Howelsgy of manifolds

Def. A top. manifold of dim. n is a Hansdorff space X S.t. YPEX has an open neighbourhood leomeousphic to Some open UCIR^h. I

We now prove directly: Theorem 11 X is a ton, manifold a

Theorem. If X is a top. manifold of dim. n, then
$$H_i(X) = 0$$

Lemma. If $Y \subset \mathbb{R}^n$ open, then $H_i(U) = 0$ $i \ge n$.

Since the gold gives a CW decomposition
of Rⁿ and L is a union of some two cells
$$H_i(R^n, L) = 0$$
 is n by a HW exercise [no creeks
but $H_i(R^n, L) \Rightarrow 0$ is $0 = 0$ the net
 $H_i(R^n, L) \Rightarrow H_i(L)$
 $H_i(R^n, L) \Rightarrow H_i(L)$
 $H_i(R^n, L) \Rightarrow H_i(L)$
 $H_i(R^n, L) \Rightarrow H_i(R^n, L)$
 $H_i(R^n, L) \Rightarrow H_i(R^n, L)$
 $H_i(R^n, L) \Rightarrow H_i(R^n, L)$
 $H_i(L) = 0$ is $H_i(L)$ [since is come from $H_i(R)$].
Gr. Let X be an u-dim unamplet, $H_{i-1}, H_i \subset X$ open s.t.
 $U_j \in R^n$ V_j . Then $H_i(U_k) \dots U_i) = 0$ $V \in \mathbb{N}$.
 $H_i = Comment H_i(L)$ [since is come from $H_i(R)$].
Gr. Let X be an u-dim unamplet, $H_{i-1}, U_i \subset X$ open s.t.
 $U_j \in R^n$ V_j . Then $H_i(U_k) \dots U_i$ hous.
 $[0 =]H_i(U_k \cup \dots \cup U_{n-k}) \oplus H_i(U_n) \rightarrow H_i(U_k \cup \dots \cup U_n)] \cap U_n)$
 $= H_{i-k}((U_k \cup \dots \cup U_{n-k}) \oplus H_i(U_n) \rightarrow H_i(U_k \cup \dots \cup U_n)] \cap U_n)$
 $[= 0$ by Lemma]
Proof of Theorem. Assume $d \in H_i(X)$, is h . Compactness
argument: $\exists K \subset X$ compact : K comes from $H_i(K)$. But
 K can be converd by finitely using "coordinate whences"
 U_{k-1}, U_k , all $x \in \mathbb{R}^n \Rightarrow K$ comes from $H_i(U_k \cup \dots \cup U_n) \Rightarrow O$
(ar.
Gr. $I_k K \subset X$ is a compact subsch, then $H_i(X_k X \setminus K) = 0$ is n .
 E For the part we need a Marger - Viebor's sequence for
all kine bouology:
Lamma. Let X be an arbitrary for space, $U_i \vee C \times$ open.

There is a long clack sequence

 $-- \rightarrow H_{i+i}(X, u \cup V) \rightarrow H_i(X, u \cap V) \rightarrow H_i(X, u) \oplus H_i(X, V) \rightarrow H_i(X, u \cup V) \rightarrow -$ Pf. Let U= {U, V]. We have a short exact sequence of complexes $(*) \quad \bigcirc \rightarrow S.(X) \mid S.(UnV) \rightarrow S.(X) \mid S.(U) \oplus S.(X) \mid S.(V) \rightarrow S.(X) \mid S.(X) \mid$ $(d | \beta) \mapsto d - \beta$. Here if UVV = X, H; (S. (X)) ~ H; (X) by the small simplices thue. In general, we have only H: (S."(X)) => H: (UUV) and therefore Hi (S. (X) [S."(X)) ~ Hi (X, UVV) by oneparing long exact sequences. Now take the long exact sequence for (x). Proof_of_Cor. If K is so small that 34 CX, 4~ RM St. KCU => H: (X, XIK) ~ H; (U, UIK) by excision and since 4 = IR", H: (U, U/K) = Hin (U/K) (a>1) by the relative houselogy sequence. But this is O for i>n by Lemma before Thu. In general, we may cover K by finitely many compact subsets : K= K2U_UKm VK; JUZIR" S.E. K: CU. Now Hi(X, XI(KLU....VKm)) =0 (>n by juduction on mand relative Mayer - Vietonis. Now recall: Since IR" 1 {x} is homotopic to S"-" for XER", the relative leouslogy sequence $- \rightarrow H_n(\mathbb{R}^n) \rightarrow H_n(\mathbb{R}^n, \mathbb{R}^n \setminus \{x\}) \rightarrow H_{n-1}(\mathbb{R}^n \setminus \{x\}) \rightarrow H_{n-1}(\mathbb{R}^n)$ $\hat{n}duces \quad H_n(\mathbb{R}^n, \mathbb{R}^n(\{x\}) \xrightarrow{\sim} H_{n-1}(\mathbb{R}^n(\{x\})) \xrightarrow{\sim} H_{n-s}(S^{n-1}) \xrightarrow{\sim} \mathbb{Z} \quad n > 1.$ [for n=1 work with Ho.] If X = y are two points of Rh, we may find a closed ball En CIP" containing both, and $H_{n}(\mathbb{R}^{n},\mathbb{R}^{n}\setminus\{x\})\simeq H_{n}(\mathbb{R}^{n},\mathbb{R}^{n}\setminus\mathbb{E}^{n})\simeq H^{n}(\mathbb{R}^{n},\mathbb{R}^{n}\setminus\{y\})\simeq TL$ as both 12" 1 [x], 12" \ E" are hower to pic to S"-!

Prop. Let X be an orientable manifold with orientation
$$\mu$$
.
For V KCX compact $\exists \mu_{K} \in H_{h}(X, X \setminus K) \le t$.
N X $\in K$ $\mu_{X} \in H_{h}(X, X \setminus \{x\})$ is the image of μ_{X} .
Cr. If X = K is compact, $\exists \mu_{X} \in H_{h}(X) \le t$. V $\times \in X$
 μ_{X} is the image of μ_{X} . Later we'le see. $H_{h}(X) \ge 7L$
with guarator μ_{X} .
Def μ_{K} is called a fundamental class $[at K]$
Rem. This already shows that $\mathbb{R} \mathbb{P}^{n}$ is not orientable if 21n
because in this case we know $: H_{h}(\mathbb{R} \mathbb{P}^{n}) = 0$.
Lemma. If $K \subset \mathbb{R}^{n}$ is a compact subset, $\exists t$.
and $d \in H_{m,i}(\mathbb{R}^{n} \setminus K) \le t$. its image in $H_{h-1}(\mathbb{R}^{n} \setminus \{x\})$
is $O \lor X \in K \implies d = 0$.
If K is a compact subset, $\exists t$.
 $H_{h-1}(\mathbb{R}^{n} \setminus K) \cong H_{h-1}(\mathbb{C}^{n}) \cong H_{h-1}(\mathbb{R}^{n} \setminus \{x\}) \implies \mathcal{O}$
If K is a union of m compact balls, induction on M .
 H_{ager} -Vietoris: $B_{1,-1}, B_{m}$
 $H_{n}(\mathbb{R}^{n} \setminus \bigcup B_{i}) A_{m-1} (\mathbb{R}^{n} \setminus B_{i}) A_{m}(\mathbb{R}^{n} \setminus B_{i}) A_{m}(\mathbb{R}^{n} \setminus B_{i}) A_{m}(\mathbb{R}^{n} \setminus \mathbb{C})$
 $K = (1 + 1) = \frac{1}{2} = \frac{1$

