series of the form arx

r + ar+1x
r+1 + . . . contained in I . Then I0 ⊂ I1 ⊂ I2 ⊂ . . .

is an ascending chain, so there is n for which In = In+1 = In+2 = ... Choose finite
sets of generators mij for the ideals Ij with j ≤ n and power series sij ∈ I with
leading coefficient mij ∈ Ij . Given a power series s = arx + ar+1x

r+1 + . . . in I , we
express it as an A[[x]]-linear combination of the sij . If r ≤ n, we find bi ∈ A such
that ar = Σ bimir, so after subtracting finitely many A-linear combinations of the
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sij we may assume r > n. But then ar = Σ brimin for some bri ∈ A and therefore
s− Σ brix

r−nsin begins with a term ar+1x
r+1. Therefore

s =
∑
i

(
∞∑

r=n+1

brix
r−n

)
sin

where the coefficient in parentheses is an element of A[[x]].

4. REGULAR LOCAL RINGS AND REGULAR SEQUENCES

Observe that if A is a local ring with maximal ideal P , then κ(P ) := A/P is a
field (the residue field of A) and P/P 2 inherits a κ(P )-vector space structure from the
A-module structure on P .

Definition 4.1. A Noetherian local ring A with maximal ideal P is a regular local ring if
dim κ(P )P/P

2 = dimA.
If x1, . . . , xr ∈ P are such that their mod P 2 images form a basis in P/P 2, we call them

a regular system of parameters.

Remarks 4.2.
1. The algebraic meaning of regularity is the following. If x1, . . . , xr ∈ P are such
that their images modulo P 2 generate P/P 2, then they also generate P as an ideal
by Corollary 1.9. In fact, they form a minimal system of generators if and only if
their mod P 2 images form a κ(P )-basis of P/P 2. By the Hauptidealsatz r ≥ dimA,
so a Noetherian local ring is regular if and only if P is generated by the smallest
possible number of elements.

2. If A is the local ring of an (affine) variety X at some point P , it is a theorem of
Zariski that P/P 2 is the dual space of the tangent space of X at P . Points where
the dimension of the tangent space equals the dimension of the variety are called
smooth (or nonsingular) points in algebraic geometry. Thus regular local rings are
the local rings of smooth points. We’ll come back to this fact later.

Examples 4.3.

1. Basic examples of regular local rings of dimension n are power series rings
k[[x1, . . . , xn]] over a field k. (We know that they are Noetherian and local of di-
mension n, and x1, . . . , xn form a regular system of parameters.)

2. The regular local rings of dimension 1 are exactly the discrete valuation rings.
This follows from Proposition 1.7 and Theorem 4.6 below.

Proposition 4.4. If A is a regular local ring and x1, . . . , xr a regular system of parameters
in A, then A/(x1, . . . , xi) is a regular local ring of dimension r − i for all 1 ≤ i ≤ r.
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In fact, we prove more:

Proposition 4.5. If A is a Noetherian ring, P is a minimal prime ideal above x1, . . . , xr

and ht(P ) = r, then ht(P/(x1, . . . , xi)) = r − i in A/(x1, . . . , xi) for all 1 ≤ i ≤ r.

Proof. Set s := ht(P/(x1, . . . , xi)). By the generalized Hauptidealsatz we have s ≤
r−i since P/(x1, . . . , xi) is minimal above the images of xi+1, . . . , xr inA/(x1, . . . , xi).
On the other hand, by the converse of Hauptidealsatz (Proposition 3.7) we get ele-
ments ȳ1, . . . , ȳs such that P/(x1, . . . , xi) is minimal above ȳ1, . . . , ȳs. Lifting these el-
ements to y1, . . . , ys ∈ P we get that it is minimal above x1, . . . , xi, y1, . . . , ys, whence
i+ s ≥ r, again by the Hauptidealsatz. This proves s = r − i as required. �

Theorem 4.6. A regular local ring is an integral domain.

Proof. We proceed by induction on d := dimA. If d = 0, then the maximal ideal P
satisfies P = P 2, hence equals (0) by Nakayama’s lemma and the statement is clear.
Now assume the proposition holds for d − 1. Let P1, . . . , Pm be the minimal prime
ideals of A. We apply prime avoidance (Lemma 2.13) to P1, . . . , Pm, P

2 and P . We
know that P 6⊆ Pi and P 6⊆ P 2, so there exists an x ∈ P\P 2 such that x /∈ Pi for all i.
Since x /∈ P 2, it is part of a regular system of parameters of A (as x mod P 2 is part
of a basis of P/P 2). By Proposition 4.4 the quotient A/(x) is then regular and local
of dimension d− 1. Hence by induction we know that A/(x) is an integral domain,
so (x) is a prime ideal. Since x /∈ Pi for all i, the prime ideal (x) cannot be minimal,
so it properly contains one of the minimal prime ideals Pi. In particular, x /∈ Pi but
for all y ∈ Pi we have y = ax for some a ∈ A. So a ∈ Pi and we conclude that
Pi = (x)Pi. This implies Pi = PPi, so by Nakayama’s lemma Pi = (0), i.e. (0) is a
prime ideal. �

Now comes a key definition.

Definition 4.7. Let A be a ring. Elements x1, . . . , xr ∈ A form a regular sequence if

(1) xi is not a zero-divisor modulo (x1, . . . , xi−1) for all 1 ≤ i ≤r.
(2) (x1, . . . , xr) 6= A.

Note that when A is local, the second condition implies that all xi are contained
in the maximal ideal.

Remarks 4.8.
1. IfA is Noetherian and local with maximal ideal P , every permutation of a regular
sequence is again a regular sequence. (The condition thatA is local is necessary: one
can check that in the polynomial ring k[x1, x2, x3] the sequence x1(x1 − 1), x1x2 − 1,
x1x3 is regular but x1(x1 − 1), x1x3, x1x2 − 1 is not.)
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To see this, it is enough to show that for all i interchanging xi and xi+1 in a regular
sequence gives a regular sequence. Replacing A by A/(x1, . . . , xi−1) if necessary we
reduce to i = 1 and then to r = 2. Let (x1, x2) be a regular sequence in A and K

the kernel of the map given by multiplication by x2. If x ∈ K, we have x = x1x
′

for some x′ as x2 is not a zero divisor modulo (x1). Here x′ ∈ K because x2x1x
′ = 0

and x1 is not a zero divisor. It follows that x1K = K, hence PK = K and K = 0 by
Nakayama’s lemma. This shows x2 is not a zero divisor in A. To see that x1 is not
a zero divisor mod (x2), assume x1y = x2z for some y, z ∈ A. Since x2 is not a zero
divisor mod (x1), we get z = x1z

′ for some z′, whence (using that x1 is not a zero
divisor) y = x2z

′, as required.

2. For A = k[x1, . . . , xn] the geometric meaning of the definition is the follow-
ing: a sequence of nonconstant elements f1, . . . , fr forms a regular sequence if and
only if for all i the hypersurface V (fi) intersects each irreducible component of
V (f1, . . . , fi−1) properly.

Theorem 4.9. Let A be a Noetherian local ring with maximal ideal P and x1, . . . , xd a
minimal system of generators for P . Then A is a regular local ring if and only if x1, . . . , xd
is a regular sequence.

Proof. By Remark 4.2 (1) the xi form a minimal system of generators for P if and
only if modulo P 2 their images form a basis of P/P 2. So if A is regular, then the xi
form a regular system of parameters, hence a regular sequence by Proposition 4.4
and Theorem 4.6. The converse results from the following lemma.

Lemma 4.10. IfA is a Noetherian local ring and x1, . . . , xr is a regular sequence inA, then
dimA/(x1, . . . , xr) = dimA− r.

The lemma looks similar to Proposition 4.5 but does not follow from it: there
we assumed ht(P ) = r whereas here we want to prove it using the fact that the
sequence is regular.

Proof. As in the proof of Proposition 4.5, setting s = dimA/(x1, . . . , xr) and applying
Proposition 3.7 to A/(x1, . . . , xr) we find y1, . . . , ys ∈ P such that P is a minimal
prime ideal containing x1, . . . , xr, y1, . . . , ys. The generalized Hauptidealsatz then
gives dimA = htP ≤ r + s. For the reverse inequality, observe that x1 is not a
zero divisor in A, so for all minimal prime ideals P ′ ⊇ (x1) we have ht(P ′) = 1 by
Remark 3.2. In other words, dimA/(x1) ≤ dimA− 1, so we can use induction along
the regular sequence x1, . . . , xr to obtain s = dimA/(x1, . . . , xr) ≤ dimA− r. �

Remark 4.11. If A is regular local of dimension d, it is not necessarily true that a
regular sequence of length d generates the maximal ideal. One counterexample
among many: x1, x2, . . . , xd−1, x

2
d in k[[x1, . . . , xd]].
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To close this section we globalize the definition of regular local rings.

Definition 4.12. A Noetherian ringA is regular if all localizationsAP by prime ideals
P ⊆ A are regular local rings.

Remark 4.13. We shall prove later that every localization of a regular local ring by
a prime ideal is again regular. It will follow that a Noetherian ring is regular if and
only if all localizations by maximal ideals are regular local rings.

Examples 4.14.

(1) By Proposition 1.19 Dedekind domains are regular.
(2) If X is a smooth affine variety over an algebraically closed field, then the

coordinate ring AX is regular. We’ll prove this in a more general form later.

We give an algebraic proof for the latter example in the case of affine space:

Proposition 4.15. If A is a regular ring, then A[t] is regular as well. Consequently, if k is
a field, then k[t1, . . . , tn] is regular.

Proof. LetQ ⊆ A[t] be a prime ideal and take P := Q∩A. ThenA[t]Q is a localization
of AP [t] where AP is regular, so we can assume that A is regular local with maximal
ideal P . The prime ideal Q maps to a principal ideal (f) ⊆ k[t] modulo P . If f = 0,
then Q = PA[t] and so dimA[t]Q = dimA using Corollary 3.11 (and its proof),
whereas a regular system of parameters for P is also one for Q. So we may assume
f 6= 0 and lift f to f ∈ A[t]. We obtain Q = (P, f) where f is not a zero-divisor
modulo P . Therefore choosing a regular system of parameters for P and adding f
we get a regular sequence generating Q; by construction it is a minimal system of
generators. By Theorem 4.9 this proves that A[t]Q is regular. �

5. COMPLETIONS

Completion is an algebraization of the notion of power series expansion for ana-
lytic functions. Here is the precise definition.

Definition 5.1. Let A be a ring, and I ⊂ A an ideal. The completion of A with respect
to I is

Â := {(an) ⊂
∞∏
n=1

(A/In) : an = an+1 mod In/In+1 for all n }.

This is again a ring with the obvious operations. There is a natural map A → Â

given by a 7→ (a mod In); if it is an isomorphism, we say that A is complete with
respect to I .

The basic example is:
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Example 5.2. Consider the polynomial ring A = k[x1, . . . , xn], k a field, and I =

(x1, . . . , xn). Then Â is the formal power series ring k[[x1, . . . , xn]].
Observe that we get the same power series ring if instead of A we start with the

localization AI = k[x1, . . . , xn](x1,...,xn). We shall soon see that the completion with
respect to the maximal ideal of any regular local ring containing a field is a power
series ring.

Completion is a special case of the inverse limit construction in category theory.
Recall that an inverse system of groups (rings, modules, etc.) indexed by N together
with its natural ordering is given by a group (ring, module...) Gn for each n ≥ 0

and a morphism φn : Gn+1 → Gn for each n > 0. The inverse limit of the system is
defined by

lim
←

Gn := {(gn) ⊂
∞∏
n=1

Gn : gn = φn(gn+1) for all n }.

Important inverse systems of modules over a fixed ring A are given by descending
chains of submodules M = M0 ⊃ M1 ⊃ M2 ⊃ . . . of a fixed A-module M ; such
chains are called filtrations. The modules in the inverse system are the quotients
M/Mn and the maps the natural projections. We call the inverse limit the comple-
tion of M with respect to the chain (Mn) and denote it by M̂ . For instance, we may
take Mn := InM for an ideal I ⊂ A; in this case we call M̂ the I-adic completion of M.
The case M = A gives back the completion Â defined above.

