Proof of Prop. We prove $\widetilde{H}_i(S^n \setminus Y) = 0$ $\forall i$ for $Y \simeq \widetilde{I}^m \lfloor 1 \rceil$ by induction on m. M = 0: $S^{n} | Y = S^{n} | \{pt\} \cong IR^{n}$ which is contractible m >0: Write Y = Y1 UY2 [2 closed half-cubes] YA YAY $\chi^{\dagger} \cup \chi^{5} = \mathbb{I}_{m-t}$ Mayer-Vieton's for $S^n \setminus (Y_{4n}Y_{2}) = (S^n \setminus Y_{4}) \cup (S^n \setminus Y_{2})$: $H_{i+1}(S^{n}\setminus(Y_{i}\cap Y_{2})) \to H_{i}(S^{n}\setminus Y) \to H_{i}^{*}(S^{n}\setminus Y_{1}) \oplus H_{i}(S^{n}\setminus Y_{2})$ 0 [induction] So $H_1(S^n \setminus Y) \hookrightarrow H_1(S^n \setminus Y_1) \oplus H_1(S^n \setminus Y_2).$ This also gives $\widetilde{H}_{o}(S^{n} \setminus Y) \hookrightarrow \widetilde{H}_{o}(S^{n} \setminus Y_{2}) \oplus \widetilde{H}_{o}(S^{n} \setminus Y_{2})$ [write Ho(SiX) = Ker [Ho(S"1Y) -> Ho(P)] for PEYINY2.] Assume Hi(Sn VY) contains some d = 0. Then the image of d is to in $\widetilde{H}_i(S^n(Y_L) \text{ or } \widetilde{H}_i(S^n(Y_2)$ Set Y' = Y2 or Y2 (where d =0) and repeat the process by cutting Y' in two. Get a chain of compact subsets Y > Y' > Y² > ... A Y' = { point } s.t. the image of d in H: (S" \Y') what is to Yj. But H: (S" \ {point})=0! We derive a contradiction by a "compactness argument", d is represented by a Z-lin. combination of maps Ai -> S" \Y. As Ai is compact, BCCS" \Y s.t. & is in the image of Hi(C) -> Hi(S" \Y). Similarly, Since Hi(S" \S.LT) a X >> X since Hi (SN \ {pt] = 0, we find CDC compact, pt & C: à maps to 0 in H: (C'). Since C' compact, 3j: C'CSMXYJ. Now \widetilde{a} $H_{i}(\widetilde{C}) \rightarrow H_{i}(S^{*}(Y)) a$ $\begin{array}{ccccc}
I & & & I \\
\circ & \widetilde{H}_{i}(c^{\prime}) \rightarrow \widetilde{H}_{i}(s^{n} \setminus Y^{\delta}) \neq 0
\end{array}$ 5

Gr (Invariance of domain). Let U C IR^m be open.
Then any nijective continuous maps fill as IR^m is open.
P1. Assume the U, and let
$$B_{c} = \{x \in R^{n} | X - x_{0} | x \in S \}$$

be a be a closed built acoust x_{0} with $B_{c} \in U$.
Get $S_{c} := boundary of B_{c} . We claim: $f(B_{c} \setminus S_{c})$ is
an open whiphbourbood of $f(x_{0})$ in $f(U)$.
 $R^{n} \setminus f(S_{c}) = R^{n} \setminus f(B_{c})$ is $f(B_{c} \setminus S_{c})$
both one connected $[R^{n} \setminus f(B_{c}) = M^{n} \cap f(B_{c}) = M^{n} \cap f(B_{c})$
is a component \rightarrow it is open.
Gr (Invariance of elimension) If U C IR^m open, $M \leq M$
 \Rightarrow trijective continues unop U $\stackrel{n}{\rightarrow}$ IR^{n-m}
 $P1$. Define an injective continues unop U $\stackrel{n}{\rightarrow}$ IR^{n-m}
 $M (g)$ not open \overline{f} .
In particular, open subsche U C IR^m, V C IR^m connot be
homeomorphic for $m \neq n$.
We now prepare for the proof of the sealt proplices them.
Gustuction. The bary center of the usual nimplex Δ_{c}
 $f(x_{1},...,x_{1})$.
The bary center of ken usual nimplex Δ_{c}
 $f(x_{1},...,x_{1})$.
The bary center of ken usual nimplex Δ_{c}
 $f(x_{1},...,x_{1})$.
The bary center of ken usual nimplex Δ_{c}
 $f(x_{1},...,x_{1})$.
The bary center of ken usual nimplex Δ_{c}
 $f(x_{1},...,x_{1})$.
The bary center of ken usual nimplex Δ_{c}
 $f(x_{1},...,x_{1})$.
The bary center of ken usual nimplex Δ_{c}
 $f(x_{1},...,x_{1})$.
The bary center of ken usual nimplex Δ_{c}
 $f(x_{1},...,x_{1})$.
The bary center of keny center of konyc. Subdiv.
 $f(x_{1},...,x_{1})$.
The bary center of konyc. Subdiv.
 $f(x_{1},...,x_{1})$.$