VI Proof of Prop. If K is a small compact subset as in def. of orientation, nothing to prove. Otherwise K = ÜK; where K: is as above and moneover JUCX open: U: ~ IP" and Ki C U. Induction on m. Suppose we have Mixi for K'= ÜKi. Relative Mayer - Vietonis: $H_{n+l}(X_1 \times \backslash (K_k \cap K')) \rightarrow H_n(X_1 \setminus K) \rightarrow H_n(X_1 \times \backslash K_k) \oplus H_n(X_1 \times \backslash K')$ \rightarrow $H_{n}(X, X \land (K_{1} \land K_{q}))$ 0 [pervious Gr.] Enough to show: MK, & MK, map to the same elt in $H_{n}(X, X)(K_{n}(K')) \simeq H_{n}(U_{1}, U_{1}(K_{n}(K')))$ $H_{n}(X, X \land \{x\})$ By assumption, S(MK) - S(MK) maps to 0 in $H^{n}(\alpha^{t},\alpha^{t})$ VXEKANK' => it is 0 by Lemma. The Cap-product For Poincaré duality we need one more construction. Set S'(X) := Hom (S.(X), 72). It computes the cohomology groups H'(X) := H'(XZ). There is a natural evaluation map I > How (S; (X), Z) × S; (X) - Z Hi. We make it into a morphism of complexes as follows. Given a cohomological complex C°, view it as a les mological complex with houselogical numbering Crit= C and howological differential di = (-1) di. In particular, we regard it S'(X) as a howological complex with the above conventions. <, 7 then induces $e: S^{\circ}(X) \circ S(X) \rightarrow \mathbb{Z}$ [where The is the complex 0-10-0-0-7 Z -0 - . . .] deg 0

Indeed, the degree 0 term of
$$S'(X) \circ S(X)$$
 is $[Vii]$
 \bigoplus How $(S_i(X), Z) \circ S_i(X)$
so we may set $\varepsilon_0 := \bigoplus \langle 1, Z : \bigoplus Hom (S_i(X), Z) \otimes S_i(X) \xrightarrow{Z} Z$;
for $n \neq 0$ we set $\varepsilon_n = 0$.
Lemma. $\varepsilon : S'(X) \circ S(X) \rightarrow Z$ is a morphism of completes.
Pf. Since all differentials $n (-3 - 30 \rightarrow Z - 30 \rightarrow ...)$ are D ,
we have to check $\varepsilon_0 \circ \bigoplus = 0$.
If $f \in Hom (S_i(X), Z)$ and $x \in S_i \bigoplus (X)$
 $d (f \circ d) = df \otimes d + (-1)^i f \circ dd$
 $\varepsilon_0(d (f \circ d)) = \langle df, d \rangle + (-1)^i \langle f, dd \rangle$
 $= (-1)^{i+1} f (dd) + (-1)^i f (dd) = 0$.

Construction. Consider the composite map

$$S'(X) \otimes S.(X) \xrightarrow{ide} S'(X) \otimes S.(X) \otimes S.(X) \xrightarrow{ide} T \otimes S.(X) \xrightarrow{ide} S.(X)$$

where \hat{X} is the composite $S.(X) \xrightarrow{A} S.(XXX) \xrightarrow{EZ} S.(X) \otimes S.(X)$
(diagonal + Gilenberg - Zilter)
By a previous lemma we have maps $\forall inn$
 $H^{i}(X) \otimes H_{n}(X) \xrightarrow{\rightarrow} H_{n-i} (S^{i}(X) \otimes S.(X)) \xrightarrow{A} H_{n-i} (S.(X))$
[recall the homological indexing of $S'(X) | J$
This map is the cap product. As before, it does not depend
on the choice of the EZ map, and Alexander-Whitnery
gives an explicit formula. Notation $(d, \beta) \mapsto d \cap \beta$.
We'll also use a relative version
 $H^{i}(X,T) \times H_{n}(X,T) \xrightarrow{\rightarrow} H_{n-i}(X)$.
Construction the same, using the following map
 $\hat{X}_{T} : S.(X,T) \xrightarrow{\rightarrow} S.(X,T) \otimes S.(X)$

[Vu To construct ÃT, note first $0 \rightarrow S.(T) \rightarrow S.(X) \rightarrow S.(X,T) \rightarrow 0$ induces $\mathfrak{Gru}_{\mathcal{A}_{\mathcal{A}}}$ S.(T) \mathfrak{S} ,(X) $\mathfrak{$ and we have a commutative diagram $O \leftarrow (T, X), 2$ S. (T) S.(X) -1 A JA $S.(X \times X)$ $S.CT \times X)$ EZ EZ $S.(T) \oplus S.(X) \longrightarrow S.(X) \oplus S.(X) \longrightarrow S.(X,T) \oplus S.(X) \longrightarrow O$ There is the following relation with cup-products. Note first: <1 >: Si(X) × Si(X) → 7/ induces <, > H'(X) × H:(X) -> 72 Vi. Enot perfect duality!!] This can be checked directly, or by using $H_{-i}(S^{i}(X)) \otimes H_{i}(S_{i}(X)) \rightarrow H_{o}(S^{i}(X) \otimes S_{i}(X)) \xrightarrow{\epsilon_{0}} T_{L},$ Prop. If detini(X), BeHi(X), JEHn(X) (a, BAT) = (do BIT). Proof. Calculation going through def's - ownitted. Now we can state: Theorem (Poincaré duality for compact manifolds) Let X be a roupact orientable manifold with fundamental class fix & Hn (X). [n= dim X] The map & HS & n Mx induces isomorphisms $H^{c}(X) \simeq H_{n-1}(X) \quad \forall c.$

Cor. If moreover
$$H_i(X)$$
 is f.g. free H_i , the cup-product
 $H^i(X) \times H^{n-i}(X) \rightarrow H^n(X) \cong \mathbb{Z}$
is a perfect duality.

Pf. of Cor.
By Thm,
$$H_{n}(X) \simeq H^{\circ}(X, \mathbb{Z}) \simeq \mathbb{Z}$$

and because $H_{i}(X)$ is free $\forall i$, $H^{i}(X, \mathbb{Z}) \simeq Hom(H_{i}(X), \mathbb{Z})$ $\forall i'$
by a previous Prop. So the thim becomes
 $H^{i}(X) \simeq Hom(H^{n-i}(X), \mathbb{Z})$. To see that this is induced
by $cup-product$, use the formula $\langle d, png \rangle = \langle d \cup \beta, \vartheta \rangle$.

XI

Rew. 1) In general one can prove: cup-product induces perfect dialities $H^{i}(X) |_{torsion} \times H^{n-i}(X) /_{torsion} \rightarrow \mathbb{Z}$. But even better with coefficients in a field $F(e.g. F=R \text{ or} Then H^{i}(X,F) \times H^{n-i}(X,F) \rightarrow H^{n}(X,F) \cong F = \mathbb{Z}[p\mathbb{Z}]$ is a perfect duality. This follows from the above by tensoring everything with F.

3) If woreover n = 2m with $m \, odd, \, (up - product gives$ $a perfect duality <math>H^m(X,Q) \times H^m(X,Q) \rightarrow Q$ and woreover $d \cup \beta = -p \cup d$ by anti-commutativity of \cup . But we know from linear algebra: alternating bilinear forms exist only on even-dim. Vector spaces. So in this case $2 \mid \dim H^m(X,Q)$.

We'll give Milhor's proof of Poincaré duality, based on Mayer-Vietoris. But the thue is false for non-compact manifolds! E.g. if $U \subset IR^n$ open, we know $H_n(X) = 0$ but $H^o(X) = \mathbb{Z}$! [connected]

To overcome this public, we usedify cohomology groups
in the non-compact case.
Construction If K CX compact [X arbitrary bp.space]
S. (X)
$$\rightarrow$$
 S. (X, X VX), So
How (S. (X, X VK), Z) \rightarrow How (S. (X), Z) = S(X)
is a subcomplex. Put
Sig(X) := \bigcup How (S. (X, X VK), Z) C S(X)
compact
This is shill a subcomplex, and we put
 $H_c^i(X) := H^i(S_c^i(X))$ c-the cohomology groups
with compact support
Note: If X is compact, we can take K = X above, so
 $S_c^i(X) = S'(X)$ and $H_c^i(X) = H^i(X)$ Hi. But in
the non-compact case there is a difference.
We'll use a second construction, based on direct limits.
Def. Let (A, 4) be a partially ordered set. It is directed
if V d, P C A I S. d & T, P & S.
A direct system of abelian groups indexed by A is
given by X Ad : abelian group V 2 C A
The direct limit (or calimit) of the system is
 $lim_A d := \bigoplus A d / (0, 0, 0, 0, 0, 0, 0)$
Note: an element of lim Ad is represented by some $a_A c A_A$

with $a_{\alpha} \in A_{\alpha}$ identified with $a_{\beta} \in A_{\beta}$ if $\exists \gamma \geq d_{\gamma}\beta$: $\forall d_{\gamma}(a_{\alpha}) = \psi_{\beta\gamma}(a_{\beta})$. [Observe: if $(a_{\chi_{1},\dots,\gamma}a_{d_{\gamma}}) \in \bigoplus A_{\alpha}$,