There is a natural map M → M̂ given by sending m ∈ M to the sequence
(m modMn). In general it is neither injective nor surjective. However, in the case
when it is an isomorphism, we say that M is complete (with respect to the filtration
(Mn)).

There are natural surjective projections pn : M̂ → M/Mn for each n; set M̄n :=

ker(pn). The pn induce isomorphisms M̂/M̄n ∼= M/Mn, so that M̂ is complete with
respect to the chain (M̄n). Note also that by definition ∩nM̄n = (0) but ∩nMn can
be nontrivial.

Remark 5.3. In the above situation we may equip M with a topology in which
we declare the Mn to be a basis of open neighbourhoods of 0. In the case Mn =

InM this is called the I-adic topology. The topology is Hausdorff if and only if the
intersection of the Mn is 0.

A sequence (mn) ⊂M is a Cauchy sequence for this topology ifmi−mj ∈Mn for
i, j larger than an index N depending on n; it converges to m ∈ M if m−mi ∈ Mn

for i larger than an index N depending on n. In the completion M̂ every Cauchy
sequence is convergent.
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The next observation shows that we have a certain freedom in choosing the in-
verse system defining a completion.

Proposition 5.4. Given an A-module M , consider two filtrations M0 ⊃M1 ⊃M2 ⊃ . . .

and N0 ⊃ N1 ⊃ N2 ⊃ . . . by submodules. If for each Mn there exists Nm with Nm ⊂Mn

and conversely, for each Nn there exists Mm with Mm ⊂ Nn. Then there is a canonical
isomorphism

lim
←

M/Mn ∼= lim
←

M/Nn.

The condition of the above proposition says that the topologies generated by the
submodules Mn and Nn are equivalent. Thus the completion depends only on the
topology of the module.

Proof. In the special case when the Nn can be identified with a subsequence of the
Mn there is a natural map lim

←
M/Mn → lim

←
M/Nn given by restriction to subse-

quences which is plainly an isomorphism.
In the general case we can find strictly increasing maps α, β : N → N such that

for each Mn we have Nα(n) ⊂ Mn and for each Nn we have Mβ(n) ⊂ Nn. There are
natural maps lim

←
M/Nα(n) → lim

←
M/Mn and lim

←
M/Mβ(n) → lim

←
M/Nn induced

by the natural projections. Composing with the isomorphisms constructed in the
special case we get maps lim

←
M/Nn → lim

←
M/Mn and lim

←
M/Mn → lim

←
M/Nn

which are plainly inverse to each other.

In the remainder of this section the base ring A will always be Noetherian. The
key result is:

Proposition 5.5. Let

0→M1 →M2 →M3 → 0

be an exact sequence of finitely generated A-modules, with A a Noetherian ring. Then for
an ideal I ⊂ A the natural sequence of I-adic completions

0→ M̂1 → M̂2 → M̂3 → 0

is exact.

Before proving the proposition we derive a series of corollaries.

Corollary 5.6. We have canonical isomorphisms Â/Î ∼= A/I and În/În+1 ∼= In/In+1 for
all n > 0.
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Proof. Apply the proposition withM1 = In+1,M2 = In (also for n = 0, where I0 = A)
and observe that ̂In/In+1 = In/In+1.

Corollary 5.7. If A is Noetherian and J = (a1, . . . , an) ⊂ A is any ideal, then its I-adic
completion as an A-module satisfies Ĵ ∼= JÂ.

Note that this corollary implies in particular that the ideals În of Â considered in
the previous corollary are the n-th powers of Î .

Proof. Applying the proposition to the exact sequence

0→ J → A→ A/J → 0

shows Â/J ∼= Â/Ĵ . Next, consider the exact sequence

An
φ→ A→ A/J → 0

where φ(t1, . . . tn) := Σ aiti. Applying the proposition again gives the exact se-
quence

Ân
φ̂→ Â→ Â/Ĵ → 0

so we conclude Ĵ = Im (φ̂). But φ̂ is given by φ(t̂1, . . . t̂n) := Σait̂i (or in other words
φ̂ = φ⊗ idÂ), so Im (φ̂) = JÂ.

The next corollary shows that complete Noetherian rings are close to power series
rings.

Corollary 5.8. Let A be a Noetherian ring, I = (a1, . . . , an) an ideal of A. Then the I-adic
completion Â satisfies

Â ∼= A[[x1, . . . , xn]]/(x1 − a1, . . . xn − an).

Proof. Consider the polynomial ring B := A[x1, . . . , xn] and define an A-algebra
homomorphism B → A by sending xi to ai. It is surjective with kernel J :=

(x1 − a1, . . . , xn − an), and the ideal (x1, . . . , xn) ⊂ B maps onto I in A. Applying
Proposition 5.5 to the (x1, . . . , xn)-adic completion of

0→ J → B → A→ 0

shows Â ∼= B̂/Ĵ . By Corollary 5.7 we have Ĵ ∼= JB̂, so it remains to observe that
B̂ ∼= A[[x1, . . . , xn]].

Combining Proposition 3.15 with Corollary 5.8 we get:

Corollary 5.9. If A is a Noetherian ring, any completion Â of A by an ideal is Noetherian.
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The proof of Proposition 5.5 will be given in two steps.

Step 1: We prove the exactness of the sequence of inverse limits

0→ lim
←

M1/(I
nM2 ∩M1)→ lim

←
M2/I

nM2 → lim
←

M3/I
nM3 → 0.

Step 2: We establish an isomorphism lim
←

M1/(I
nM2 ∩M1) ∼= lim

←
M1/I

nM1.

Step 1 follows by applying part a) of the following general lemma to the exact
sequences

0→M1/(I
nM2 ∩M1)→M2/I

nM2 →M3/I
nM3 → 0.

Lemma 5.10. Let (An), (Bn) and (Cn) be inverse systems of abelian groups such that there
are commutative diagrams with exact rows

0 −−−→ An+1 −−−→ Bn+1 −−−→ Cn+1 −−−→ 0yφAn yφBn yφCn
0 −−−→ An −−−→ Bn −−−→ Cn −−−→ 0

for each n > 0.
The induced sequence

0→ lim
←

An → lim
←

Bn → lim
←

Cn → 0

of inverse limits is exact in each of the following cases:
a) The maps φAn are surjective for all n.
b) For each n there existsm ≥ n such that the map φAmn := φAn ◦φAn+1◦· · ·◦φAm : Am+1 →

An is 0.

Proof. Left exactness of the sequence (without any of the additional conditions) is
immediate from the definition of the inverse limit. For surjectivity on the right
we have to show that every sequence (cn) ∈ lim

←
Cn is the image of a sequence

(bn) ∈ lim
←

Bn. Choose arbitrary liftings bn of the cn. We modify them by adding

suitable elements an ∈ An so that φn(bn+1) = bn will hold for all n.
Assuming condition a) we use induction on n. Assume that bi have been con-

structed for i ≤ n such that φi(bi+1) = bi for i ≤ n − 1. Now consider bn+1. The
element φBn (bn+1)− bn maps to 0 in Cn, hence it comes from some an ∈ An. As φAn is
surjective, we find an+1 ∈ An+1 with φAn (an+1) = an. Then bn+1 − an+1 still maps to
cn+1 in Cn+1 but moreover it maps to bn in Bn.

Assuming condition b), consider an = φBn (bn+1)− bn for all n and set

a′n := an +
∞∑
m=n

φAmn(am+1).



28 TAMÁS SZAMUELY

By condition b) all sums here are finite. Moreover, φAn+1(a′n+1) = a′n−an, so replacing
bn by bn + a′n we have φBn+1(bn+1 + a′n+1) = bn + a′n as required.

Remarks 5.11.
1. In case b) the assumption actually implies lim

←
An = 0, so lim

←
Bn

∼→ lim
←

Cn.

2. A more general sufficient (but not necessary) condition for right exactness of
the inverse limit is the Mittag–Leffler condition: the images φmn(Am+1) ⊂ An for all
m ≥ n satisfy the descending chain condition. In these notes we’ll only need the
easier special cases a) and b) above.

We shall prove Step 2 in a stronger form. Assume given an ideal I ⊂ A and a
filtration (Mn) of an A-module M satisfying ImMn ⊂ Mm+n for all m,n. We say
that (Mn) is stably I-adic if Mn+1 = IMn for all n large enough. Obviously the I-adic
filtration (InM) of M is stably I-adic.

Lemma 5.12. If (Mn) is a stably I-adic filtration on M , there is an isomorphism

lim
←

M/Mn ∼= lim
←

M/InM.

Proof. We check the condition of Proposition 5.4. On the one hand, for all nwe have
InM = InM0 ⊂ Mn by assumption. On the other hand, if Mn+1 = IMn for n ≥ n0,
then Mn0+m = ImMn0 ⊂ ImM for all m > 0. �

Now consider the graded ring1

I⊕ :=
∞⊕
n=0

In

and the direct sum of A-modules

M⊕ :=
∞⊕
n=0

Mn.

Here M⊕ is a graded I⊕-module, which means that there is an I⊕-module structure
I⊕×M⊕ →M⊕ on M⊕ which in all degrees m,n restricts to Im×Mn →Mm+n (this
uses our condition on (Mn) above).

Lemma 5.13 (Cartier). Assume A is Noetherian and M is finitely generated over A. The
filtration (Mn) is stably I-adic if and only if M⊕ is a finitely generated I⊕-module.

1Recall that a graded ring is a ring R together with a family of additive subgroups Rd for each
d ≥ 0 such that RdRe ⊂ Rd+e and R =

⊕
d

Rd.
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Proof. Suppose first Mn+1 = IMn for all n ≥ n0. For n ≤ n0 each Mn is finitely
generated over A; choose a finite system S of generators for their direct sum. Since
for all m > 0 we have Mn0+m = ImMn0 , we conclude that S generates M⊕ over I⊕.
Conversely, if M⊕ is finitely generated over I⊕, we may assume all generators lie in
some homogeneous component Mn and let n0 be the largest n involved. Now for
m > 0 each element of Mn0+m is a sum of elements of the form in0+m−nxn with xn ∈
Mn a generator and in0+m−n ∈ In0+m−n. Since In0+m−n = ImIn0−n and In0−nMn ⊂
Mn0 , we obtain Mn0+m = ImMn0 . �

Corollary 5.14 (Artin–Rees lemma). Assume moreover M1 ⊂ M is a submodule. The
filtration (InM ∩M1) of M1 is stably I-adic.

Proof. First note that the filtration (InM ∩M1) satisfies Im(InM ∩M1) ⊂ (In+mM ∩
M1) for all n,m. Next, observe that a finite system of generators of I generates I⊕

as an A-algebra, so I⊕ is Noetherian by the Hilbert basis theorem. By the lemma
I⊕M = ⊕InM is a finitely generated I⊕-module, so its submodule ⊕(InM ∩M1) is
also finitely generated. Now apply the other implication of the lemma. �

Proof of Proposition 5.5. As noted above, Lemma 5.10 a) implies exactness of the se-
quence

0→ lim
←

M1/(I
nM2 ∩M1)→ lim

←
M2/I

nM2 → lim
←

M3/I
nM3 → 0.

Now lim
←

M1/(I
nM2 ∩ M1) ∼= lim

←
M1/I

nM1 follows from the Artin–Rees lemma
(Corollary 5.14) applied with M = M2 and Lemma 5.12. �

The Artin–Rees lemma has another important consequence:

Corollary 5.15. (Krull intersection theorem) If A is a Noetherian local ring and I ( A

is an ideal, then
∞⋂
n=1

In = (0).

Proof. We may assume I = P , the maximal ideal of A, since I ⊂ P . Write N for
the intersection of the P n. As N is an ideal, we have PN ⊂ N . On the other hand,
applying the Artin–Rees lemma to N ⊂ A gives an n0 for which

N = P n0+1 ∩N = P (P n0 ∩N) ⊂ PN.

Thus PN = N , so N = (0) by Nakayama’s lemma.