Def. Let
$$T \in X$$
 be a subspace. Set [1]
S. $(X, T) := \operatorname{color} (S. (T) := S. (X))$
 $H_i(X, T) := H_i(S. (X, T)) - H_i relative locus (M)$
 $(Y, T) = H_i(S, (X, T)) - H_i(X) - H_i(X, T) - \dots$
 $(X, T) = H_i(X, T) = H_i(T) - H_i(X) - H_i(X, T) - \dots$
 $(X, T) = H_{in}(X, T) - (X', T') = u maps of pairs
 $i \cdot u = H_{in}(X, T) - (X', T') = u maps of pairs
 $i \cdot u = H_{in}(X, T) - (X', T') = u maps of pairs
 $i \cdot u = H_{in}(X, T) - (X', T') = u maps of pairs
 $i \cdot u = H_{in}(X, T) - (X', T') = u maps of pairs
 $i \cdot u = H_{in}(X, T) - (X', T') = u maps of pairs
 $i \cdot u = H_{in}(X, T) - (X', T') = u maps of pairs
 $i \cdot u = H_{in}(X, T) - H_i(X, T) - H_i(X, T) = H_i(X, T)$
 $u = H_{in}(u = u = h_{in}) = H_i(X, T) = H_i(X, T)$
 $u = H_{in}(u = u = h_{in}) = H_i(X, T) = H_i(X, T)$
 $u = H_{in}(u = u = h_{in}) = U = H_i(X, T_h) + U$.
 $H_i(X_h \setminus T_h) = G_i(T_h) + G_i(X \setminus T_h) + U$.
 $H_i(X_h \setminus T_h) = G_i(T_h) + G_i(X \setminus T_h) + U$.
 $H_i(X_h \setminus T_h) = G_i(T_h) + G_i(X \setminus T_h)$
 $So = G_i(X \setminus T_h) = G_i(T_h) + G_i(X \setminus T_h)$
 $H_i(u = h_{in}) = H_i(U + H_h) = H_i(X, T_h)$
 $H_i(u = h_h) = H_i(u = h_h) = H_i(U + h_h) = H_i(X, T_h)$
 $H_i(X_h \setminus T_h) = G_i(T_h) + G_i(X \setminus T_h) + U$.
 $H_i(X_h \setminus T_h) = G_i(T_h) + G_i(X \setminus T_h)$
 $H_i(U = U = U = h_h) = U = U = H_h$.
 $H_i(U = U = U = H_h) = U = U = H_h$.
 $H_i(U = U = U = H_h) = U = U = H_h$.
 $H_i(U = U = U = U = H_h) = U = U = H_h$.
 $H_i(X_h \setminus X_h) = H_h$.
 $H_i(U = H_h) = U = U = U = H_h$.
 $H_i(U = U = U = H_h) = U = U = H_h$.
 $H_i(X_h \setminus X_h) = H_h$.
 $H_i(X_h \setminus X_h) = H_h$.
 $H_i(X_h \setminus X_h) = H_h$.
 $H_i(U = H_h) = U = U = H_h$.
 $H_i(U = H_h) = U = U = H_h$.
 $H_i(U = H_h) = U = U = H_h$.
 $H_i(U = H_h) = U = U = H_h$.
 $H_i(U = H_h) = U = U = H_h$.
 $H_i(U = H_h) = H_h$.
 $H_i(U = H_h$$$$$$$$