X

We may find & 2 dx1-1 dr (use induction) and identify X (adding adr) with Zyair (adi).] I obvious generalization to direct limits of complexes of abelian groups. Assume (Ad), (Bd), (Cd) are direct systems indered Lemma. by A c.t. VdEA I short exact sequence $0 \rightarrow A_{d} \xrightarrow{i_{d}} B_{d} \xrightarrow{S_{d}} C_{d} \rightarrow 0$ and & d & p Ad -> Bd -> Ck LPap Lep L Pap $A p \xrightarrow{\sim} B p \xrightarrow{\sim} C p$ commute. Then 0 - lim Ad - lim Bd - lim Cd - 0 is exact. Easy from def's. E.g. sujectivity: if ax EAx is Pf. s.t. $\Psi_{x\beta}(i_d(a_d)) = 0$ for $\beta \ge \Phi_i$, then $i_\beta(\Psi_{x\beta}(\Phi_d)) = 0$ by commutativity and yap (ad) = 0 by sujectivity of is. But as is identified with qxp (a2). Cor. A direct limit of long exact sequences remains exact Faut up in short waat sequences J In our case: A = J XIK: KCX} Compact XIK & XIL (KCL. (XIK DXIL] This system is obviously directed. K, LCKUL compact. Observe: The Hom (S: (X, XIK), Z) C Hom (S: (X), Z) form a direct system indexed by A. Indeed,

XI

We shall consider these sequences only for KCU, LCV.

Fix
$$k \in U$$
, and take $\lim_{k \to \infty} over L \in V$ compact:

$$= \lim_{L} H^{i}(X, X \setminus KnL) = H^{i}(X, X \setminus K) \oplus \lim_{L} H^{i}(X, X \setminus L) = \lim_{L} H^{i}(X, X \setminus K \cup L) = ...$$
This is exact by previous Gir. Now take $\lim_{L} over X \in U$ compact:

$$= \rightarrow \lim_{K \to L} H^{i}(X, X \setminus KnL) = \lim_{K \to L} H^{i}(X, X \setminus B) \oplus \lim_{L} H^{i}(X, X \setminus L) = \lim_{K \to L} H^{i}(X, X \setminus K \cup L) = ...$$
Since $K \in U_{1}$ $H^{i}(X, X \setminus K) \cong H^{i}(U_{1} \cup XK) \oplus \lim_{K \to L} H^{i}(X, X \setminus K \cup L) = ...$
 $\lim_{K \to L} H^{i}(X, X \setminus K \cap L) = \lim_{K \to L} H^{i}(X) \cong A = H^{i}(U)$
Also, $\lim_{K \to L} H^{i}(X, X \setminus K) \cong H^{i}(X \cup X) = H^{i}(U \cup V)$.
Now recall: If X is an $n - \dim$ oriented manifold, we have constructed $\forall K \in X = a$ for $d = a$.
 $H^{i}(X, X \setminus K) = H^{i}(X) = H^{i}(X \cup V)$.
Also, if $K \in L_{1}$ μ_{L} maps to μ_{K} by the natural map
 $H_{i}(X, X \setminus K) = H_{i}(X)$.
Now recall the coop-products
 $H^{i}(X, X \setminus K) \to H^{i}(X, X \setminus K)$ by contraction.
Now recall the coop-products
 $H^{i}(X, X \setminus K) = H^{i}(X)$.
 $K = H^{i}(X, X \setminus K) = H^{i}(X)$.
 $K = H^{i}(X, X \setminus K) = H^{i}(X)$.
 $K = H^{i}(X, X \setminus K) = H^{i}(X)$.
 $K = H^{i}(X, X \setminus K) = H^{i}(X)$.
 $K = H^{i}(X, X \setminus K)$ with μ_{K} rinduces
 $K = H^{i}(X, X \setminus K) \to H^{i}(X)$.
 $K = H^{i}(X, X \setminus K)$.
 $K = H^{i}(X, X$

LXV

How by Jone 92
Notetime: If
$$(X_1 Tro)$$
, $(Y_1 Y_0)$ pointed spaces (i.e. spaces 4 base pound)
 $[(X, x_0), (Y_1 Y_0)]^\circ := base point preserving maps up to
boundary
Fix a base pound $x \in S^n$.
Def. $\pi_i(X, Tro) := [(S^n, x), (X, Tro)]^\circ$ i-th home by y group of X.
For i=0, this is just a set: path components of X, pointed by x_0
 $i=1$ this is the fundamental group [proop structure coming below]
Let $T^n: standard closed in cube, and consider $T^n | OT^n$ pointed by $[OT^n]$
Lemma: $T^n | OT^n \propto S^n$
For the poof we need the smash product XAY of two pointed spaces
 $(X, x_0), (Y_1 y_0)$ XAY := $X \times Y | (X \times \{y_0\} \cup \{x_0\}_{i=1}^n Y)$
with has point X $\times \{y_0\} \cup \{x_0\} \times Y$. It corrise the quotient top.
Given pointed maps $X \stackrel{f}{\leftarrow} X', Y \stackrel{f}{\rightarrow} Y^1$ on pointed map $XAY \stackrel{fAJ}{\longrightarrow} X'AY'$.
Pf of Lemma: $n=4$ clear
 $n=2: (T|OT) \wedge (T|OT) \approx T^2|OT^2$
 $S^4 \wedge S^4 \approx S^2 [(R^4 \cup [OT] \wedge (R^4 \cup [OT]) \stackrel{g}{=} (R^2 \cup [OT]])$
General case similar: $(T|OT)^A \stackrel{g}{=} T^n | OT^n and$
 $(S^4)^{A^n} \stackrel{g}{=} S^n maps induction n.$
 $Gr. \pi_i(X_i tro) = [(T^1|OT^i), (OT^i)), (X_i tro)]^0$
 $= maps [T^0, OT^i) - (X_i tro)]$ up to homotopics
 $constant on OT^i$.
Now we can define the group structure on $\pi_i(X_i x_0)$:
 $Def: If [f], [f] \in [(T^1|OT^i_1[OT^i]), (X_i x_0)]^0$,
 $[f] H_0]$ is negarisonicled by
 $(f + g) (t_{A_1..., t_i}) = \begin{cases} g(2t_{i_1} - t_{i_1}t_{i_1}, t_i) & \frac{1}{2} \in t_i \leq 1 \end{cases}$$$

As in the case i=1, one shows this is well defined on homobpy classes and gives a group structure with unit the constant map D: I'] DI' - gxo3.

Prop. This group law is commutative for
$$i \ge 2$$
.
Proof. For $j = 2, ..., i$ we have similar group laws t_j using
the variable t_j custed of t_1 . At the same time
we prove $t = t_j$. t_j . Observe: if $[e], [f], [g], [h]$
are elements of $\pi_i(X, x_0)$,
 $(e+f) + j(g+h) = (e+jg) + (f+jh) + t_j + \frac{g}{e} + \frac{f}{f}$
The constant path O is a unit for all t_j . $\rightarrow t_k$
So $f + jg = (f+o) + j(o+g) = (f+jo) + (o+jg) - f+g$
 $= t - t_j$, moreover $(e+f) + (g+h) = (e+g) + (f+h)$
gives for $e=h=0$:
 $f + g = g + f$.

Interlude : function spaces.

Notation: if
$$X_i Y$$
 top. spaces, $Hom(X_iY) := \int cout. maps X \rightarrow Y$?
We put a topology on $Hom(X_iY)$, the compact-open topology.
Subbasis: given $K \subset X$ compact, $U \subset Y$ open,
 $V_{K_i}u' := \int f \in Hom(X_iY)$, $f(K) \subset U$.
A general open set is obtained by finite of

Lemma, 1) Given
$$f \in Hom(X \times Y, Z)$$
, the map
 $f: X \to Hom(Y, Z)$ given by $x \mapsto f(x, -)$
is continuous, i.e. lies in Hom(X, Hom(Y, Z)).