Corollary 5.16. If A is a Noetherian local ring and Â its completion with respect to some
ideal I ( A, the natural map A→ Â is injective.
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Proof. The kernel is
∞⋂
n=1

In.

Remark 5.17. The Krull intersection theorem also holds for A Noetherian but not
necessarily local if the ideal I is such that there is a prime ideal P ⊃ I for which
the localization map A → AP is injective; this is always the case when A is an
integral domain. However, it does not hold for every ideal in a Noetherian ring.
For instance, in A = Z/6Z the principal ideal I generated by 2 mod 6 satisfies
I2 = I .

While we are at local rings, let us also record the following fact.

Proposition 5.18. If A is a Noetherian local ring with maximal ideal P , its completion Â
with respect to an ideal I ⊂ A is a local ring with maximal ideal P̂ = PÂ.

The proof uses a general lemma whose technique will serve many times.

Lemma 5.19. Let A be a ring complete with respect to an ideal I . An element a ∈ A is a
unit in A if and only if a mod I is a unit in A/I .

Proof. Assume a mod I is a unit in A/I , the other implication being trivial. We
first treat the case I2 = 0 (note that under this assumption A is indeed I-adically
complete). There is b ∈ A and h ∈ I with ab = 1 + h. Then ab(1 − h) = 1 − h2 = 1,
so b(1− h) is an inverse for a.

Since In/In+1 ⊂ A/In+1 is an ideal of square zero, we get using induction on n

that the lemma holds if In+1 = 0. In the general case we know from the above
that a mod In has a multiplicative inverse bn ∈ A/In for each n > 0. Since the
multiplicative inverse of a ring element is unique, we must have bn = bn+1 mod
In/In+1 for all n, so (bn) defines an element of A which is an inverse of a. �

Proof of Proposition 5.18. Given t ∈ P̂ , the element 1 + t is a unit in Â. Indeed, t mod
I lifts to an element t0 ∈ P and 1 + t0 is a unit in A. Now apply the lemma above.

By Corollary 5.6 the quotient Â/P̂ ∼= A/P is a field, so P̂ is a maximal ideal.
Now given t ∈ P̂ and a maximal ideal P ′ ⊂ Â, we have t ∈ P ′. Indeed, otherwise
(t, P ′) = Â so there exist a ∈ Â and b ∈ P ′ with at + b = 1, but this contradicts the
fact proven above that 1− at is a unit. So P̂ ⊂ P ′, whence P̂ = P ′. �

Remark 5.20. The above argument also shows that if A is any ring and Â its com-
pletion with respect to an ideal I ⊂ A, then Î is contained in all maximal ideals of
Â, i.e. in its Jacobson radical.
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To proceed further we need the notion of a flat A-module: An A-module N is flat
if for every exact sequence

0→M1 →M2 →M3 → 0

of A-modules the tensored sequence

0→M1 ⊗A N →M2 ⊗A N →M3 ⊗A N → 0

remains exact.

Remarks 5.21.
1. Since the sequence is always right exact by a basic property of the tensor product,
flatness is equivalent to injectivity of M1 ⊗A N → M2 ⊗A N for all injective maps
M1 → M2. In fact, here we may restrict to finitely generated Mi. Indeed, assume
α =

∑
mi ⊗ ai is an element of M1 ⊗A N that maps to 0 in M2 ⊗A N . To prove that

α = 0 we may replace M1 by the finitely generated submodule generated by the mi.
Also, by construction of the tensor product the image of α in M2 ⊗A N is 0 if the
corresponding element of the free A-module A[M2 × N ] is a sum of finitely many
relations occurring in the definition of M2 ⊗A N , so we find a finitely generated
submodule M1 ⊂M f ⊂M2 such that α maps to 0 already in M f ⊗A N .

2. If N is flat over A and B is an A-algebra, then N ⊗A B is flat over B. Indeed,
if M1 → M2 is an injection of B-modules, it can also be viewed as an injection of
A-modules via the map A→ B, and Mi ⊗B (N ⊗A B) ∼= Mi ⊗A N for i = 1, 2.

Proposition 5.22. If A is Noetherian and Â is the completion of A with respect to some
ideal I ⊂ A, then Â is flat over A.

Proof. We check that for all finitely generated A-modules M we have isomorphisms
M̂ ∼= M ⊗A Â. In view of Remark 5.21 (1) the flatness of Â will then follow from
Proposition 5.5.

When M = An the isomorphism An ⊗A Â ∼= Ân is easily checked using the defi-
nition of completions. In the general case we can find m and n such that there is an
exact sequence

Am → An →M → 0.

It gives rise to a commutative diagram with exact rows

Am ⊗A Â −−−→ An ⊗A Â −−−→ M ⊗A Â −−−→ 0y∼= y∼=
Âm −−−→ Ân −−−→ M̂ −−−→ 0

where the top row comes from tensoring with Â and using right exactness of the
tensor product, and the lower row comes from right exactness of completion (part
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of Proposition 5.5). The two vertical isomorphisms are those established above and
give rise to the required isomorphism M ⊗A Â

∼→ M̂ by the diagram. �

Proposition 5.23. IfA is a Noetherian local ring and Â its completion with respect to some
ideal I ⊂ A, then dimA = dim Â.

Proof. Applying Proposition 3.9 to the inclusion map A→ Â and the maximal ideal
PÂ ⊂ Â we obtain dim Â ≤ dimA. To prove the reverse inequality, choose a chain
P1 ( P2 ( · · · ( Pd ( P of maximal length in A. Applying the lemma below
with B = Â and the ideals Pd ( P and PÂ we obtain a prime ideal Qd ( PÂ with
Qd ∩ A = Pd. Now the process may be repeated with Pd−1 ( Pd and so on, until
we obtain a chain of prime ideals Q1 ( Q2 ( · · · ( Qd ( PÂ. Note that the lemma
applies in view of Proposition 5.22 (and Corollary 5.16). �

Lemma 5.24 (Going down theorem for flat extensions). Let A ⊂ B be a ring extension
making B a flat A-module. If P1 ( P2 are prime ideals in A such that there exists a prime
idealQ2 ⊂ B withQ2∩A = P2, then there exists a prime idealQ1 ( Q2 withQ1∩A = P1.

Proof. By Remark 5.21 (2) the ring extension A/P1 ⊂ B/P1B ∼= B ⊗A (A/P1) is still
flat, so we may replace A by A/P1 and assume P1 = (0) (in particular, A is an
integral domain). Choose a minimal prime ideal Q1 ⊂ Q2 in B (it exists by Zorn’s
lemma as the intersection of a descending chain of prime ideals is a prime ideal2).
If x ∈ A is a nonzero element, the map A → A given by a 7→ xa is injective on A,
hence so is the similar mapB → B by flatness ofB overA. So x is not a zero-divisor
in B and as such cannot be contained in the minimal prime ideal Q1 by Remark 3.2.
This shows Q1 ∩ A = (0) as required; in particular, Q1 ( Q2.

Remark 5.25. In the above proof we did not really use thatAwas a subring ofB. So
the statement holds more generally for any flatA-algebraB if we understandQi∩A
as ϕ−1(Qi), where ϕ : A → B is the natural homomorphism giving the A-algebra
structure on B. Of course, at the end we have to work with ϕ(x) as an element of
B.

The above arguments may also be used to prove that in the inequality of Propo-
sition 3.9 equality holds when the ring B is a flat A-algebra via the map ϕ : A→ B.

Finally, we obtain:

Corollary 5.26. If A is a Noetherian local ring, A is regular if and only if its completion Â
with respect to some ideal I is regular.

2For B Noetherian the existence of Q1 is obvious by Corollary 3.5.
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Proof. By Corollary 5.9 and Proposition 5.18 the completion Â is again Noetherian
and local; moreover, they have the same dimension by Proposition 5.23. To finish
the proof, note that the maximal ideal P ⊂ A satisfies P̂ /P̂ 2 ∼= P̂/P 2 ∼= P/P 2, the
first isomorphism resulting from Proposition 5.5 and the second from I2 ⊂ P 2.

Example 5.27. Take A = Z, I = (p). The completion Zp := lim
←

Z/pnZ is the ring of
p-adic integers. Since Zp is also the completion of the localization Z(p) by its maximal
ideal, it is a discrete valuation ring by the corollary above. In particular, it is an
integral domain; its fraction field Qp is the field of p-adic numbers. Every nonzero
a ∈ Qp can be written uniquely as a = upvp(a) with u ∈ Zp a unit and vp(a) ∈ Z. The
function a 7→ vp(a) gives the discrete valuation of Qp.

By Corollary 5.8 we have an isomorphism Zp ∼= Z[[x]]/(x− p). This may actually
be taken as a quick, albeit unorthodox, definition of p-adic integers.

6. THE COHEN STRUCTURE THEOREM

From now on, when speaking about complete local rings we always understand
completion with respect to the maximal ideal. The Cohen structure theorem de-
scribes the structure of complete regular local rings. The easiest case is:

Theorem 6.1. Let A be a complete Noetherian local ring that contains a subfield k map-
ping isomorphically onto its residue field. Then A is a quotient of some power series ring
k[[x1, . . . , xd]].

If moreover A is regular of dimension d, then A ∼= k[[x1, . . . , xd]].

Note that all the assumptions of the theorem are satisfied by the completion of
the local ring of a smooth point on an algebraic variety over an algebraically closed
field.

For the proof we need the associated graded ring of a ring complete with respect to
the I-adic filtration. It is defined by

gr•(A) :=
∞⊕
n=0

In/In+1.

Lemma 6.2. Let φ : A→ B be a homomorphism of complete local rings such that φ(P n
A) ⊂

P n
B for all n ≥ 1, where PA (resp. PB) is the maximal ideal of A (resp. B).
If the induced homomorphism gr•(A) → gr•(B) is injective (resp. surjective), then so is

φ.
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Proof. Consider the commutative diagram

0 −−−→ P n
A/P

n+1
A −−−→ A/P n+1

A −−−→ A/P n
A −−−→ 0

grn(φ)

y φn+1

y φn

y
0 −−−→ P n

B/P
n+1
B −−−→ B/P n+1

B −−−→ B/P n
B −−−→ 0

The injectivity of grn(φ) shows the injectivity of φn for all n by induction on n,
whence also the injectivity of φ. For surjectivity, given (bn) ⊂ B = B̂ with bn ∈
B/P n

B, we have to find a sequence of elements an ∈ A/P n
A with φn(an) = bn and an+1

mod P n
A = an. We do this by induction on n: assuming an has been constructed,

we lift it to an+1 ∈ A/P n+1
A arbitrarily. This an+1 may not map to bn+1 in A/P n+1

A but
φn+1(an+1) − bn+1 comes from P n

B/P
n+1
B . By surjectivity of grn(φ) we may therefore

modify an+1 by an element of P n
A/P

n+1
A so that its image becomes bn+1.

Proof of Theorem 6.1. Let t1, . . . , td be a system of generators for the maximal ideal P
of A. There is a unique k-algebra homomorphism λ : k[[x1, . . . , xd]]→ A sending xi
to ti. Indeed, for all n there is a unique homomorphism λ : k[[x1, . . . , xd]]/(x1, . . . , xd)

n ∼=
k[x1, . . . , xd]/(x1, . . . , xd)

n → A/P n sending the image of xi to that of ti; as A is com-
plete, these assemble to a homomorphism λ as required. As A/P ∼= k and the ti
generate P , the induced map gr•(λ) is surjective, so λ is surjective by the lemma.

If moreover A is regular, we may choose d = dimA. As moreover A is then an
integral domain, the kernel of λ is a prime ideal, so since A and k[[x1, . . . , xd]] are
both of dimension d, we must have ker(λ) = 0.

We can use the theorem to expand elements of regular local rings in power series.
To do so, we use first the fact, resulting from Corollary 5.26, that A is regular if and
only if Â is. By Corollary 5.16 the natural map embeds A in Â, so the theorem
implies:

Corollary 6.3. Given a regular local ring A of dimension d containing a field k mapping
onto its residue field there is an injective homomorphism A ↪→ k[[x1, . . . , xn]]. It is deter-
mined by the choice of a regular system of parameters t1, . . . , td in A. In other words, each
element of A has a ‘power series expansion’ in the ti.