Leader Here,
$$M_{1} = Q_{1} = Q_{1}$$

Which $\Theta e_{g} := cl(e_{j}) | e_{j} = \{x, y\}$. The rel. low $Sq_{1} = Sq_{1} = Q_{1} = (e_{j}) | e_{j} = \{x, y\}$. The rel. low $Sq_{1} = Sq_{1} = Sq_{1}$

Proof. Let
$$a_{ij} \in e_{j}$$
 be the midpoint
 $d_{j} \in e_{j}$ the subject concorpositing to $[\frac{1}{3}, \frac{2}{3}]$
 $A = \{a_{ij}, a_{ij}\} D = \bigcup d_{ij}$. Counider
 $H_{ij}(D, D \land A) \xrightarrow{e_{ij}} H_{ij}(X, X \land A) \xleftarrow{e_{ij}} H_{ij}(X_{ij} X^{\circ})$
 f
 $H_{ij}(d_{j}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{5}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{5}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{1}{6}, \frac{1}{5}, \frac{1}{6})$
 $B_{ij}(d_{ij}, \frac{1}{6}, \frac{1}{5}, \frac{1}{6}, \frac{1}{5}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{1}{6}, \frac{1}{5}, \frac{1}{6}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{1}{6}, \frac{1}{5}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{1}{6}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}) \xleftarrow{e_{ij}} H_{ij}(\frac{1}{6}, \frac{$

$$0 \rightarrow H^{1}(X) \rightarrow H^{1}(X, X_{o}) \rightarrow H^{0}(X_{o}) \rightarrow H^{0}(X) \rightarrow 0$$

Here
$$H_0(X^0) \cong 7L^{-1}$$
 $v = #$ vertices L^{19}
 $H_0(X) \cong 7L^{-1}$ $c = #$ of components of X.

Prop. If X is a fruite graph, set
$$\chi(X) := \# \operatorname{Vertics} - \# \operatorname{edgs}$$

Then $H_i(X) = 0$ $i > 1$, and
 $H_0(X)$, $H_k(X)$ are free abelian groups, with
 $H_0(X) = \varphi - \chi(X)$. $[= \Im rk H_k(X) = \varphi - \chi(X)]$

The boundary ∂E becomes 2 circles meeting at a point: $\chi^{i}=f(\partial E) = A \vee B$

Lewmand The map
$$(E_1 \ \partial E) \rightarrow (X, X^{\pm})$$
 midnus idom.
H; $(E_1, \partial E) \xrightarrow{\sim} H; (X, X^{\pm}) \qquad \forall i$
H; $(E_1, \partial E) \xrightarrow{\sim} H; (X, X^{\pm}) \qquad \forall i$

Proof. Let D c int(E) be an open disk with center
$$t$$
.
Gunder
H; (E, DE) \hookrightarrow H; (E, E\{x3}) $\stackrel{\sim}{\leftarrow}$ H; (D, D \{x3})
H; (E, DE) \hookrightarrow H; (E, E\{x3}) $\stackrel{\sim}{\leftarrow}$ H; (D, D \{x3})
 f_b houses. \int $\stackrel{\sim}{\downarrow}$
 \downarrow

$$H_{i}(X, X^{k}) \xrightarrow{c} H_{i}(X, X \setminus \{(x\})) \stackrel{e}{\leftarrow} H_{i}(\{(0)\}, \{(0)\}) \stackrel{f}{\leftarrow} H_{i}((x)))$$

$$X^{i} \stackrel{h}{\to} \frac{1}{X \setminus \{(x)\}} \stackrel{k \in Cition}{\longrightarrow}$$

$$K \stackrel{i}{\to} \frac{1}{X \setminus \{(x)\}}$$

 $H_{i}(X_{i}, X^{\perp}) = \begin{cases} 7k & i=2 \\ 0 & i\neq 2 \end{cases}$

$$\begin{array}{c} \text{Pf.} \quad \text{We compute } H_{k}(E_{1} \ni E) \cong H_{i}(E_{i}^{2}, S^{L}) & \text{Homod}_{i-1}(S^{L}) \to H_{i-1}(E_{i}) \\ & \cong \begin{pmatrix} 0 & i \neq 2 \\ 0 &$$