Cor. If Y is loc. compact, Hom (X×Y, Z) = Hom (X, Hom (Y, Z))

Ken. This is a bejection of sets but one can check it is
a horizon unsplaise it the compact-open hopology.
Most of Lemma.
4) Fix K CY compact, U CZ open. We show:
$$\hat{f}^{-1}(V_{K,U}) CX$$
 is open.
Pick $x \in \hat{f}^{-1}(V_{K,U})$. Then $f(x) \times K \subset K$. As f is continuous,
Wyerk $\exists U_{X} \subset X, V_{Y} \subset Y$ open holds: $f(U_{X} \times V_{Y}) \subset Y$.
K compact \Rightarrow finitely many V_{Y} over $K \Rightarrow \exists U_{X}$ that works
 $\forall V_{Y} \Rightarrow f(U_{X} \times K) \subset U \Rightarrow Y \Rightarrow U_{X} \subset \hat{f}^{-1}(V_{K,U})$.
2) Enough to show: the usep $Y \Rightarrow Hom(Y,Z) \stackrel{1}{\rightarrow} Z, (Y, P) \mapsto P(Y)$
is continuous. Indeed, then \hat{g} equals the composite
 $X \times Y \stackrel{1}{\rightarrow} Hom(Y,Z) \times Y \stackrel{1}{\rightarrow} Y$.
If U is an open while of $f(y)$, $\exists Y \in K \subset Y$ compact:
 $f(K) \subset U$ on Y is loce, compact. But then $e(K \times V_{K,U}) \subset U$
by def. of $V_{K,U}$, and $Y \in K_{1}$ for $V_{K,U}$.
Now assume $(X, X), (Y, Y), (Z_{1} \ge)$ are pointed.
Hom $(X, Y)^{0} := pointed continuous useps $(X, x) \rightarrow (Y, y)$,
 $cadowich with the subspace kep. from Hom (X, Y)
 $pointed b_{Z} X \rightarrow fy3$.
Lemma. Given $f \in Hom((X \times Y, Z)^{0}$,
 $\hat{f} \in Hom(X, Hom(Y, Z))$ lies on the subspace
 $Hom(X, Hom(Y, Z))^{0} \Rightarrow Hom(X, Hom(Y, Z)^{0})^{0}$
One checks: here homospic useps convespont, so
 \underline{Gr} . $[X \land Y, Z]^{0} \Rightarrow [X, Hom(Y, Z)^{0}]^{0}$
 \underline{Det} If (X, z_{1}) is a pointed space, define the
 $lapp space$ $\Omega X := Hom(S^{1}, X)^{0}$.
It is pointed by $S^{1} \rightarrow f_{X}$.$$

Similarly, set
$$SX:= S'AX$$
 the inspension of X.
Ren. This is sometimes called reduced suspension. To visualize
it, note that SX is obtained from $X \times I$ by collepsing
 $X \times \{o\}, X \times \{i\}, \{n\} \times I$
 $T \longrightarrow X \mapsto SX, X \mapsto QX$ are functors of pointed top space
 $X \mapsto SX, X \mapsto QX$ are functors of pointed top space
 $Gr.$ There is an isomorphism $[SX,Y]^{\circ} = [X, RY]^{\circ}$
 $[adjoint isomeric in lowerby category]$
 $Gr. \exists canonical isomorphisms
 $\pi_{i+1}(X, x_0) \stackrel{eq}{\Rightarrow} \pi_i(QX, x_0) \stackrel{eq}{=} [((S(Si), x), (X, x_0)]^{\circ}$
and $S(S^i) \stackrel{eq}{\Rightarrow} S^{i+4}$ as we have seen. $J = \pi_{i+1}(X, x_0)$.
Rem. Dependence on base point: assume $\pi_0(X) = A$, $X_0, x_1 \in X$.
We have boy spaces $Q \times X_1, Q \times X_1, X_2, X$ based at x_0, x_1, x_0 .
 $K \in Q, X_1, X_0) \stackrel{q}{\to} \pi_i(Q, X_2, x_0)$
 $\pi_{i+1}(X, X_1) \stackrel{q}{\to} \pi_i(Q, X_2, X_2)$
 $I = \pi_{i+1}(X, x_0) \stackrel{q}{\to} \pi_i(Q, X_2, X_3)$
 $Rem. Dependence on base point: assume $\pi_0(X) = A$, $X_0, x_1 \in X$.
We have boy spaces $Q \times X_1, Q \times X_2, X$ based at $x_0, x_1, x_0 \in Y$.
 $K = (Q, X_1, X_2) \stackrel{q}{\to} \pi_i(Q, X_2, X_3)$
 $\pi_{i+1}(X, X_2) \stackrel{q}{\to} \pi_i(Q, X_2, X_3)$
 $\pi_{i+1}(X, X_2) \stackrel{q}{\to} \pi_i(Q, X_2, X_3)$
 $\pi_i(x_1(X_1, X_2)) \stackrel{q}{\to} \pi_i(X, X_3)$
 $\pi_i(x_1(X_1, X_2)) \stackrel{q}{\to} \pi_i(X, X_3)$
 $\pi_i(X, X_2) \stackrel{q}{\to} \pi_i(X, X_3)$
 $\pi_i(X, X_3) \stackrel{q}{\to} \pi_i(X, X_3)$
 $\pi_i(X, X_3) \stackrel{q}{\to} \pi_i(X, X_3)$
 $\pi_i(X_1, X_2) \stackrel{q}{\to} \pi_i(X_3, X_3)$
 $\pi_i(X_1, X_3) \stackrel{q}{\to} \pi_i(X_3, X_3)$
 $\pi_i(X_1$$$

Exactness at
$$\pi_{i}(X,T,x_{0})$$
, suppose $f: I \rightarrow X$ with $f(a) = x_{0}, f(b) \in T$
Satisfies $\Im([f]) = 0$. Then $\exists g: I \rightarrow T : g(d) = f(1), g(0) = x_{0}$.
Here $g: f$ is a loop around x_{0} , and is homobric to
 f via
 $H(s,t) := \begin{cases} g(\Lambda - t + s(\Lambda + t)) & 0 \leq s \leq \frac{t}{\Lambda + t} \\ f(s(\Lambda + t) - t) & \frac{t}{\Lambda + t} \leq s \leq \frac{t}{\Lambda + t} \end{cases}$
Indeed, $H(s, 0) = f(s), H(s, \Lambda) = (g \cdot f)(s)$
 $H(\Lambda, t) = f(\Lambda) = x_{0}, H(0, t) = g(\Lambda - t) \in T.$

$$\begin{array}{l} \label{eq:constrained result (without proof): \\ \mbox{Homology excession them} (blackers - Massey) Let $X = U_{1} \cup U_{2}$, $U_{1} \circ pen. \\ \mbox{Fi} (U_{4}, U_{4}, nU_{4}, u) = 0 \quad 0 < ci < p \ and \ \mbox{Fight, u \in U_{4}, nU_{2}.} \\ \mbox{Fi} (U_{4}, U_{4}, nU_{5}, u) = 0 \quad 0 < ci < q \ \mbox{Fight, u = U_{4}, nU_{2}.} \\ \mbox{Fi} (U_{4}, U_{4}, nU_{5}, u) = 0 \quad 0 < ci < q \ \mbox{Fight, u = U_{4}, nU_{2}.} \\ \mbox{Fi} (U_{4}, U_{4}, nU_{5}, u) = 0 \quad 0 < ci < q \ \mbox{Fight, u = U_{4}, nU_{2}.} \\ \mbox{Fi} (U_{4}, U_{4}, nU_{5}, u) = 0 \quad 0 < ci < q \ \mbox{Fight, u = U_{4}, nU_{2}.} \\ \mbox{Fi} (U_{4}, U_{4}, nU_{5}, u) = 0 \quad 0 < ci < q \ \mbox{Fight, u} \\ \mbox{Fight, u = under and use } \pi_{1} (U_{2}, U_{4}, nU_{2}, u) \rightarrow \pi_{1} (X, U_{4}, u) \\ \mbox{fi an bounderliss flare is } \int U_{4} \cap U_{4} = S^{n-4} \ \mbox{[constrained user fight, u = U_{4}, nU_{2}], u) \\ \mbox{find a number open covering } u = S^{n-4} \ \mbox{[constrained result, pole]}, \\ \mbox{Find a number open covering } u = Checker fight, u = Checker fight, \\ \mbox{Find a number open covering } u = Checker fight, \\ \mbox{Find a number open covering } u = Checker fight, \\ \mbox{Find a number open covering } u = Checker fight, \\ \mbox{Find a number open covering } u = Checker fight, \\ \mbox{Find a number open covering } u = Checker fight, \\ \mbox{Find a number open covering } u = Checker fight, \\ \mbox{Find a number open covering } u = Checker fight, \\ \mbox{Find (E_+^n) \to \pi_{11} (E_+^n) S^n \to \pi_{11} (S^{n-1}) \to \pi_{11} (S^n) \\ \mbox{Find (E_+^n) \to \pi_{11} (E_+^n) S^n) = 0 \quad 0 \le i \le n. \\ \mbox{Find (E_+^n) \to T_{11} (S^n) \to \pi_{11} (S^n) \to \pi_{11} (S^n) \to \pi_{11} (S^n) \\ \mbox{Find (C_+^n) S^n) = 0 \quad 0 \le i \le n. \\ \mbox{Find (C_+^n) S^n) = 0 \quad 0 \le i \le n. \\ \mbox{Find (C_+^n) S^n) = 0 \quad 0 \le i \le n. \\ \mbox{Find (C_+^n, S^n) = 0 \quad 0 \le i \le n. \\ \mbox{Find (C_+^n, S^n) = 0 \quad 0 \le i \le n. \\ \mbox{Find (C_+^n, S^n) = 0 \quad 0 \le i \le n. \\ \mbox{Find (C_+^n, S^n) = 0 \quad 0 \le i \le n. \\ \mbox{Find (C_+^n, S^n) = 0 \quad 0 \le i \le n. \\ \mbox{Find (C_+^n, S^n) = 0 \quad 0 \le i \le$$$