Remark 6.4. For d = 1 there is an easy direct proof of the corollary. In this case A
is a discrete valuation ring, i.e. the maximal ideal P is principal. Fix a generator
t of P and pick a ∈ A. Set a0 := a mod P and b0 = a − a0. Then b0 = b1t with
a unique b1 ∈ A and we set a1 := b1 mod P . Continuing the process we get a =

a0 + a1t+ . . . ant
n + bn with bn ∈ P n for each n, whence the required map A 7→ k[[t]];

it is injective by the Krull intersection theorem.
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For general d the obvious generalization of the above procedure still yields some
power series expansion of awith respect to a regular system of parameters t1, . . . , td
but its uniqueness is not a priori clear.

We now prove that the assumption in Theorem 6.1 is always satisfied if the char-
acteristic of A equals that of its residue field. The key property used in the proof is
the following.

Definition 6.5 (Grothendieck). An R-algebra S is formally smooth if it satisfies the
following property: given a commutative diagram

(1)
S

λ̄−−−→ B/Ix x
R

µ−−−→ B

with a ring B and an ideal I ⊂ B satisfying I2 = 0, the map λ̄ lifts to a map
λ : S → B making the diagram commute. If moreover the lifting λ is unique,
then S is formally étale over R.

An obvious example of a formally smooth R-algebra is a free R-algebra. The
following proposition gives another example.

Proposition 6.6. If S = R[T ]/(f) with some f ∈ R[T ] such that the derivative f ′ maps
to a unit in S, then S is formally étale over R.

Proof. Write t for the image of T in S and lift λ̄(t) to b ∈ B arbitrarily; since f ′(b)
maps to λ̄(f ′(t)) mod I , it is a unit in B by Lemma 5.19 (here we evaluate f ′ at b via
applying µ to its coefficients). To define λ, we have to find h ∈ I such that f(b+h) =

0 (with the same convention of evaluating f via µ), for then T 7→ b+h determines λ
uniquely. The Taylor formula with difference h is of the shape f(b+h) = f(b)+f ′(b)h

because I2 = 0 and h ∈ I . But f ′(b) is a unit in B, and therefore the equation
0 = f(b) + f ′(b)h can be solved uniquely in h. �

Remark 6.7. Note that the proof above only used the somewhat weaker condition
that λ̄(f ′(t)) is a unit in B.

A classical application is the following. Let A be a complete local ring with max-
imal ideal P and residue field k, and let f ∈ A[T ] be a polynomial with image f̄ in
k[T ]. Assume that ā ∈ k satisfies f̄(ā) = 0 but f̄ ′(ā) 6= 0. A form of Hensel’s lemma
says that there is a unique a ∈ A reducing to āmodulo P with f(a) = 0. To find awe
have to construct a coherent sequence of elements an ∈ A/P n starting with a1 = ā

so that f(an) = 0 in A/P n for all n. Assuming an−1 has been constructed, apply the
proposition inductively with R = B = A/P n, I = P n−1/P n, µ the identity map and



36 TAMÁS SZAMUELY

λ̄ induced by sending t to an−1. The proposition gives a map λ : (A/P n)[t]→ A/P n

lifting λ̄, and we set an := λ(t). (Note that f ′(an−1) ∈ A/P n−1 is a unit since it re-
duces to f̄ ′(ā) ∈ k which is nonzero by assumption, so the proposition works with
the weaker condition noted above.)

We shall use Proposition 6.6 through the following consequence.

Corollary 6.8. Let L|K be a separable algebraic field extension. Then L is formally étale
over K.

Proof. Assume first that L|K is a finite extension. By the theorem of the primitive
element we may then write L ∼= K[T ]/(f) with f a polynomial having only simple
roots, so we may apply the proposition with R = K and S = L to conclude. If
L|K is an infinite separable algebraic extension, we may write it as a union of finite
separable extensions, and then conclude from the finite case using uniqueness of
the lifting in Proposition 6.6. �

Another useful case of formal smoothness is given by fields of positive character-
istic.

Proposition 6.9. A field L of characteristic p > 0 is formally smooth over Fp.

Proof. Define a map λp : Lp → B as follows. Given a ∈ L, lift λ̄(a) to b ∈ B, and set
λp(a

p) := bp. This does not depend on the choice of b because if b′ is another lifting,
then b− b′ ∈ I , so that bp− (b′)p = (b− b′)p = 0 because B is an Fp-algebra, p ≥ 2 and
I2 = 0. The map λp is well defined because the map x 7→ xp is injective on L, and it
is a homomorphism. Moreover, it is the unique lifting of λ̄|Lp to a map Lp → B, and
identifies Lp with a subfield of B.3 By Zorn’s lemma there exists a maximal subfield
L′ ⊂ L containing Lp such that λ̄|L′ lifts to a map L′ → B. We know that Lp ⊂ L′ and
now show that L′ = L. Assume not, and pick α ∈ L \ L′. Then αp ∈ Lp, and xp − αp

is the minimal polynomial of α over L′. Moreover, a lifting β of λ̄(α) to B satisfies
βp = λp(α

p) by uniqueness of λp. Therefore sending α to β defines an extension of
λ̄|L′ to L′(α) = L′[x]/(xp − αp), contradicting the maximality of L′.

We now return to the assumption in Theorem 6.1.

Definition 6.10. Let A be a local ring with maximal ideal P and residue field k. A
field contained in A is a coefficient field of A if it is mapped isomorphically onto k by
the natural projection A→ k.

We can now state:

3For L perfect the proof stops here.
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Theorem 6.11 (Cohen). If A is a complete local ring containing a field, then A has a
coefficient field.

Proof. If the residue field k has characteristic p > 0, it is formally smooth over Fp by
Proposition 6.9, so we may lift the identity map of k inductively to maps k → A/P n

for all n and then pass to the inverse limit.
If k has characteristic 0, let k′ ⊂ k be a maximal subfield such that the identity

map of k′ lifts to a map k′ → A. By a simple application of Zorn’s lemma such a
k′ exists and contains the prime field Q. Assume k′ 6= k. If k contains an element
x̄ transcendental over k′, then lifting x̄ to x ∈ A we see that the ring k′[x] meets P
trivially (otherwise we would have k′[x] ∩ P = (f) for a polynomial f ∈ k′[T ] and
x̄ would be algebraic over k′). Therefore k′(x) ⊂ A and the map k′(x̄)→ A sending
x̄ to x lifts the identity of k′(x̄), contradicting the maximality of k′. Hence k|k′ is an
algebraic extension, and also separable as we are in characteristic 0. Now applying
Corollary 6.8 inductively with L = k, K = k′ and B = A/P n and passing to the
inverse limit again contradicts the maximality of k′. �

Assume moreover thatA is an integral domain. We say thatA is of equal character-
istic if char(A) = char(k). This holds if and only if A contains a field. Sufficiency is
obvious, and so is necessity in positive characteristic. For necessity in characteristic
0, observe that the subring Z ⊂ A generated by 1 must meet P trivially (otherwise
the intersection would contain a prime number pwhich would force k to have char-
acteristic p), and therefore all of its elements are units in A, i.e. A contains Q. Thus
combining the previous theorem with Theorem 6.1 we obtain:

Corollary 6.12. Let A be a complete Noetherian local domain of equal characteristic with
residue field k. Then A is a quotient of some power series ring k[[x1, . . . , xd]].

If moreover A is regular of dimension d, then A ∼= k[[x1, . . . , xd]].

We now turn to the Cohen structure theorem in mixed characteristic, i.e. for com-
plete local domains of characteristic 0 whose residue field is of characteristic p > 0.

For a start, define a Cohen ring as a complete discrete valuation ring of character-
istic 0 with maximal ideal generated by a prime number p. Cohen rings will play
the role of coefficient fields in mixed characteristic.

Proposition 6.13. Given a field k of characteristic p > 0, there exists a Cohen ringA0 with
residue field A0/pA0

∼= k.

Proof. First let 〈xλ : λ ∈ Λ〉 ⊂ k be a maximal algebraically independent system
over Fp. Let Zp〈xλ〉 be the free Zp-algebra generated by the xλ, and let R0 be its
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localization by the prime ideal pZp〈xλ〉. By construction R0 is a local integral do-
main with maximal ideal (p) and moreover ∩i(pi) = 0 in R0. Hence R0 is a discrete
valuation ring by Proposition 1.7 (3) (and its proof).

We now construct a discrete valuation ring R ⊃ R0 with maximal ideal pR and
residue field k. This will finish the proof, as we may then take A0 to be the p-adic
completion of R. By construction k is algebraic over the residue field k0 of R. Let K
be an algebraic closure of the fraction field of R0, and consider the system S of pairs
(S, ρ), where R0 ⊂ S ⊂ K is a subring that is a discrete valuation ring with maximal
ideal pS, and ρ : S → k is a homomorphism with kernel pS. These pairs are
naturally partially ordered by inclusion, and satisfy the condition of Zorn’s lemma.
Indeed, if (S1, ρ1) ≤ (S2, ρ2) ≤ (S3, ρ3) ≤ . . . is an ascending chain, then the union S̃
of the Si inside K has a homomorphism ρ̃ : S̃ → k with kernel pS̃ induced by the
ρi. Moreover, here ∩jpjS̃ = 0 because the Si are discrete valuation rings. Hence S̃
also satisfies the condition of Proposition 1.7 (3), which means that S̃ is a discrete
valuation ring and therefore (S̃, ρ̃) ∈ S. So let (S, ρ) be a maximal element in S
furnished by Zorn’s lemma. We contend that its residue field kS equals k. If not,
there is some α ∈ k \ kS algebraic over kS . Let f ∈ S[x] be a monic irreducible
polynomial mapping modulo pS to the minimal polynomial of α over kS . Since
S is a unique factorization domain, f is also irreducible over the fraction field of
S, so since K is algebraically closed, we find an injective homomorphism S ′ :=

S[x]/(f) → K where moreover pS ′ ⊂ S ′ is a maximal ideal with S ′/pS ′ ∼= kS(α).
Now if P ′ ⊂ S ′ is any maximal ideal, then P ′ ∩ S is maximal in S by Lemma 1.14
applied to the integral extension S ′/P ′ ⊃ S/(P ′ ∩ S), so P ′ = pS ′ and S ′ is local
with maximal ideal pS ′. Moreover, S ′ is Noetherian since it is a finitely generated
S-algebra, so by Proposition 1.7 S ′ is a discrete valuation ring, which contradicts
the maximality of S. �

Next we prove the following analogue of Theorem 6.11.

Theorem 6.14 (Cohen). Let A be a complete local domain of mixed characteristic with
maximal ideal P . There exists a subring A0 ⊂ A which is a Cohen ring and moreover the
inclusion map A0 → A induces an isomorphism A0/pA0

∼→ A/P .

The key ingredient in the proof is the following proposition.

Proposition 6.15. Let φ : R → S be a homomorphism of rings and I ⊂ R a nilpotent
ideal. If S is free as an R-module and S/IS is formally smooth over R/I , then S is formally
smooth over R.

Proof. Recall the following criterion from homological algebra (that uses the free-
ness of S overR): S is formally smooth overR if and only if the symmetric Hochschild



NOTES ON COMMUTATIVE ALGEBRA 39

cohomology group HH2
s (S,M) is 0 for every S-module M . By assumption we have

HH2
s (S/IS,M/IM) = 0, so given a symmetric Hochschild 2-cocycle f : S×S →M ,

there is a 1-cochain g0 : S/IS →M/IM with f mod I = ∂1(g0). We may lift g0 to an
R-linear map S →M/IM and finally to anR-linear map g1 : S →M by projectivity
of S over R. Then f − ∂1(g1) is a 2-cocyle with values in IM . Repeating the argu-
ment for f − ∂1(g1) with IM in place of M we obtain a 2-cocyle with values in I2M ,
so after finitely many repeats we get g2, . . . , gn : S →M such that f − ∂1(g1 + · · · gn)

has values in InM which is 0 for n large enough. This proves that the class of f in
HH2

s (S,M) is 0. �

In order to ensure that the freeness assumption in the proposition holds when we
shall apply it, we shall need:

Lemma 6.16. Let A be a ring, and I ⊂ A a nilpotent ideal. If M is a flat A-module such
that M/IM is a free A/I-module, then M is a free A-module.