Prop. The homology goups of the pris are

$$7L$$
 $n=0$
 $H_{i}(X) = \begin{cases} Z \oplus Z & n=1 \\ ZL & n=2 \\ 0 & n \ge 2 \end{cases}$

$$(* \times)$$
 If $\partial \hat{e}_{0} = \{a\}, \quad \hat{e}_{0} \simeq S^{L}, \quad and \quad we are choosing the generator 1 or -1 of $H_{+}(S^{L}, S^{L}) \simeq H_{L}(S^{L}) \simeq Z.$$

Prop. follows.
Generalization (without proof) i 11 Xg is a tows with

$$H_i(Xg) = \begin{cases} Z := 0 & g holes, \\ Z^{2g} := 1 \\ Z := 2 \\ 0 := 2 \end{cases}$$
[Method similar.]

CW complexes
Construction. 1) Start with a discute ket X° ("0-alls")
2) Define the n-skeleton X^m inductively:
Assume given all index ket A and cont.
maps
$$\varphi_{x}$$
: Sⁿ⁻¹ → Xⁿ⁻⁴ $\forall \forall \forall \in \Lambda$. Set
 $\chi^{n} := \chi^{n-1} \cup \bigcup E_{x}^{n} / N$ when
 $E_{x}^{n} := \cosh d m - ball k$
 $\chi \sim \varphi_{x}(\chi) \quad \forall \chi \in \Im E_{x}^{n} (\cong S^{n-4})$
3) Stop at some n_{i} or $\delta ef = \chi = \bigcup \chi^{n}$.
For $n = \infty$ define the weak topology for
culiant top. J on χ by
 $U \subset \chi$ open as $U \cap \chi^{n}$ open $\forall n < \omega$

Def. A space could which in this way is called a [22
CW complex. If
$$\exists n: X = X^n$$
, X is finite dim.
Rem. A) As a set, $X^n = X^{n-1} \cup \bigcup e_{X}^{n}$ [$e_{X}^{n}: Open$
The e_{X}^{n} 's are called n-celles, φ_{R} the adaching map.
There are also characteristic maps $\overline{\Phi}_{X}^{n}: E_{X}^{n} \to X^{n}CX$
defined by $E_{X}^{n} \to X^{n+1} \cup \bigcup E_{X}^{n} \to X^{n}CX$
defined by $E_{X}^{n} \to X^{n+1} \cup \bigcup E_{X}^{n} \to X^{n}CX$
and by $E_{X}^{n} \to X^{n+1} \cup \bigcup E_{X}^{n} \to X^{n}CX$
defined by $E_{X}^{n} \to X^{n+1} \cup \bigcup E_{X}^{n} \to X^{n}CX$
defined by $E_{X}^{n} \to X^{n+1} \cup \bigcup E_{X}^{n} \to X^{n}CX$
defined by $E_{X}^{n} \to X^{n+1} \cup \bigcup E_{X}^{n} \to X^{n}CX$
defined by $E_{X}^{n} \to X^{n+1} \cup \bigcup E_{X}^{n} \to X^{n}CX$
defined by $E_{X}^{n} \to X^{n+1} \cup \bigcup E_{X}^{n} \to X^{n}CX$
 $for all sin second for a low $E_{X}^{n} \to X^{n}CX$
 $for all sin second for a low $E_{X}^{n} \to X^{n}CX$
 $for all sin second for a low $E_{X}^{n} \to X^{n}CX$
 $for all sin a CW complex vary calls meeting $d(e_{X}^{n})$
 $for all sin a CW complex $for all X \to for X^{n+1}$
 $for all sin a CW complex $for all X^{n} \to for X^{n+1}$
 $for all sin a CW complex $for all X^{n}$
 $for all sin a CW complex $for all X^{n}$
 $for all sin a CW complex $for all X^{n}$
 $for all sin a CW complex $for all X^{n}$
 $for all sin a CW complex $for all X^{n}$
 $for all sin a CW complex $for all X^{n}$
 $for all sin all $for all X^{n} = for X^{n}$
 $for all sin all for all $for all X^{n}$
 $for all sin a CW complex $for all X^{n}$
 $for all sin a CW complex $for all X^{n}$
 $for all sin all for all $for A^{n} = for X^{n}$
 $for all sin all for all $for A^{n} = for X^{n}$
 $for all sin all for all $for A^{n} = for X^{n}$
 $for all $for A^{n} = for X^{n} for A^{n} = for X^{n}$
 $for all $for A^{n} = for X^{n} for A^{n} = for X^{n}$
 $for all $for A^{n} = for X^{n} for A^{n} = for X^{n}$
 $for all $for A^{n} = for X^{n} for A^{n} = for X^{n}$$$$$$$$$$$$$$$$$$$$$$$$