Let
$$(X, x_0)$$
 be a pointed space. The suspension map [36a
 $\Sigma : \pi_i (X_1 x_0) \to \pi_{ih} (S_{X_1} z_0)$ is defined by:
 $f: (S_1^i x_1) \to (X, z_0)$ \longrightarrow Sf: $S^i \wedge S^i \to S^i \wedge X$
Lemma. Z is a however philm.
Proof We use the two stant observation:
If $C_{X}:= I \wedge X$ $:= I \times X / fool \times X \cup I \times f(x_0)$ is the cone of X.
The embedding $X \hookrightarrow CX$, $x \mapsto (A_1 x)$ induces $CX/X \cong SX$.
Moreover, the map $(\pm_1 x) \mapsto \pm x + (\lambda - \pm) x_0$ $[x_0] = north pole]$
induces $C_{S} \subseteq E^{ix_0}$, in the case $X = S^i$.
Since $\forall X \subset X$ is constractible [already $I \times X/[10] \times 1$]
the relative howels by lequence
 $\dots \to \pi_{ore}(CX) \to \pi_{ih}(CX_1 X) \to \pi_i(X) \to \pi_i(CX)$
induces $\pi_{ih}(CX_1 X) \cong \pi_i(X) \quad \forall i \ge 1$. Here
 $f: S^i \to X$ consequents to $Cf: (E^{ix_1}, S^i) \to (CX_i X)$ by the above.
Now Z equals the composite of 3 homeomorphisms:
 $\pi_i(X) \Longrightarrow \pi_{ihe}(CX_1 X) \to \pi_{ihe}(CX/X, x_0) \cong \pi_{ihe}(SX)$,
because Cf is seed to Sf .
Freedeedful g subpension theorem: Z is an isomorphism
 $\pi_i(S^i, x) \cong \pi_{ihe}(S^{i+1}, x)$ for $i \le 2n-2$, and a surjection
 $\pi_{ihe}(S^i, x) \cong \pi_{ihe}(S^{i+1}, x) \to \pi_{ihe}(S^i, x) \to \pi_{ihe}(S^i, x)$
 $cosm. in this of pairs as
 $\pi_{ihe}(S^i, x) \cong \pi_{ihe}(S^{i+1}, x) \to \pi_{ihe}(S^{i+1}, x^{i+1}) \to \pi_{ihe}(S^{i+1}(E^{i+1}))$
 $Choose in this of pairs as
 $\pi_{ihe}(S^i) \equiv \pi_2(S^i) \equiv \pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i)$
 $graf By the $\pi_2(S^i) \equiv \pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^i) \to \pi_2(S^i) \to \pi_2(S^i)$
 $So conset to prove: $\pi_2(S^i) = (C^i, S^$$$$$$$$$$$$$$

Howe bet of CW completes
by Let i. Theory the a subspace of is a confished in if

$$\forall f: X \Rightarrow Y_i$$
 to $\forall x = T \times T \rightarrow Y$ with the $|T \times f_{ij} = f|T$
 $\exists H_i \times T = Y$ s.t. $\exists H|_{X \times f_{ij}} = f_i$
 $\exists H_i \times T = Y$ s.t. $\exists H|_{X \times f_{ij}} = f_i$
 $\exists H_i \times T = Y$ is the form of the indusion
 $X \times f_{ij} \cup T \times T = C \times T$ has a refrection.
 $\forall f: X \to Y \times f_{ij} \cup T \times T = Y$ by $\exists |X \times f_{ij} = f_i$
 $\exists |T \times T = h.$ T class $\exists g$ could if
 $T_i \times X = J \times X \times f_{ij} \cup T \times T$ is a refrection $= 2$
 $\exists g = T : X \times T \to Y$ kieled k .
 $\exists : Site Y = X \times f_{ij} \cup T \times T$, $f: X \to X \times f_{ij} = f_i$
 $The afibration property Turn a retraction.
 $\exists : Site Y = X \times f_{ij} \cup T \times T$, $f: X \to X \times f_{ij} = f_{TT}$
 $The afibration property Turn a retraction.
 $\exists : Site Y = X \times f_{ij} \cup T \times T$, $f: X \to X \times f_{ij} = f_{TT}$
 $The afibration property Turn a retraction.
 $\exists : Site Y = X \times f_{ij} \cup T \times T$, $f: X \to X \times f_{ij} = f_{TT}$
 $form x \times T \to Y$ kheads k .
 $\exists : Site Y = X \times f_{ij} \cup T \times T$, $f: X \to X \times f_{ij} = f_{TT}$
 $f = x f_{ij}$
 $f = x = f_{ij}$ is a cofibration. Freef:
 $T = f_{ij} \times T = f_{ij} \times T = f_{ij} \times f_{ij} = f_{ij} \times T$.
 $f = x \times f_{ij} \times T = f_{ij} \times T = f_{ij} \times T = f_{ij} \times T$.
 $f = x \times f_{ij} \times T = f_{ij} \times T = f_{ij} \times T = f_{ij} \times f_{ij} \times T$.
 $f = x \times f_{ij} \times T = f_{ij} \times T = f_{ij} \times T = f_{ij} \times f_{ij} \times T$.
 $f = x \times f_{ij} \times T = f_{ij} \times f_{ij} \times T = f_{ij$$$$

Cor. If X is a CW couple,
$$X^n \hookrightarrow X$$
 is a appendix. Let
Pf. USNUM \rightarrow UE^{nts} Since $S^n \rightarrow E^{nm}$ contraction by
 $X^n \longrightarrow X^{n+k}$ Lemma.
Compatition of calibrations is a calibration $\Rightarrow X^n \hookrightarrow X^m$
contraction $\forall n > n$. As $X > UX^n$, we conclude unity inductor
of bration $\forall n > n$. As $X > UX^n$ we conclude unity inductor
and a union of cells. (X,T) is called a CW pair
le this case $T \hookrightarrow X$ is a subcomplex if $T \subset X$ closed
is the space (X,T) is a contracted if
 $\pi_i(X_i, T, s_0) = 0$ $\forall x_0 \in T_i$ $0 \leq i \leq n$
Paus. A forwarded space (X,T) is n-connected if
 $\pi_i(X_i, T, s_0) = 0$ $\forall x_0 \in T_i$ $0 \leq i \leq n$
Paus. A forwarded space (X,T) is connected if
 $T_i(X_i, T, s_0) = 0$ $\forall x_0 \in T_i$ $0 \leq i \leq n$
Paus. A forwarded space $(X,T) \Rightarrow (X,T_i, K_0)$ represents
 $O \in \pi_i(X_i, T_i, S_0) \ll f$ is homolopic (nec, S^{i-1})
is a map $E^i \rightarrow T$.
Pf. $\sum_{i=1}^{n} (y_i - y_i) = G(y_i) = f(x_i, x_i, x_i) = G(x_i, x_i) = G(x_i, x_i)$
 $f(X_i, x_i) = \begin{cases} G(\frac{2}{2-t}, t) \\ G(\frac{1}{2-t}, t) \\ G(x_i, x_i) = C(X_i, x_i) = f(X_i, x_i) = f($