Before starting the proof, recall the following simple observation about flat mod-
ules: ifM is a flat module over a ringA and I ⊂ A is an ideal, then the multiplication
map I ⊗AM → IM is an isomorphism. Indeed, it is certainly surjective, and for in-
jectivity we tensor the injection I → A by M . The resulting map I ⊗A M → M is
injective by flatness, and its image identifies with IM .

Proof. Choose a free A-module F so that F/IF (which is a free A/I-module) is
isomorphic to M/IM . By freeness of F we may lift the composite map F →
F/IF

∼→M/IM to a map φ : F →M ; we contend that it is an isomorphism.
First note that the induced maps φn : InF/In+1F → InM/In+1M are isomor-

phisms for all n. Indeed, tensoring the exact sequence

0→ In+1 → In → In/In+1 → 0

by F we obtain isomorphisms

(In/In+1)⊗A F ∼= (In ⊗A F )/(In+1 ⊗A F ) ∼= InF/In+1F,

where the second isomorphism holds by flatness of F over A in view of the remark
above. But

(In/In+1)⊗A F ∼= (In/In+1)⊗A/I (A/I ⊗A F ) ∼= (In/In+1)⊗A/I F/IF,

so finally
InF/In+1F ∼= (In/In+1)⊗A/I F/IF.

By the same argument, we have an isomorphism

InM/In+1M ∼= (In/In+1)⊗A/I M/IM
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using flatness of M , so the required isomorphism follows by tensoring the isomor-
phism F/IF ∼= M/IM by In/In+1 over A/I .

Now consider the commutative diagram with exact rows

0 −−−→ InF/In+1F −−−→ F/In+1F −−−→ F/In+1F −−−→ 0yφn y y
0 −−−→ InM/In+1M −−−→ M/In+1M −−−→ M/In+1M −−−→ 0

Here the left vertical arrow is an isomorphism, so it follows by induction on n

(starting from the obvious case n = 0) that the map F/In+1F → M/In+1M is an
isomorphism. We conclude by taking n large enough. �

Proof of Theorem 6.14. First note that since p ∈ P , the natural map Z → A sending 1
to 1 induces homomorphisms Z/pnZ→ A/pnA for all n > 0, whence a map Zp → A

after passing to the inverse limit. We may thus considerA as a Zp-algebra. Now take
a Cohen ring A0 with residue field k; it is also a Zp-algebra by the same argument.
It will suffice to show that the identity map of k lifts to a homomorphism A0 → A;
indeed, as A is a domain of characteristic 0 and the only nonzero prime ideal of A0

is (p), the map A0 → A must be injective.
As A0 is an integral domain, it is torsion free over Zp and hence a flat Zp-algebra

as Zp is a principal ideal domain. Since A0/p
nA0 is then flat over Z/pnZ as well, it

follows from Proposition 6.16 that A0/p
nA0 is a free module over Z/pnZ for all n.

Given that k is formally smooth over Fp by Proposition 6.9, Proposition 6.15 implies
that A0/p

nA0 is also formally smooth over Z/pnZ. We now prove that the identity
map of k lifts to maps φn : A0/p

nA0 → A/P n for all n with φn = φn+1 mod pn,
from which the theorem will follow by passing to the inverse limit. We proceed by
induction on n, the case n = 0 being trivial. If φn has been constructed, consider
the exact sequence 0 → P n/P n+1 → A/P n+1 → A/P n → 0 of Z/pn+1Z-algebras.

Since P n/P n+1 is an ideal of square 0, the composite map A0/p
n+1A0 → A0/p

nA0
φn→

A/P n lifts to φn+1 : A0/p
n+1A0 → A/P n+1 by formal smoothness of A0/p

n+1A0 over
Z/pn+1Z. �

We can now prove the mixed characteristic case of the Cohen structure theorem.

Theorem 6.17. Let A be a Noetherian complete local domain of mixed characteristic, and
let A0 ⊂ A be a Cohen ring given by the previous theorem.

(1) There is a surjective homomorphism A0[[x1, . . . , xn]] � A for some n > 0.
(2) If moreover A is regular of dimension d + 1 and p ∈ P \ P 2, there is such a map

with n = d, inducing an isomorphism A ∼= A0[[x1, . . . , xd]].

Here, as usual, P denotes the maximal ideal of A.
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Proof. For (1) choose elements t1, . . . , tn ∈ P so that P = (p, t1, . . . , tn). For every
i > 0 we have an isomorphism

A0[[x1, . . . , xn]]/(p, x1, . . . , xn)i ∼= A0[x1, . . . , xn]/(p, x1, . . . , xn)i,

whence a unique map of A0-algebras A0[[x1, . . . , xn]]/(p, x1, . . . , xn)i → A/P i which
sends xj to tj for all j. By passing to the inverse limit over i we obtain a map
A0[[x1, . . . , xn]] → A whose surjectivity follows from Lemma 6.2 as in the proof of
Theorem 6.1.

Under the assumptions of (2) we may moreover take n = d and find ti so that
p, t1, . . . , td is a regular system of parameters for P . As in the proof of Theorem
6.1, the surjection A0[[x1, . . . , xd]]→ A must then be an isomorphism for dimension
reasons.

If A is regular but p ∈ P 2, then p cannot be part of a regular system of parameters
as in the above proof, because then A/pA cannot be an integral domain, contradict-
ing Proposition 4.4 and Theorem 4.6. So in this case there is no isomorphism with a
power series ring as in the theorem. The best we can get is:

Proposition 6.18. LetA be a Noetherian complete local domain of mixed characteristic and
dimension d+ 1, and let A0 ⊂ A be a Cohen ring. There exists an injective homomorphism
A0[[x1, . . . , xd]] ↪→ A such that A is finitely generated as a module over its image.

We shall need an easy lemma.

Lemma 6.19. Let R be a ring complete with respect to an ideal I ⊂ R, and M an R-
module satisfying ∩jIjM = (0). If M/IM is finitely generated over R/I , then M is
finitely generated over R.

Proof. Choose elementsm1, . . . ,mr ∈M whose images modulo IM generateM/IM

over R/I . The equality

(2) M = Rm1 ⊕ · · · ⊕Rmr + IM

then implies

(3) IjM = Ijm1 ⊕ · · · ⊕ Ijmr + Ij+1M

for all j. So if m ∈M , we may write

m =
∑
i

ri0mi + n1
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with ri0 ∈ R and n1 ∈ IM using (2), and then construct inductively elements rij ∈ Ij

and nj ∈ IjM satisfying
nj =

∑
i

rijmi + nj+1

using (3). Here the sums ri0 + ri1 + ri2 + . . . converge to ri ∈ R, but then the element
m−

∑
i

rimi lies in ∩jIjM , so it equals 0 by assumption. �

Proof of Proposition 6.18. The quotient ring A/pA is Noetherian local of dimension
d by Lemma 4.10, so by the converse of the Hauptidealsatz we find t1, . . . , td ∈ P

such that P is minimal above J = (p, t1, . . . , td). Since then some power of P lies
in J , it follows from Proposition 5.4 that A is also J-adically complete. As in the
previous proof we then obtain a map ρ : A0[[x1, . . . , xd]]→ A induced by sending xi
to ti and passing to the inverse limit over the quotients A/J i. Hence A is a module
over R := A0[[x1, . . . , xd]] via ρ, and if we put I = (p, x1, . . . , xd) ⊂ R, then J = IA.
SinceA/J is Noetherian of dimension 0, it is Artinian, hence finite dimensional over
R/I ∼= A0/pA0

∼= A/P . So applying the lemma above with M = A we see that A is
a finitely generated R-module. On the other hand, applying Proposition 3.9 to the
map ρ(R) → A we see that dim (A/IA) = 0 implies that ρ(R) has Krull dimension
≥ d+ 1, which is only possible if ρ is injective. �

7. WITT VECTORS

In this section we study Cohen rings with perfect residue field. Under this as-
sumption, the Cohen ring with residue field k is unique up to unique isomorphism
and Theorem 6.14 is very easy to prove.

We prove a more general existence statement involving not necessarily local or
Noetherian rings.

Definition 7.1. Let p be a prime number. A strict p-ring is a ring A complete with
respect to the ideal (p) such that p is not a zero-divisor in A.

Proposition 7.2. Assume A is a strict p-ring such that the ideal (p) is maximal. Then A is
a complete discrete valuation ring with maximal ideal (p).

Proof. Since every x ∈ A \ (p) is a unit modulo the maximal ideal (p), it is a unit
by Lemma 5.19. This shows that A is local with maximal ideal (p). We have
∩j(pj) = (0) by completeness, so for every nonzero a ∈ A we find a unique r ≥ 0

such that a ∈ (pr) \ (pr+1). Then a = upr where u /∈ (p), hence u is a unit. Moreover,
if a = upr were a zero-divisor, so would be pwhich is not the case. We conclude that
A satisfies the condition of Proposition 1.7 (3) and therefore is a discrete valuation
ring. �
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Now recall that an integral domain R of characteristic p > 0 is perfect if the map
x 7→ xp is an automorphism of R.

Theorem 7.3. Given a perfect ring R of characteristic p, there exists a strict p-ring W (R)

withW (R)/pW (R) ∼= R. Such aW (R) is unique up to unique isomorphism and functorial
in R, i.e. any homomorphism R→ S induces a homomorphism W (R)→ W (S).

When R is a perfect field, then W (R) is a discrete valuation ring.

In the case when R is a perfect field the ring W (R) was constructed by Ernst Witt
in 1937, whence the name ‘Witt vectors’. Later several other constructions have
been given. Recently a particularly simple one was found by Cuntz and Deninger4.
We explain their arguments, following the original paper closely.

Construction 7.4. View R as a monoid under multiplication and let Z[R] be the
associated free monoid algebra. Its elements are formal sums of the form Σr∈Rnr[r]

with almost all nr = 0. Addition and multiplication are the obvious ones. Note that
[1] = 1 but [0] 6= 0. Multiplicative maps R → B into commutative rings mapping
1 to 1 correspond to ring homomorphisms Z[R] → B. The identity map R = R

induces the surjective ring homomorphism π : Z[R] → R which sends Σnr[r] to
Σnrr. Let I be its kernel, so that we have an exact sequence

0 −→ I −→ Z[R]
π−→ R −→ 0 .

The multiplicative isomorphism r 7→ rp of R induces a ring isomorphism F :

Z[R]→ Z[R] mapping Σnr[r] to Σnr[r
p]. It satisfies F (I) = I .

Let W (R) := lim
←

Z[R]/I i be the I-adic completion of Z[R]. By construction W (R)

is complete with respect to the filtration given by the ideals

Î i := lim
←
I i/I i+n ⊂ W (R)

where the inverse limit is taken over n. (Note that we do not know a priori that Î i

is the i-th power of Î ; this will follow from the proof of Proposition 7.5 below.)

Plainly, the above construction of W (R) is functorial in R.

Proposition 7.5. If R is a perfect ring of characteristic p, then W (R) is a strict p-ring with
W (R)/pW (R) = R.

The proof will require some lemmas. Consider first the map δ : Z[R] → Z[R]

defined by the formula

δ(x) =
1

p
(F (x)− xp) .

4J.Cuntz, C. Deninger, An alternative to Witt vectors, Münster J. Math. 7 (2014), no. 1, 105-114.
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It is well defined since F (x) ≡ xp mod pZ[R] and because Z[R], being a free Z-
module, has no p-torsion, and therefore for every x ∈ pZ[R] we find a unique y
with py = x.

Lemma 7.6. For x, y ∈ Z[R] the following equalities hold.

(4) δ(x+ y) = δ(x) + δ(y)−
p−1∑
i=1

1

p

(
p

i

)
xiyp−i

(5) δ(xy) = δ(x)F (y) + xpδ(y) .