Let
$$E_{+}^{n} \subset S^{n} = closed upper housinglete. Then L_{+}^{n}
 $R_{+}^{n} = E_{+}^{n} / \langle v \sim -v : v \in \underbrace{9E_{+}^{n}} \rangle_{S^{n-1}}^{S^{n-1}}$.
So $R_{+}^{n} = a \text{ Baching } A n-cell e^{n} S^{n-1}$. By induction,
 R_{+}^{n} is a CW complex with A m-cell $\forall O \leq n \leq n$.
(a) $CR^{n} = C^{n+1} / n$ ($av_{n-1} av_{n}$) $(bv_{n-1} \leq u) \subset M \leq N(D)$:
 $Q_{+}^{n} = C^{n+1} / n$ ($av_{n-1} av_{n}$) $(bv_{n-1} \leq u) \subset M \leq N(D)$:
We have $S^{2n+1} = C^{n+1}$ and
 $CR^{n} = S^{2n+1} / Cv \sim 2v : 121=42$
Define $D_{+}^{2n} := \{(w, \sqrt{1-1wn}^{2}) \in C^{n} \times C\}$
where $\|w\|^{2} = 21a_{+}^{11}$ for $w = (a_{+-1} \times n)$
Then $D_{+}^{2n} \simeq E^{2n}$ and $9B_{+}^{2n} \in (w_{+}0)$: $hwh=43 \simeq S^{2n-4}$
 $\forall x \in S^{2n+1} = \exists y \in D_{+}^{2n}$: $x \sim y$; and y is unique
 $nf = d \leq S^{n-1}$; on, we nestrict $N \Rightarrow S^{2n-4}$. So:
 $CR^{n} = D_{+}^{2n} / \langle \nabla \wedge \Im v : \nabla e S^{2n-4} \rangle = CR^{n-4} + e_{+}^{2n}$ attacked
 $via C^{2n-4} \rightarrow CR^{n-4}$.
By induction, CR^{n} is a CW complex with $A = 2m - cell M_{+}$,
 $o \leq 2m \leq 2n$.
 $H_{i}^{n} (X_{+}^{n} X^{n-4}) = \begin{cases} Z \langle A \rangle = i = n$
 $H_{i}^{n} (X_{+}^{n} X^{n-4}) = \begin{cases} Z \langle A \rangle = i = n$
 $K_{+}^{n} (x \in A)$
 X_{+}^{n}
 $Vae A = Attaching m-cells to X^{n-1} induced by A .
 $Y^{n} = \frac{V}{n} (x \in D_{+}^{n})$ for a closed ball
 $D_{+}^{n} = \bigcup A_{+}^{n} (x (D_{+}^{n}))$ for a closed ball
 $D_{+}^{n} = \bigcup A_{+}^{n} (O_{+}^{n})$
 $A = \{a_{+} : x \in A\}$$$$

H:
$$(D^{n}, D^{n} \setminus A) \stackrel{\text{accson}}{\Rightarrow} H: (X^{n}, X^{n} \setminus A) \stackrel{\text{def}}{\Rightarrow} H: (X^{n}, X^{n} \setminus A) \stackrel{\text{def}}{\Rightarrow} H: (X^{n}, X^{n-1}) \stackrel{\text{lef}}{\Rightarrow} A^{\frac{n}{2}}, A^{\frac{$$