Gr. 1)
$$(X,T)$$
 is n-connected $\Leftrightarrow \forall f: (E', S^{i-1}) \rightarrow (X,T)$
is homospic (net. S^{i-1}) to a map $E^{i} \rightarrow T$.
2) Given $X \supset T_i \supset T_i$, if (X,T_i) and (T_i,T_i) m-connected \Rightarrow
 (X,T_i) is n-connected [fillows from 1)]
Example. (E^i, S^{i-1}) is n-connected [computation of K_i of spheres above]
Proj. If X is a CW complex, then (X, X^n) is n-connected.
Proof. Let $U_i := union of open disks, one is each
open $(n+1)$ -cell of X
 $U_i := thickening of X^n inside X^{n+i} .
Then $X^{n+i} U_i \cup U_i$ is an open covering, thickening X^n
where Λ is indexing $(n+1)$ -cells.
As accalled in the above Example, $\pi_i (U_i, U_i, nU_i) = 0$
The boustopy excision then (applied with $p=n+2, q=1)[0 \le i \le n+1$.
Gives $\pi_i (X^{n+i}, U_i) = \pi_i (X^{n+i}, X^n) = 0$ as $U_i \sim X_{0,x}^{n-i}$.
If $m \gg h$, for 2) above $+$ induction fries $\pi_i (X^n, X^n) 0 \le i \le n$
 $X_i (X, X^n) = 0 \le i \le n$.
Def. A map $X \rightarrow Y$ of CW complexes is cultular if $f(X^i) cY^i \forall i$.
is house by in theorem Theorem Even X is induction on n we construct homospries $H^n : X \times T \rightarrow Y$
 $B = H^n (X, 0) = f(X), H^{n-i} (X, 0) = H^n (X, 0) = n \ge 1$.
 $Proof. By induction on n we construct homospries $H^n : X \times T \rightarrow Y$
 $B = H^n (X_i, 0) = f(X), H^{n-i} (X_i, 0) = H^n (X_i, 0) = n \ge 1$.
 $Proof. By induction on n we construct homospries $H^n : X \times T \rightarrow Y$
 $B = H^n (X_i, 0) = f(X), H^{n-i} (X_i, 0) = H^n (X_i, 0) = n \ge 1$.
 $Proof. By induction on n we construct homospries $H^n : X \times T \rightarrow Y$
 $B = H^n (X_i, 0) = f(X), H^{n-i} (X_i, 0) = H^n (X_i, 0) = n \ge 1$.
If $X = X^n$ for $n > 0$, this completes the proof.
 O therewise:$$$$$

$$H(x_{1}t) := \begin{cases} H^{i}(x_{1}, 2^{i+t}(t-1-2^{-i})) & 1-2^{-i} \le t \le 1-2^{-i-t} \\ H^{i}(x_{1}, 1) & x \in x^{i}, t=1. \end{cases}$$
This is continuous on $\forall x^{i} \ge I$ (by c)) => aloo on $X \ge I$.
We now define x^{n} by induction on m .

$$\boxed{n=0} \quad \forall y \in f(X^{o}) \text{ choose a path from } y \text{ to a fixed } y^{o} \in Y^{o} \text{ in the path component of } y.$$
 This defines a homotopy of $f(x_{0}, t_{0})$ a wap $X^{o} \rightarrow Y^{o}$. Since $X^{o} \leftrightarrow X$ is a cofibration, we may extend the homotopy to X_{1} giving a homotopy of f with a map $f = S.t = \widetilde{f}(X^{o}) \subset Y^{o}$.

$$\boxed{n>0} \quad By \text{ induction we may assume } f(X^{i}) \ll Y^{i} \quad i \le n.$$
Let $\overline{\Phi}_{d} \in (E_{d}^{n}, S_{d}^{n-1}) \rightarrow (Y, Y^{n-1})$ be the char map of an n-cell.
Then $f \circ \overline{\Phi}_{d} \in (E_{d}^{n}, S_{d}^{n-1}) \rightarrow (Y, Y^{n-1}) \subset (Y, Y^{n}),$

Since
$$\pi_n(Y, Y^n) = 0$$
 [previous Prop.], $f \circ \Phi_d$ is homotopic
 $(\operatorname{rel}, S_n^{n-1})$ to a map $(E_d^n, S_d^{n-1}) \to (Y^n, Y^{n-1})$. Doing
this for $\forall d$, we get: $f|_{X^n}$ is homotopic to a map $X^n \to Y^n$.
Since $X^n \hookrightarrow X$ is a cofibration, as above the homotopy extends
to X and is constant on X^{n-1} by construction.

Rem. In the above argument we used that X is a CW complex,
but for Y only that
$$\overline{\pi}_n(Y, Y^*) = 0$$
. So the same proof gives.

Prop. Let X be a CW complex,
$$f: X \rightarrow Y$$
 a continuous map, $T \subset Y$
is a subspace s.t. $\pi_i(Y,T) = 0$ Vi. Then f is housetopic
to a map $X \rightarrow T$. Moreover, if $X \subset X$ is a subcomplex
s.t. $f(\tilde{X}) \subset T$, we may choose housetopies constant on \tilde{X} .

Theorem (Whitehead) If f: X→Y is a coul. map of CW complexes
inducing isomorphisms
$$\pi_i(X, \star) \xrightarrow{\sim} \pi_i(Y, \star)$$
 ∀i, then f
is a homotopy equivalence.

Rem. This does not say that if
$$X, Y$$
 are CW complexes s.t.
 $\pi_i(X) \simeq \pi_i(Y)$ $\forall i$, then $X \sim hon Y ! [J counterexamples]$
with different H_i^{ϵ} . J But :

.

The long exact sequence of relative howevery

$$= \neg \pi_{i}(\chi, \kappa) \rightarrow \pi_{i}(Y, \chi) \rightarrow \pi_{i}(Y, \chi, \kappa) \rightarrow \pi_{i-\kappa}(\chi, \chi) \rightarrow \cdots$$
then implies $\pi_{i}(Y, \chi, \kappa) = 0$ bi, then Prog. before then gives:
idy is homotopic to a map $Y \rightarrow X$, with homotopics constant on X.
So X is a deformation retract of Y, and we are done.
The last big thm on homotopy of CW completes is:
Theorem (CW* Approximation Theorem) Let T be a CW complex, $k \ge -1$.
Assume given a peth-connected top, space Y and a continuap
 $f: T \rightarrow Y$ s.t. $\pi_{i}(T, \chi) \rightarrow \pi_{i}(Y, f(\kappa))$ is an isom. i
 $f: T \rightarrow Y$ s.t. $\pi_{i}(Y, T(\kappa))$ is an isom. i\pi_{i}(\chi, \chi) \rightarrow \pi_{i}(Y, T(\kappa)) is an isom. ii=\kappa.
Horeover, X is obtained by attacting cells of dim. \$k \le d \le n\$
 \$k = X\$.
Def. A continuous map of top spaces \$f: X \rightarrow Y\$ is a meak equivalence
if it induces isomorphisms \$\pi_{i}\(\chi, \chi\) \cong \pi_{i}\(Y, f\(\kappa\)\)\$ \$\forall i, \kappa\$.
 \$\text{for } A\$. If Y is an arbitrary path-cons. space \$\tau_{i} \equiv CW\$ complex X
and a map \$F: X \rightarrow Y\$ s.t. \$T\$ is a weak equivalence.
Proof. In the thm choose \$k = -A\$, \$T = point.\$
A map \$F\$ as in the constrary is called a CW replacement is
a functor \(path-cons. spaces \$f: W\$ replacement is
a functor \(path-cons. spaces \$f: W\$ replacement is
a functor \(path-cons. space \$\tau_{i} \equiv CW\$ complex X
and a map \$F: X \rightarrow Y\$ s.t. \$T\$ is a weak equivalence.
Horeover, \$Y \mapsto homotopy class of \(W neplacement is
a functor \(path-cons. spaces \$f: W\$ replacement is
a functor \(path-cons. spaces \$f: W\$ replacement, and let
 \$Y_{i} \stackrel{G}{\to} Y_{i}\$ be a continuous map. We show \$\Xi\$ cond. map
 \$\chi_{i} \stackrel{G}{\to} X_{i}\$ making \$\chi_{i} \stackrel{G}{\to} X_{i}\$ commute up to homotopy.
 \$I = \frac{1}{Y_{i}} \stackrel{G}{\to} Y_{i}\$\$

Setting $Y_1 = Y_2$ and g = id will imply the first statement by Whitehead's theorem.