Proof. Equality (4) follows from the additivity ofF and the binomial formula; equality
(5) is a straightforward calculation using the multiplicativity of F . �

Corollary 7.7. We have δ(In) ⊂ In−1 for all n ≥ 1.

Proof. Applying (5) inductively gives the relation

δ(x1 · · ·xn) =
n∑
i=1

xp1 · · ·x
p
i−1δ(xi)F (xi+1) · · ·F (xn) for xi ∈ Z[R] .

Equation (4) shows that we have

δ(x+ y) ≡ δ(x) + δ(y) mod In if x or y is in In .

Since elements of In are sums of n-fold products of elements of I , the corollary
follows from the above formulas.

Lemma 7.8. Let R be a perfect ring of characteristic p and n ≥ 1 an integer.
a) If pa ∈ In for some a ∈ Z[R] then a ∈ In−1.
b) In = I i + pnZ[R] for any i ≥ n.

Proof. a) According to the previous corollary we have δ(pa) ∈ In−1. On the other
hand, by definition:

δ(pa) = F (a)− pp−1ap ,

and therefore since pa ∈ In

δ(pa) ≡ F (a) mod In .

It follows that F (a) ∈ In−1 and hence a ∈ In−1 since F is an automorphism with
F (I) = I .
b) We prove the inclusion In ⊂ I i + pnZ[R] for i ≥ n by induction with respect to
n ≥ 1. The other inclusion is clear. For y ∈ Z[R] and i ≥ 1 we have

F i(y) ≡ yp
i

mod pZ[R] .
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Applying this to y = F−i(x), we get for all x ∈ Z[R]

x ≡ F−i(x)p
i

mod pZ[R] .

For x ∈ I this shows that x ∈ I i + pZ[R] settling the case n = 1 of the assertion.
Now assume that In ⊂ I i + pnZ[R] has been shown for a given n ≥ 1 and all i ≥ n.
Fix some i ≥ n+ 1 and consider an element x ∈ In+1. By the inductive assumption
x = y + pnz with y ∈ I i and z ∈ Z[R]. Hence pnz = x− y ∈ In+1. Using assertion a)
of the lemma repeatedly shows that z ∈ I . Hence z ∈ I i + pZ[R] by the case n = 1.
Writing z = a+ pb with a ∈ I i and b ∈ Z[R] we find

x = (y + pna) + pn+1b ∈ I i + pn+1Z[R] .

Thus we have shown the inductive step In+1 ⊂ I i + pn+1Z[R]. �

Proof of Proposition 7.5. We show that there is an equality of ideals (pn) = În for all
n ≥ 1 in W (R) and that p is not a zero-divisor in W (R); since by construction W (R)

is complete with respect to the filtration given by the ideals În, this will show that
it is a strict p-ring. We’ll then also have W (R)/pW (R) = W (R)/Î ∼= R. Let p−n(I i)

be the inverse image of I i under pn-multiplication on Z[R]. Then for any i ≥ n ≥ 1

we have an exact sequence

0 −→ p−n(I i)/I i −→ Z[R]/I i
pn−→ In/I i −→ 0

where the surjectivity on the right is due to part b) of Lemma 7.8. From this we
get an exact sequence of inverse systems whose transition maps for i ≥ n are the
reduction maps. In the limit we have an exact sequence

0 −→ lim
←

p−n(I i)/I i −→ W (R)
pn−→ În .

The transition map p−n(I i+n)/I i+n → p−n(I i)/I i is the zero map since a ∈ p−n(I i+n)

implies pna ∈ I i+n and hence a ∈ I i by part a) of Lemma 7.8. So condition b) of
Lemma 5.10 is satisfied, and therefore the map pn : W (R) → În is surjective. By
Remark 5.11 (1) it also follows that lim

←
p−n(I i)/I i = 0, so that pn : W (R) → W (R)

is injective with image În, as claimed. �

Remark 7.9. There is an isomorphism

R
∼−→ In/In+1 given by r 7−→ pn[r] .

This holds because

In/In+1 = În/În+1 = pnW (R)/pn+1W (R)
p−n

= W (R)/pW (R) = R .
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It remains to show the uniqueness property of W (R). We do this via a method
that at the same time will yield Theorem 6.14 for complete local rings of mixed
characteristic with perfect residue field. We first prove:

Lemma 7.10. Let A be a ring complete with respect to an ideal P ⊂ A such that A/P
is a perfect ring of characteristic p > 0. The natural map π : A → A/P has a unique
multiplicative retraction, i.e. a map ρ : A/P → A satisfying π ◦ ρ = id and ρ(āb̄) =

ρ(ā)ρ(b̄) for ā, b̄ ∈ A/P .

Given ā ∈ A/P , the element ρ(ā) ∈ A is often called the Teichmüller representative
of ā and ρ the Teichmüller retraction. A basic example is A = Zp: each nonzero
element ā of the residue field Fp satisfies the polynomial xp−1 − 1 and hence lifts
to an element of Zp by Hensel’s lemma. In other words, Zp contains the group
µp−1 of p− 1-st roots of unity whose elements, together with 0, are the Teichmüller
representatives of the elements of Fp.

Proof. Given ā ∈ A/P , we show that there is a unique ρ(ā) ∈ A satisfying the prop-
erties

(6) ā = ρ(ā) modP, ρ(ā) ∈
∞⋂
n=0

Ap
n

.

This will define the required multiplicative retraction, since for b̄ ∈ A/P the product
ρ(ā)ρ(b̄) lifts ā · b̄ and is contained inAp

n

for all n > 0. Note that sinceA/P is perfect,
any multiplicative retraction ρ must satisfy the conditions in (6), so uniqueness will
also follow.

First we show that for all i ≥ 1 there is a unique element ai ∈ A/P i+1 mapping to
ā mod P that is in the image of Ap

i

mod P i+1. Indeed, since A/P is perfect, we find
a unique x̄ ∈ A/P with ā = x̄p

i

. Lifting x̄ to x ∈ A we have (x+ y)p
i

= xp
i

mod P i+1

for y ∈ P since p ∈ P and therefore pi ∈ P i by assumption. Hence the class

ai := xp
i

modP i+1

does not depend on x and is the unique class we were looking for. Moreover, since
obviously xp

i ∈ Api−1

, by uniqueness we must have

xp
i

modP i = ai modP i/P i+1 = ai−1.

Therefore, since A is complete with respect to P , the sequence (ai) defines an ele-
ment of lim

←
A/P i+1 = A mapping to ā modulo P . Denote it by ρ(ā).

Now fix n > 0 and let b̄n ∈ A/P be the unique element with b̄p
n

n = ā. Then ρ(b̄n)p
n

mod P i+1 also comes from Ap
i

for all i and maps to ā mod P . By uniqueness of the
ai we must have ρ(ā) = ρ(b̄n)p

n

. It follows that ρ(ā) ∈ Apn for all n, as required.
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Example 7.11. For A = W (R) the composite map R→ Z[R]→ W (R) is multiplica-
tive, so by uniqueness it must be the Teichmüller retraction.

Corollary 7.12. If A is as in Lemma 7.10 and R is a perfect ring of characteristic p, every
homomorphism ϕ̄ : R → A/P lifts to a unique homomorphism ϕ : W (R) → A such that
the induced map W (R)/pW (R)→ A/P coincides with ϕ̄.

Note that if φ exists, it must map (p) ⊂ W (R) to P ⊂ A by assumption and hence
(pi) to P i; in other words, it must be continuous for the topologies of the complete
local rings W (R) and A.

Proof. The composite map ρ ◦ ϕ̄ : R → A/P → A preserves multiplication, hence
extends uniquely to a ring homomorphism ϕ̃ : Z[R] → A. By construction ϕ̃(I) ⊂
P , hence ϕ̃(I i) ⊂ P i. Thus there is a canonical induced map ϕ from the I-adic
completionW (R) of Z[R] to the P -adically completeA. For uniqueness of the lifting
ϕ denote by ρW the Teichmüller retraction of W (R) and by ρ that of A. Given r ∈ R,
any lifting of ϕ̄ must send ρW (r) to (ρ ◦ ϕ̄)(r) by uniqueness of the Teichmüller
retractions; in the remaining steps of the construction uniqueness holds. �

Proof of Theorem 7.3. Existence was proven in proposition 7.5 and uniqueness fol-
lows from the previous corollary. The last statement follows from Proposition
7.2. �

The following corollary gives an easy proof of Theorem 6.14 in the case when k

is perfect.

Corollary 7.13. Let A be a complete local integral domain of characteristic 0 with maximal
ideal P and perfect residue field k of characteristic p > 0. The identity map of k induces an
injective map ϕ : W (k)→ A where ϕ−1(P ) = pW (k).

Proof. Apply the previous corollary with R = k. Since A is an integral domain of
characteristic 0, the kernel of ϕ is a prime ideal that must be different from (p), and
hence equals (0). �

Remark 7.14. Classically, elements of W (R) are represented by infinite sequences
(‘vectors’)

(7) (r0, r1, r2, . . . )

with ri ∈ R. The vector (7) corresponds to the convergent sum
∞∑
i=0

ρ(ri)
p−i

pi ∈ W (R)



48 TAMÁS SZAMUELY

where ρ is the Teichmüller retraction. Note, therefore, that the ring operations in
W (R) do not correspond to componentwise addition and multiplication on the se-
quences (7)!

There are two important operations on Witt vectors. The first is the Frobenius

F : (r0, r1, r2, . . . ) 7→ (rp0, r
p
1, r

p
2, . . . ).

It corresponds to the unique automorphism ofW (R) induced by F on Z[R]; it exists
because of F (I) = I .

The second is the Verschiebung (‘shift’) given by

V : (r0, r1, r2, . . . ) 7→ (0, r0, r1, r2, . . . ).

OnW (R) it corresponds to the additive homomorphism defined by V (x) = pF−1(x).
By definition ImV i = piW (R) and V ◦ F = F ◦ V = p.

8. DERIVATIONS AND DIFFERENTIALS

In differential geometry, the tangent space at a point P on some variety is defined
to consist of so-called linear derivations, i.e. linear maps that associate a scalar to each
function germ at P and satisfy the Leibniz rule. Here is an algebraic version of this
notion.

Definition 8.1. Let B be a ring and M a B-module. A derivation of B into M is a
map d : B →M subject to the two conditions:

(1) (Additivity) d(x+ y) = dx+ dy;
(2) (Leibniz rule) d(xy) = xdy + ydx.

Here we have written dx for d(x) to emphasise the analogy with the classical deriva-
tion rules. If moreover B is an A-algebra for some ring A (for example A = Z), an
A-linear derivation is called an A-derivation. The set of A-derivations of B to M is
equipped with a natural B-module structure via the rules (d1 + d2)x = d1x + d2x

and (bd)x = b(dx). This B-module is denoted by DerA(B,M).

Note that applying the Leibniz rule to the equality 1 · 1 = 1 gives d(1) = 0 for all
derivations; hence all A-derivations are trivial on the image of A in B.

In the example one encounters in (say) real differential geometry we have A =

M = R, and B is the ring of germs of differentiable functions at some point; R is a
B-module via evaluation of functions. Now comes a purely algebraic example.

Example 8.2. Assume given an A-algebra B which decomposes as an A-module into
a direct sum B ∼= A⊕ I , where I is an ideal of B with I2 = 0. Then the natural pro-
jection d : B → I is an A-derivation of B into I . Indeed, A-linearity is immediate;
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for the Leibniz rule we take elements x1, x2 ∈ B and write xi = ai + dxi with ai ∈ k
for i = 1, 2. Now we have

d(x1x2) = d[(a1 + dx1)(a2 + dx2)] = d(a1a2 + a2dx1 + a1dx2) = x2dx1 + x1dx2

where we used several times the facts that I2 = 0 and d(A) = 0.
In fact, given any ring A and A-module I , we can define an A-algebra B as above

by defining a product structure on the A-module A ⊕ I by the rule (a1, i1)(a2, i2) =

(a1a2, a1i2 + a2i1). So the above method yields plenty of examples of derivations.