If We know:
$$H_{i}(X^{i+1}) \cong H_{i}(X^{i+2}) \cong \dots$$

If div $X \ge v_{i}$, $\exists w_{i}: X^{n} = X$ and we are done.
One are compacted acymmets: every $x \in H_{i}(X)$ torus
from some $H_{i}(C)$, $C \subseteq x$ compact. But C much
furthely many cells $\Rightarrow d$ comes from $H(X^{n})$ by some $n \ge i$
as $C \subseteq X^{n} n \ge 0$. Similarly, $i = f \in H_{i}(X^{n})$, $\beta \to 0$
in $H_{i}(X) \Rightarrow \exists C \subseteq C^{i}$ compact β cours from $H(C)$
and maps to D in $H_{i}(C^{i})$. But $C^{i} \subseteq X^{n}$ for some
 $m \ge n \Rightarrow \frac{1}{2}$ maps to D in $H_{i}(X^{n}) \cong H_{i}(X^{n}) \Rightarrow \frac{1}{2} = 0$.
Construction: Set $C_{i}^{Cw}(X) := H_{i}(X^{i}, X^{i-1})$
Lemma: $(C_{i}^{Cw}(X), d^{Cw}) \Rightarrow H_{i-x}(X^{i}) \xrightarrow{\exists_{i-x}} H_{i-x}(X^{i-1})^{i-2}$
 $H_{i-x}(X^{i-1}) \Rightarrow H_{i-x}(X^{i-x}) \xrightarrow{\exists_{i-x}} H_{i-x}(X^{i-2})$
 $i = 0$.
Consider the comparise
 $H_{i-x}(X^{i-1}) \Rightarrow H_{i-x}(X^{i-1}) \xrightarrow{d_{i-x}} H_{i-x}(X^{i-2})$
 $i = 0$.
Consider the comparise
 $H_{i-x}(X^{i-1}) \Rightarrow H_{i-x}(X^{i-x}) \xrightarrow{d_{i-x}} H_{i-x}(X^{i-2})$
 $i = 0$.
Consider the comm. exact diagram $H_{i}(X^{i+x}) \xrightarrow{d_{i-x}} H_{i-x}(X^{i-2})$
 $i = 0$.
Consider the comm. exact diagram $H_{i}(X^{i+x}) \xrightarrow{d_{i-x}} H_{i-x}(X^{i-x})$
 $H_{i-x}(X^{i-1}) \xrightarrow{d_{i-x}} H_{i-x}(X^{i-1}) \xrightarrow{d_{i-x}} H_{i-x}(X^{i-1})$
 $H_{i-x}(X^{i-1}) \xrightarrow{d_{i-x}} H_{i-x}(X^{i-1})$