By splecing
$$X_{L} \rightarrow Y_{L}$$
 by its supplies cylinder, we may assume
 $X_{L} \leftarrow Y_{L}$. Since $\pi_{i}(X_{L}) \ni \pi_{i}(Y_{L})$, (X_{2},Y_{3}) is Y-connected Wi-
But then By Prop. defore Whitelevel Three the composite
 $X_{L} \rightarrow Y_{L} \rightarrow Y_{L}$ is homotopic to a map $X_{L} \rightarrow X_{L}$, $q \in A$.
For functionality one needs is show uniqueness of f up b homotopy.
We omit the proof (proceeds by africanet of arguments above).
Proof of Them. We shall attack acts of dim $\supset L$ to T. This will
not change π_{i} for $i \in k$, because we may represent at b of $\pi_{i}(X)$
by actively maps $S_{i} \rightarrow X$ by actively approximation them \rightarrow their
maps lies in T. We proved by induction on $n = n = 0$ ok.
In = 11 If $\pi_{0}(T) + 0$, we can under T path-connected by allaching
 $l = cells connecting path-components. This alt $\pi_{i}(T_{i}, t_{0})$ are its maryflic
when to varies, So enorgh to able $A - cells to T to obtain X$
 $S \in I$ actuals to $X \rightarrow Y$ with $\pi_{i}(X_{i}, t_{0}) \rightarrow \pi_{i}(X_{i}, y_{0})$ [here to \overline{T} fact.]
Let $\{\gamma_{i}: d \in A\}$ is generations of $\pi_{i}(Y_{i}, y_{0})$. Given $d \in A$, attach
 $a = 1$ acts $E'_{i} = V$.
Nor $X_{i} \in E'_{i} \rightarrow Y$.
 $N = M_{i}$ By induction on n we may assume (of the aplacing $X \rightarrow T$).
 $\pi_{i}(T) \rightarrow \pi_{i}(Y)$ is an isom $i < < n-A$ and a subjection $i = n-A$.
We may assume $T \hookrightarrow Y$ [mapping cylinder]. Choose a system of
generators $(\overline{p}_{A}, q_{A}): (E^{n}, S^{-1}, s) \rightarrow (Y, T, t_{0})$ for $\overline{m}_{i}(Y, T, s)$.
As above, define $X = T \cup U \in X_{i}$, with $H \in X$ attached to T via (q_{i}, S^{-1}, s) .
 $\pi_{i}(T) \rightarrow \pi_{i}(X) \rightarrow \pi_{i}(X_{i}T) \rightarrow \pi_{n-i}(T) \rightarrow \pi_{n-i}(X) \rightarrow \overline{m_{n-i}(Y)}$
 $\int i M_{i}(T) \rightarrow \pi_{n}(Y) \rightarrow \pi_{n}(Y_{i}T) \rightarrow \pi_{n}(T) \rightarrow \pi_{n-i}(X) \rightarrow \overline{m_{n-i}(Y)}$
 $f_{i} = M_{i}(chine)$ by construction. Now a diagram chase gives
 $F: \pi_{i}(X) \rightarrow \pi_{n}(Y)$ subjective, and Here $F: \pi_{n-i}(X) \rightarrow \pi_{n-i}(Y)$
 $injective.$$

Here is what CW replacements may be good for.

Prop. If $f: X \to Y$ is a weak equivalence, it induces is one orphisms $H_i(X) \cong H_i(Y) \quad \forall i.$

Sketch of proof. We may again assume X imes Y using the mapping cylinder. $Yn \ge 0$ we define Eilenberg subcomplexes $S^{(n)}(Y, X) \in S(Y, X)$ as follows: Let $S^{(n,X)}_i(Y) \subset S_i(Y)$ be the subgroup generated by $\forall : \Delta^{i-n} Y$ that map all faces of dim $\le n$ of Δ^{i} to X. Then $S^{(n,X)}(Y) < S_i(Y)$. is a subcomplex, and so is $S^{(n)}(Y, X) := S^{(n,X)}(Y) | S_i(X) \longrightarrow S_i(Y, X)$. Fact: If (Y, X) is (n-1) - connected, then $S^{(n)}(Y, X) \longrightarrow S_i(Y, X)$. is a chain homoppy equivalence. [Proven by constructing an explicit chain homoppy. By assumption our (Y, X) is n-connected $\forall n \Rightarrow H_i(Y, X) \cong H_i(S^{(n)}(Y, X))$. $\forall i, n$. But by construction $S^{(n)}_i(Y, X) = 0$ $i \le n$. So $H_i(Y, X) = 0$ $\forall i$ \Rightarrow $H_i(X) \cong$ $H_i(Y)$ $\forall i_1$ by the long exact relative homology sequence. Application: In principle one can compute \forall $H_i(X)$ for X path-connected by taking a CW replacement $\tilde{X} \to X$ and computing $H_i(\tilde{X}) = H^{(W)}_i(\tilde{X})$.

While at this popic, let us mention without poof: <u>General Hurewicz theorem</u>: Let X be a path-connected space. There is a functionial homomorphism $\pi_n(X, x_0) \xrightarrow{h_n} H_n(X)$. If moreover X is $(n-\lambda)$ -connected, then h_n is an isomorphism, and $\widetilde{H}_i(X) = 0$ i < n.

The map is constructed like for
$$n = 1$$
: given $f: (S^n, x) \rightarrow (X, r_0)$,
 f induces $f_X: H_n(S^n) \rightarrow H_n(X_0)$. Now define $h_n(f) := f_X(\Lambda)$.
 Z

It depends only on the homotopy class of f. Of course, one oilso has to prove that her is a homomorphism. This was already nonobvious for m=1.

The Hopf invariant

This invariant with the new H.
$$\pi_{2n-4}$$
 (Sⁿ) $\rightarrow \mathbb{Z}$.
When $n = 2k$ is even, we'll prove it has neficite image \Rightarrow
for $n = 2k$ π_{2n-4} (Sⁿ) is infinite.
Theorem (Serre) For $n = 2k$ π_{2n-4} (Sⁿ) $\cong \mathbb{Z} \oplus$ finite coeffice group.
These groups and π_n (Sⁿ) $\cong \mathbb{Z}$ [norbitrary] are the only infinite
homotopy groups of spheres.
So at heast we'll have seen all the infinite π_i (Sⁿ) 's. We need.
Def. Let $f: X \rightarrow Y$ be a continuous map. The mapping cone C(f)
is obtained from the mapping cylinder $H(f)$ by contracting
 $X \times \{0\} \subset H(f)$ is a point.
Rem. Recall : $H(f) = X \times I \cup Y | f(x, 4) \sim f(x)$].
If we define the nonceduced one $\tilde{C}(X)$ by $\tilde{C}(X) := X \times I | X \times \{0\}$
then $C(f) = \tilde{C}(X) \cup Y | f(x, 4) \sim f(x)$. In particular,
 $\tilde{C}(S^n) \cong E^{n+1} \Rightarrow$ if $f: S^n \rightarrow Y$ and Y is a CW complex,
 $\tilde{C}(S^n) \cong E^{n+1} \Rightarrow$ if $f: S^n \rightarrow Y$ and Y is a CW complex,
 $\tilde{C}(S^n) \cong E^{n+1} \Rightarrow H^n(C(f) = Y \text{ with an } (n+1)$ -cell allached via f .
Prop. The maps $f: X \rightarrow Y$, $g: Y \rightarrow C(f)$ induce a long exact sequence
 $H^o(Y, A) \rightarrow H^o(X, A) \rightarrow H^1(C(Cf), A) \stackrel{i}{\Rightarrow} H^i(Y, A) \stackrel{i}{\Rightarrow} H^i(X, A) \rightarrow \dots$
 $\dots \rightarrow H^{int}(X, A) \rightarrow H^i(C(Cf), A) \stackrel{i}{\Rightarrow} H^i(Y, X) \stackrel{i}{\Rightarrow} H^i(X, A) \rightarrow \dots$
Homotopic maps $f_{i}, f_{i}: X \rightarrow Y$ induce bounderplic exact
 $kequences.$
Here. In case $f: X \rightarrow Y$ we get by comparing with the relative
cohomology sequence "that $H^i(C(Cf), A) \stackrel{i}{\Rightarrow} H^i(Y, X)$.
Freef Recall: $X \stackrel{i}{\Rightarrow} X \times \{0\} \stackrel{i}{\Rightarrow} H(f) \stackrel{i}{\Rightarrow} Y$ homotopy equiv.
The long exact sequence of rule, cohomology for $X \subset H(f)$ gives
 $\dots \rightarrow H^{int}(X, A) \rightarrow H^i(H(f), X; A) \rightarrow H^i(H(f), A) \rightarrow H^i(X, K)$
 $H^i(Y, A) = f^i$