Now notice that for fixed A and B the rule M → DerA(B,M) defines a func-
tor on the category of B-modules; indeed, given a homomorphism φ : M1 → M2

of B-modules, we get a natural homomorphism DerA(B,M1) → DerA(B,M2) by
composing derivations with φ.

Proposition 8.3. There exists a B-module Ω1
B/A together with an A-derivation d : B →

Ω1
B/A such that for every B-module M and derivation δ ∈ DerA(B,M) we have a factor-

ization δ = φ ◦ d with a B-homomorphism Ω1
B/A →M .

Proof. Define Ω1
B/A to be the quotient of the free B-module generated by symbols

dx for each x ∈ B modulo the relations given by the additivity and Leibniz rules
as in Definition 8.1 as well as the relations d(λ(a)) = 0 for all a ∈ A, where λ :

A → B is the map defining the A-module structure on B. The map x → dx is an
A-derivation of B into Ω1

B/A. Moreover, given any B-module M and A-derivation
δ ∈ DerA(B,M), the map dx → δ(x) induces a B-module homomorphism Ω1

B/A →
M whose composition with d is just δ.

We call Ω1
B/A the module of relative differentials of B with respect to A. We shall

often refer to the elements of Ω1
B/A as differential forms.

Next we describe how to compute relative differentials of a finitely presented
A-algebra.

Proposition 8.4. Let B be the quotient of the polynomial ring A[x1, . . . , xn] by an ideal
generated by finitely many polynomials f1, . . . , fm. Then Ω1

B/A is the quotient of the free
B-module on generators dx1, . . . , dxn modulo the B-submodule generated by the elements∑
j

(∂jfi)dxj (i = 1, . . . ,m), where ∂jfi denotes the j-th (formal) partial derivative of fi.

Proof. First consider the case B = A[x1, . . . , xn]. As B is the free A-algebra generated
by the xi, one sees that for anyB-moduleM there is a bijection between DerA(B,M)

and maps of the set {x1, . . . , xn} into B. This implies that Ω1
B/A is the free A-module

generated by the dxi.
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The general case follows from this in view of the easy observation that given any
M , composition by the projection A[x1, . . . , xn] → B induces an isomorphism of
DerA(B,M) onto the submodule of DerA(A[x1, . . . , xn],M) consisting of derivations
mapping the fi to 0.

Next some basic properties of modules of differentials.

Lemma 8.5. Let A be a ring and B an A-algebra.

(1) (Direct sums) For any A-algebra B′

Ω1
(B⊕B′)/A

∼= Ω1
B/A ⊕ Ω1

B′/A.

(2) (Base change) Given a ring homomorphism A → A′, denote by B′ the A′-algebra
B ⊗A A′. There is a natural isomorphism

Ω1
B/A ⊗B B′ ∼= Ω1

B′/A′ .

(3) (Localization) For any multiplicatively closed subset S ⊂ B there is a natural iso-
morphism

Ω1
BS/A

∼= Ω1
B/A ⊗B BS.

Proof. The first property follows from the definitions. For base change, note first
that the universal derivation d : B → Ω1

B/A is an A-module homomorphism and so
tensoring it by A′ we get a map

d′ : B′ → Ω1
B/A ⊗A A′ ∼= Ω1

B/A ⊗B B ⊗A A′ ∼= Ω1
B/A ⊗B B′

which is easily seen to be an A′-derivation. Now any A′-derivation δ′ : B′ → M ′

induces an A-derivation δ : B →M ′ by composition with the natural map B → B′.
But δ factors as δ = φ◦d, with a B-module homomorphism φ : Ω1

B/A →M ′, whence
a map φ′ : Ω1

B/A⊗B B′ →M ′ constructed as above. Now one checks that δ′ = φ′ ◦ d′

which means that Ω1
B/A ⊗B B′ satisfies the universal property for DerA′(B

′,M ′).
For the localization property, given an A-derivation δ : B → M , we may extend

it uniquely to an A-derivation δS : BS → M ⊗B BS by setting δS(b/s) = (δ(b)s −
bδ(s)) ⊗ (1/s2). (We leave it to the reader to check that for b′/s′ = b/s we get the
same result.) This applies in particular to the universal derivation d : B → Ω1

B/A,
and one argues as in the previous case to show that any A-derivation BS → MS

factors uniquely through dS .

There are two fundamental exact sequences that are instrumental in computing
modules of differentials.

Proposition 8.6. Let φ : B → C be a homomorphism of A-algebras.
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(1) There is an exact sequence of C-modules

(8) Ω1
B/A ⊗B C → Ω1

C/A → Ω1
C/B → 0.

(2) If moreover φ is surjective with kernel I , we have an exact sequence of C-modules

I/I2 → Ω1
B/A ⊗B C → Ω1

C/A → 0.

Note that I/I2 is indeed a module over B/I ∼= C.
For the proof recall the following easy lemma.

Lemma 8.7. Let M1, M2, M3 be A-modules and

(9) M1
i→M2

p→M3 → 0

a sequence of A-homomorphisms. This is an exact sequence if and only if for any A-module
N the sequence induced by composition of R-homomorphisms

(10) 0→ HomA(M3, N)→ HomA(M2, N)→ HomA(M1, N)

is an exact sequence of A-modules.

Proof. The proof that exactness of (9) implies that of (10) is easy and is left to the
readers. The converse is not much harder: takingN = M3/M2 shows that injectivity
of the second map in (10) implies the surjectivity on the right in (9), and taking
N = M2/im(i) shows that if moreover (10) is exact in the middle, then the surjection
M2/im(i)→M3 has a section M3 →M2/im(i) and thus im(i) = ker(p).

Proof of Proposition 8.6. For the first statement note that for any C-module M we
have a natural exact sequence

0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M)

of C-modules isomorphic to

0→ HomC(Ω1
C/B,M)→ HomC(Ω1

C/A,M)→ HomB(Ω1
B/A,M).

Now observe that there is an isomorphism HomB(Ω1
B/A,M) ∼= HomC(Ω1

B/A⊗BC,M)

induced by mapping a homomorphism Ω1
B/A → M to the composite Ω1

B/A ⊗B C →
M ⊗B C → M where the second map is multiplication. An inverse is given by
composition with the natural map Ω1

B/A → Ω1
B/A ⊗B C. Thus we may rewrite the

previous exact sequence as

(11) 0→ HomC(Ω1
C/B,M)→ HomC(Ω1

C/A,M)→ HomC(Ω1
B/A ⊗B C,M).

Set M = Ω1
C/B. The image of idΩ1

C/B
∈ HomC(Ω1

C/B,Ω
1
C/B) by the first map of the

above exact sequence gives a map in HomC(Ω1
C/A,Ω

1
C/B) which is the second map in

(8). Similarly, settingM = Ω1
C/A and taking the image of idΩ1

C/A
∈ HomC(Ω1

C/A,Ω
1
C/A)
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in (11) defines the first map in (8). Finally, since the sequence (11) is exact for all C-
modules M , the sequence in (8) is exact by the lemma above.

If the mapB → C is surjective, then anyB-derivationC →M is trivial, so Ω1
B/C =

0 and the first map in the first exact sequence is surjective, giving the surjectivity
of the second map in the second sequence. Now define a map δ : I → Ω1

B/A ⊗B C
by δ(x) := dx ⊗ 1. This is a B-module map because the Leibniz rule for d implies
δ(bx) = bdx ⊗ 1 for b ∈ B, x ∈ I ; indeed, we have xdb ⊗ 1 = db ⊗ x which is 0 in
Ω1
B/A⊗BC. If x ∈ I2, the same argument shows that δ(x) = 0, whence the C-module

map δ̄ : I/I2 → Ω1
B/A ⊗B C in the second exact sequence. To conclude, it will again

suffice to verify the exactness of the dual sequence

0→ DerA(C,M)→ DerA(B,M)→ HomC(I/I2,M)

for all C-modules M , where injectivity on the left is already proven. The second
map is induced by composition with the inclusion map I → B: indeed, if we restrict
a derivation δ : B → M to I , then the Leibniz rule for δ gives δ(I2) = 0 as well as
δ(bx) = bδ(x) + xδ(b) = bδ(x) for all b ∈ B, x ∈ I . This implies exactness in the
middle. �

Here is a first application.

Proposition 8.8. A finite extension K|k of fields is separable if and only if Ω1
K/k = 0.

Proof. If K|k is separable, then K ∼= k[x]/(f) with a polynomial f satisfying f ′ 6= 0,
so Proposition 8.4 gives Ω1

K/k = 0. For the converse we may assume k has char-
acteristic p > 0. Recall from field theory5 that there exists an intermediate field
k ⊂ K0 ⊂ K such that K0|k is separable and K = K0( pr1

√
a1, . . . ,

prm
√
am) for some

ai ∈ K0 and ri > 0. Applying Proposition 8.6 (1) with A = k, B = K0, C = K

gives Ω1
K/k
∼= Ω1

K/K0
by the first part of the proof, and then Proposition 8.4 gives

Ω1
K/K0

∼= Km
0 , which can be 0 only for K = K0. �

9. DIFFERENTIALS, REGULARITY AND SMOOTHNESS

By means of differentials we obtain a new characterization of regular local rings
coming from geometry.

Proposition 9.1. Let k be a perfect field, and let A be an integral domain of dimension
d which is a finitely generated k-algebra. Given a prime ideal P , the localization AP is a
regular local ring if and only if Ω1

AP /k
is a free AP -module of rank d.

For the proof we need a lemma from field theory:6

5See e.g. Lang, Algebra, Chapter V, §6.
6For a proof, see e.g. Lang, Algebra, Chapter VIII, Corollary 4.4.
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Lemma 9.2. Let k be a perfect field and let K|k be a finitely generated field extension of
transcendence degree n. Then there exist algebraically independent elements x1, . . . , xn ∈
K such that the finite extension K|k(x1, . . . , xn) is separable.

Corollary 9.3. In the situation of the lemma, the K-vector space Ω1
K/k is of dimension n, a

basis being given by the dxi.

Proof. We may write the field K as the fraction field of the quotient A of the poly-
nomial ring k[x1, . . . , xn, x] by a single polynomial relation f . Here f is the mini-
mal polynomial of a generator of the extension K|k(x1, . . . , xn) multiplied with a
common denominator of its coefficients. Now according to Proposition 8.4 the A-
module Ω1

A/k has a presentation with generators dx1, . . . , dxn, dx and a relation in
which dx has a nontrivial coefficient because f ′ 6= 0 by the lemma. The corollary
now follows using Lemma 8.5 (3).

Proof of Proposition 9.1. We denote the maximal ideal of AP again by P and by κ its
residue field. Applying the second exact sequence of Proposition 8.6 to the surjec-
tion AP � κ we obtain an exact sequence of κ-vector spaces

P/P 2 → Ω1
AP /k

⊗AP
κ→ Ω1

κ/k → 0.

We contend that here the first map is injective. To prove this we may replace AP
by AP/P 2. Indeed, applying Proposition 8.6 (2) to the surjection AP � AP/P

2 we
obtain an exact sequence

P 2/P 4 → Ω1
AP /k

⊗AP
(AP/P

2)→ Ω1
(AP /P 2)/k → 0

which gives an isomorphism Ω1
AP /k

⊗AP
κ → Ω1

(AP /P 2)/k ⊗AP /P 2 κ upon tensoring
with κ. Thus we may assume P 2 = 0, in which case AP is complete. Applying
Theorem 6.11 we obtain a subfield in AP isomorphic to κ and an isomorphism of
κ-vector spaces AP ∼= κ⊕ P . Now recall that for every κ-vector space M the map

(12) Homκ(Ω
1
AP /k

⊗AP
κ,M)→ Homκ(P,M)

identifies with the map Derk(AP ,M) → Homκ(P,M) obtained by composing with
the inclusion P → AP . But this map has a retraction: composing a κ-homomorphism
P → M by the quotient map AP → AP/κ ∼= P of k-vector spaces gives a k-
derivation AP → M as in Example 8.2. So the map (12) is surjective for all M ,
whence the required injectivity.