(4) Or by following the prost

Scanned with CamScanner

We show the natural map
$$p: H(f) \rightarrow C(f)$$
 collapsing $X \times \{o\} \rightarrow P$
induces $H^{i}(H(f), X; A \rightleftharpoons H^{i}(C(f), P; A) [\cong H^{i}(C(f), A) i > 0].$
Let $\overline{X} := X \times [0, 1/2] \subset H(f)$, $\overline{P} := p(\overline{X}) \subset C(f)$.
 p induces an isomorphism of pairs $(H(f) \setminus X, \overline{X} \setminus X) \xrightarrow{\sim} (C(f) \setminus \{P\}, \overline{P} \setminus \{P\})$
We have a commutative diagram $(forgetting the well's A)$
 $H^{i}(H(f), X) \stackrel{\sim}{=} H^{i}(H(f), \overline{X}) \xrightarrow{\sim} H^{i}(H(f) \setminus X, \overline{X} \setminus X)$
 $p \stackrel{\times}{=} of \overline{X}$ $1p^{*}$ excision $= 1p^{*}$
 $H^{i}(C(f), P) \stackrel{\sim}{=} H^{i}(C(f), \overline{P}) \xrightarrow{\sim} H^{i}(C(f) \setminus \{P\}, \overline{P} \setminus \{P\})$
 $P = def \cdot net \cdots ef \overline{P}$

whence the claim. If f_0 , f_1 homotopic via $h: X \times I \rightarrow Y$ $X \mapsto (X,0)$ $(X,\Lambda) \leftrightarrow X$ $X \longrightarrow X \times I \longleftarrow X$ $\int f_0 \qquad \int h \qquad \int f_1$ $Y \stackrel{id}{\longrightarrow} Y \stackrel{id}{\longleftarrow} Y$

induces the isomorphism of exact sequences as the upper maps are homotopy equivalences.

Construction Fix generators
$$x \in H^{2n-1}(S^{2n-1}, \mathbb{Z}), y \in H^{n}(S^{n}, \mathbb{Z}).$$

Given $f: S^{2n-1} \rightarrow S^{n}, the above ch. sequence gives
 $\longrightarrow H^{2n-1}(S^{n}, \mathbb{Z}) \rightarrow H^{2n-1}(S^{2n-1}, \mathbb{Z}) \rightarrow H^{2n}(C(\mathbb{P}), \mathbb{Z}) \rightarrow H^{2n}(S^{n}, \mathbb{Z})$
 $\dots \rightarrow H^{n-1}(S^{2n+1}, \mathbb{Z}) \rightarrow H^{n}(C(\mathbb{P}), \mathbb{Z}) \rightarrow H^{n}(S^{2n-1}, \mathbb{Z})$
Since $H^{1}(S^{2n-1}, \mathbb{Z}) \rightarrow H^{n}(C(\mathbb{P}), \mathbb{Z}) \rightarrow H^{n}(S^{2n-1}, \mathbb{Z})$
Since $H^{1}(S^{2n-1}, \mathbb{Z}) \rightarrow H^{2n}(C(\mathbb{P}), \mathbb{Z})$
 $H^{n}(C(\mathbb{P}), \mathbb{Z}) \xrightarrow{\mathbb{Z}} H^{2n}(C(\mathbb{P}), \mathbb{Z})$
 $H^{n}(C(\mathbb{P}), \mathbb{Z}) \xrightarrow{\mathbb{Z}} H^{2n}(C(\mathbb{P}), \mathbb{Z})$
 $H^{n}(C(\mathbb{P}), \mathbb{Z}) \xrightarrow{\mathbb{Z}} H^{n}(S^{n}, \mathbb{Z}) \rightarrow \mathbb{Z}$
So $\Im(x), j^{*-1}(y)$ are both generators of $H^{2n}(C(\mathbb{P}), \mathbb{Z})$
 $H^{n}(C(\mathbb{P}), \mathbb{Z})$
 $H^{n}(C(\mathbb{P}), \mathbb{Z})$
 $1 + (\mathbb{P}) \in \mathbb{Z}:$
 $j^{*-1}(y) \circ j^{*-1}(y) = H(\mathbb{P}) \cdot \Im(x).$
This $H(\mathbb{P})$ is the Hopf invariant of (the homology
 $C(ass of) f.$
 $(uses 2^{nn} statement of previous Prop)$$

ken A) If f: Sⁿ → Sⁿ two deque m. H(g of) = m² H(f)
If f: Sⁿ⁻¹ → Sⁿ⁻¹ two deque m. H(fog) = m. H(f)
2) If m is old, H(f) = 0 by entromoutationly of cup - product.
Prop. If m is even,
$$\exists f: S^{2n-1} \rightarrow S^n$$
 such that $H(f) = \pm 2$.
Cor. $\pi_{2n-1}(S^n)$ is cufter for neven [use Remark A]]
ken. a) Already the case h=2 is nontrivial (this was the first cast done
b) H can be shown: $H: \pi_{2n-1}(S^n) \rightarrow \mathbb{Z}$ is by Hopf?)
n homomorphism.
Proof of from We have seen:
Sⁿ v Sⁿ := (Sⁿ × v) v(#xSⁿ) ⊂ Sⁿ x Sⁿ is the (2n-1) - skell ton of
Sⁿ x Sⁿ (for the CW structure cowing from $v \cup S^n - S^n$)
So Sⁿ x Sⁿ = Sⁿ V Sⁿ + a 2n-cut attacked via an adheding unp
g: S²ⁿ⁻¹ → Sⁿ Sⁿ Let
 $k: S^n V S^n - S^n$ diffued by $k(x, v) = k(x, x) = x \forall x \in S^n$
Set $[f(x) = k \circ g]$. This defines a class $[f(x) = \pi_{2n-1}(S^n)$.
We have seen: $C(g) = S^n V S^n + 2n-cut attacked via $g = S^n S^n$.
By previous HW, $\{1 \otimes y, \otimes 1\}$ is a basis of $H^n(S^n x S^n, 2) = \pi Z$.
We have a commutative diagram for the induced wap $\tilde{k}: C(g) \rightarrow C(g)$
 $H^n(C^n VS^n, Z) = \frac{1}{2m} H^n(C(f), Z)$]
 $\tilde{k}^n f^n(g) = \frac{1}{2m} \frac{1}{2m$$

On the other hand, we have somerphisms

$$H^{2n}(C(f), Z) \stackrel{\Im}{\simeq} H^{2n-1}(S^{2n-1}, Z) \stackrel{\Im}{\rightarrow} H^{2n}(C(g), Z)$$
One can check: $\Im_{g} \circ \Im_{f}^{1} = \widetilde{h}^{\times}$.
Since x is a generator of $H^{2n-1}(S^{2n-1}, Z) \stackrel{*}{\rightarrow} H^{2n}(C(g), Z) \simeq Z$
 $\Im_{g}(x) = [\pm \Im_{g}^{\times -1}(y) \otimes \Im_{g}^{\times + -1}(y)],$
 $h^{\chi} \Im_{f}(x)$

Now compare the two formulas above.

10.1