Now return to the general case. By the injectivity proven above, reading off di-
mensions in the above exact sequence gives

dim κ(Ω
1
AP /k

⊗AP
κ) = dim κP/P

2 + dim κΩ
1
κ/k.
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Here dim κΩ
1
κ/k = tr.degk(κ) = d − dimAP by Corollary 9.3 and Corollary 2.9 (1).

Thus AP is regular if and only if dim κ(Ω
1
AP /k

⊗AP
κ) = d. If Ω1

AP /k
is free of rank d,

this certainly holds. Conversely, choose elements dt1, . . . , dtd ∈ Ω1
AP /k

such that their
images in Ω1

AP /k
⊗AP

κ = Ω1
AP /k

/PΩ1
AP /k

form a basis over κ. By Nakayama’s lemma
they then generate Ω1

AP /k
as an AP -module, so by sending the standard generators

of the free module AdP to the dti we obtain an exact sequence of the form

0→ N → AdP → Ω1
AP /k

→ 0.

The fraction field K of AP is a flat AP -module, so the induced sequence

0→ N ⊗AP
K → Kd → Ω1

AP /k
⊗AP

K → 0

is exact. But by Lemma 8.5 (3) and Corollary 9.3 the K-vector space Ω1
AP /k

⊗AP
K ∼=

Ω1
K/k has dimension d, so the last exact sequence gives N ⊗AP

K = 0. Since AP is
an integral domain and N is a submodule of AdP , this is only possible for N = 0, i.e.
when Ω1

AP /k
is free of rank d. �

The proposition can be made explicit as follows. Consider a presentation

A = k[x1, . . . , xn]/(f1, . . . , fr),

and introduce the n × r Jacobian matrix J := [∂ifj]. Given a preimage Q of P in
k[x1, . . . , xn], we consider J as a matrix with entries in k[x1, . . . , xn]Q. In this way it
makes sense to view J mod Q as a matrix with entries in κ.

Corollary 9.4 (Jacobian criterion). With notations and assumptions as above, the ring
AP is regular if and only if the matrix J modQ has rank n− d.

Proof. For ease of notation setR := k[x1, . . . , xn] and write I for the ideal (f1, . . . , fr)RQ.
We then have an exact sequence 0 → I → RQ → AP → 0, whence by Proposition
8.6 (2) an exact sequence of AP -modules

I/I2 → Ω1
RQ/k

⊗RQ
AP → Ω1

AP /k
→ 0.

Tensoring by κ gives an exact sequence of κ-vector spaces

I/I2 ⊗AP
κ

δ̄→ Ω1
RQ/k

⊗RQ
κ→ Ω1

AP /k
⊗AP

κ→ 0.

Here Ω1
RQ/k

⊗RQ
κ ∼= Ω1

R/k ⊗R κ ∼= κn by Lemma 8.5 (3) and Proposition 8.4, and
from the previous proposition we know that Ω1

AP /k
⊗AP

κ ∼= κd if and only if AP
is regular. So AP is regular if and only if Im(δ̄) has dimension n − d. Now if we
identify Ω1

RQ/k
⊗RQ

κ with κn via the κ-basis given by dx1, . . . , dxn, we obtain that
the map δ̄ is induced by the map λ : I → κn given by f 7→ (∂1f, . . . , ∂nf) mod Q. It
remains to note that dim Im(λ) equals the rank of the matrix J mod Q. �
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We now relate the above to the property of formal smoothness encountered dur-
ing the discussion of the Cohen structure theorem. Recall that an R-algebra S of
rings is formally smooth if it satisfies the following property: given a commutative
diagram

(13)
S

λ̄−−−→ B/Ix x
R

µ−−−→ B

with a ring B and an ideal I ⊂ B satisfying I2 = 0, the map λ̄ lifts to a map
λ : S → B making the diagram commute.

Here are some basic properties of formal smoothness.

Lemma 9.5. Let S be a formally smooth R-algebra.

(1) (Base change) If R′ is any R-algebra, then S ⊗R R′ is formally smooth over R′.
(2) (Transitivity) If S ′ is a formally smooth S-algebra, then it is also formally smooth

over R.
(3) (Tensor product) If S1 and S2 are formally smooth R-algebras, then so is S1 ⊗R S2.
(4) (Localization) If T ⊂ S is a multiplicatively closed subset, then the localization ST

is also formally smooth over R.

Proof. For (1), note first that any R′-algebra B′ is also an R-algebra. Given an R′-
algebra map λ̄′ : S ⊗R R′ → B′/I ′ with I ′2 = 0, it induces an R-algebra map
S → B′/I ′ by composition with the map s 7→ s ⊗ 1, whence a lifting S → B′

by formal smoothness of S. Since B′ is an R′-algebra, there is an induced map
S ⊗R R′ → B′ lifting λ̄′. For statement (2), assume given λ̄ : S ′ → B/I with
an R-algebra B and I2 = 0. By formal smoothness of S over R the composite map
S → S ′ → B/I lifts to anR-algebra map S → B, so thatB is also an S-algebra. Then
by formal smoothness of S ′ over S λ̄ lifts to a map S ′ → B as required. Statement
(3) follows from (1) and (2): by (1) the tensor product S1 ⊗R S2 is formally smooth
over S2, hence over R by (2).

For (4) assume given λ̄T : ST → B/I with an R-algebra B and I2 = 0. The
composite map S → ST → B/I lifts to a map λ : S → B by formal smoothness of
S over R. By Lemma 5.19 the elements of λ(T ) are units in B, so λ induces a map
ST → B lifting λ̄T , as required. �

Now we come to a key example, already studied above.

Proposition 9.6. Let k be a field, A = k[x1, . . . , xn]/(f1, . . . , fr), and P ⊂ A a prime ideal
with preimage Q ⊂ k[x1, . . . , xn]. If the Jacobian matrix J = [∂ifj] has rank r modulo Q,
then AP is formally smooth over k.
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Proof. We proceed like in the proof of Proposition 6.6. As before, writeR := k[x1, . . . , xn].
Assume given λ̄ : AP → B/I with a k-algebra B and I2 = 0. It will be enough to
lift the composite map µ̄ : R/(f1, . . . , fr) → AP → B/I to a map R/(f1, . . . , fr) →
AP → B/I , for then the lifting will factor through AP as in the proof of Lemma 9.5
(4). Choose preimages bi ∈ B of µ(xi) ∈ B/I for all i. In order to construct the
required lifting, it suffices to find hi ∈ I such that fj(b1 + h1, . . . bn + hn) = 0 for all
j. Now the multivariable Taylor formula of degree 2 gives a matrix equation

(14)

0
...
0

 =

f1(b1 + h1, . . . , bn + hn)
...

fr(b1 + h1, . . . , bn + hn)

 =

f1(b1, . . . , bn)
...

fr(b1, . . . , bn)

+ J(b1, . . . , bn)

h1

...
hn


in view of I2 = 0. Note that by assumption some r × r minor of J maps to a unit in
RQ, hence inAP , and therefore J(b1, . . . , bn) mod I is a unit. Hence it is a unit inB as
well, i.e. the matrix J(b1, . . . , bn) has rank r and the matrix equation is solvable.7 �

Remark 9.7. The same argument shows that ifA is a ring,B = A[x1, . . . , xn]/(f1, . . . , fr)

and the Jacobian matrix J = [∂ifj] has an r× r minor which is a unit in B, then B is
formally smooth over A.

In the presence of formal smoothness we have a strengthening of Proposition 8.6.

Proposition 9.8. Let φ : B → C be a formally smooth homomorphism of A-algebras.

(1) There is a split exact sequence of C-modules

0→ Ω1
B/A ⊗B C → Ω1

C/A → Ω1
C/B → 0.

(2) If moreover φ is surjective with kernel I , we have a split exact sequence ofC-modules

0→ I/I2 → Ω1
B/A ⊗B C → Ω1

C/A → 0.

Proof. For (1), note that from the proof of Proposition 8.6 we already have an exact
sequence

0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M).

for all C-modules M . It will be enough to extend it to a split exact sequence

0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M)→ 0.

7Indeed, we may assume the first r×r minor of J(b1, . . . , bn) is a unit. Denoting the corresponding
r × r matrix by A the inverse A−1 exists by Cramer’s formula. Now the equation (14) is solvable if
and only if it is solvable after multiplying by A−1 on the left. But A−1J(b1, . . . , bn) is the unit matrix
with n− r extra columns added, so solvability is immediate.
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Fix a derivation D ∈ DerA(B,M) and consider the commutative diagram

C
id−−−→ Cx x

B
(φ,D)−−−→ C ⊕M

where C ⊕M is given a ring structure with M2 = 0 as in Example 8.2. By formal
smoothness there is a map C → C ⊕M making the diagram commute which, com-
posed with the projection C ⊕M → M , gives an element in DerA(C,M) whose re-
striction toB isD by construction. This defines the required retraction DerA(B,M)→
DerA(C,M). Statement (2) is proven by the same argument as in the first half of the
proof of Proposition 9.1, using formal smoothness instead of the application of The-
orem 6.11.

We may now complete Proposition 9.1 as follows.

Theorem 9.9. Let k be a perfect field, A = k[x1, . . . , xn]/(f1, . . . , fr) an integral domain
of dimension d, and P ⊂ A a prime ideal with preimage Q ⊂ k[x1, . . . , xn]. The following
are equivalent.

(1) The Jacobian matrix J = [∂ifj] has rank n− d modulo Q.
(2) The localization AP is formally smooth over k.
(3) The AP -module Ω1

AP /k
is free of rank d.

(4) AP is a regular local ring.

Proof. The equivalence of (1), (3) and (4) is Proposition 9.1 together with Corollary
9.4, and the implication (1) ⇒ (2) will follow from Proposition 9.6 once we show
that we may assume r = n − d. Write R := k[x1, . . . , xn] as before. We may num-
ber the variables xi and the polynomials fj so that the (n − d) × (n − d) minor
det[(∂ifj)1≤i,j≤n−d] is nonzero mod Q. If we set κ := RQ/QRQ, this means that the
map ρ : QRQ → κn given by ρ(f) := (∂1f, . . . ∂nf) mod Q maps f1, . . . , fn−d to
linearly independent elements in κn. But ρ factors through QRQ/(QRQ)2, so we
conclude that f1, . . . , fn−d give linearly independent elements in the κ-vector space
QRQ/(QRQ)2. Here RQ is a regular local ring, so the fi form a regular sequence
in RQ by Theorem 4.9. On the other hand, using Lemma 4.10 we then obtain that
ht((f1, . . . , fn−d)RQ) = ht(f1, . . . , fn−d) = n−d, which is also the height of (f1, . . . , fr)

by Remark 2.9 (1). This shows (f1, . . . , fn−d) = (f1, . . . , fr) as required.
Finally, for (2) ⇒ (3), set I = (f1, . . . , fr)RQ and apply Proposition 9.8 (2) to

obtain a split exact sequence

0→ I/I2 → Ω1
RQ/k

⊗RQ
AP → Ω1

AP /k
→ 0.
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Here Ω1
RP /k

is free of rank n by Proposition 8.4, so the finitely generated AP -module
Ω1
AP /k

is a direct summand of a free module. It is thus projective over AP , hence
free. Its rank is calculated as in the proof of Proposition 9.1: for the fraction field K

of AP we have Ω1
K/k
∼= Ω1

AP /k
⊗AP

K by Lemma 8.5 (3) and this K-vector space has
dimension d by Corollary 9.3. �

Remark 9.10. By Lemma 9.5 (4) formal smoothness of AP over k implies that of K.
It can be shown that this implies that K is separably generated over k, whence the
proof of (2) ⇒ (3) goes through without assuming k perfect. In fact, inspection of
the proof of Corollary 9.4 then shows that the equivalence of conditions (1)− (3) in
the above theorem holds over arbitrary k.

On the other hand, it is not hard to show using the arguments seen so far that if
A is a Noetherian local ring containing a field k and A is formally smooth over k,
then A is regular. The converse does not hold in general.