by
$$k_{i}(2) = k_{i}(A_{i}^{(w)})$$

and $H_{i}(k)(X^{(w)}, X^{(s)}) \xrightarrow{2-i} H_{i}(X^{(s)}) \rightarrow H_{i}(X)$ is the two map.
So 3 will defined map
 $H_{i}^{(w)}(X) := k_{i}(d_{i}^{(w)})/im(d_{i}^{(w)}) \rightarrow H_{i}(X)$.
Theorem. $H_{i}^{(w)}(X) \rightarrow H_{i}(X)$ as an Gomorphim.
Theorem. $H_{i}^{(w)}(X) \rightarrow H_{i}(X)$ as an Gomorphim.
Theorem. $H_{i}^{(w)}(X) \rightarrow H_{i}(X) \rightarrow H_{i}(X^{(h)}) \Rightarrow H_{i}(X^{(h)}, X) = C$
Theorem. $H_{i}^{(w)}(X) \rightarrow H_{i}(X) \rightarrow H_{i}(X^{(h)}) \Rightarrow H_{i}(X^{(h)}, X) = C$
Theorem. $H_{i}^{(w)}(X) \rightarrow H_{i}(X^{(h)}) \Rightarrow im(\partial_{i})$.
Theorem. $H_{i}(X) \rightarrow H_{i}(X^{(h)}) \Rightarrow H_{i}(X^{(h)}) \Rightarrow im(\partial_{i})$.
Example. For $X = CP^{n}$ $C_{i}^{(w)}(X)$ as
 $G = H_{i}(CP^{w}) = \begin{cases} 7L & i \geq 2m \\ 0 & ew. \end{cases}$
 $H_{i}(CP^{w}) = \begin{cases} 7L & i \geq 2m \\ 0 & ew. \end{cases}$
 $H_{i}(CP^{w}) = \begin{cases} 7L & i \geq 2m \\ 0 & ew. \end{cases}$
 $H_{i}(CP^{w}) = \begin{cases} 7L & i \geq 2m \\ 0 & ew. \end{cases}$
 $H_{i}(CP^{w}) = \begin{cases} 7L & i \geq 2m \\ 0 & ew. \end{cases}$
 $H_{i}(CP^{w}) = \begin{cases} 7L & i \geq 2m \\ 0 & ew. \end{cases}$
 $H_{i}(CP^{w}) = \begin{cases} 7L & i \geq 2m \\ 0 & ew. \end{cases}$
 $H_{i}(CP^{w}) = \begin{cases} 7L & i \geq 2m \\ 0 & ew. \end{cases}$
 $H_{i}(X) \approx H_{0}(X) \approx T$.
 $H_{i}(CP^{w}) = \begin{cases} 7L & i \geq 2m \\ 0 & ew. \end{cases}$
 $H_{i}(X) \approx H_{0}(X) \approx T$.
 $H_{i}(X) \approx H_{0}(X) \approx T$.
 $H_{i}(X^{(h)}) \approx H_{i}(X^{(h)}) \approx T$.
 $H_{i}(X^{(h)}) \approx H_{i}(X^{(h)}) \approx T$.
 $H_{i}(X^{(h)}) \approx H_{i}(X^{(h)}) \approx H_{i}$

Next god: Compute Hi (RPⁿ). [27
We use the CW decomposition RPⁿ e^ov e^tv...veⁿ

$$M \subset_{v}^{CW}(RPn) = 7L \rightarrow 7L \rightarrow ... \rightarrow 7L$$
 [length will
So we have to compute the maps $7L \rightarrow 7L$.
V how morphism $q: 2 \rightarrow 7L$ as mult. by some me7Z
Set Miss deg (q).
Lemma. Let $g: S^{n} \rightarrow S^{n}$ be a reflection w. n. to
a hyperplane through the origin. Then
deg (g_{v}) = -1, where $S_{*}: H_{N}(S^{n}) \rightarrow H_{N}(S^{n})$
Pf. Induction on n. Counder $n=1: H_{L}(S_{1}) = 7L$
using generator an ensure of loop where is such by
 $g = 1:$ be used they are - Victoris to compute $H_{N}(S^{n}) = M_{L}(S^{n}) = 7L$
 $H_{N}(S^{n}) \rightarrow H_{n-k}(S^{n-1})$
 $H_{N}(S^{n}) \rightarrow H_{n-k}(S^{n-1})$
 $H_{N}(S^{n}) \rightarrow H_{n-k}(S^{n-1})$
 $So deg $(S_{*}^{n}) = deg (9^{M_{N}^{n+k}} 9^{-k}) = deg (3) deg (S_{*}^{n+k}) deg (3)$
 $g = \frac{1}{2} (g^{n+k}) = -4$ by induction.
Cor. Let $d: S^{n} \rightarrow S^{n}$ be the autipodal wap. Then
 $d_{*}: H_{N}(S^{n}) \rightarrow H_{N}(S^{n})$ has degree $(-1)^{n+1}$
Pf. d is the composite of test ceflections.
[$S^{n} \subset R^{n+k}$, $S_{1}: (K_{01-n}K_{0}) \mapsto (K_{01-n}^{-K_{1}}K_{011-n}K_{0})$]
Gunder now the CW decomposition of S^{n} with 2 ni-cells
 $E_{*1}^{i} = \frac{1}{2} = 7Z de Z^{n}$. $A = Z de Z$ [lempth nif]$

Nic now compute the
$$d_{i}^{CW}$$
 in this complex.
Lecall: H: $(S^{ij}, S^{i-1}) \approx H: (E^{i}, S^{i+1}) \oplus H: (E^{i}, S^{i+1}) \circ Z\theta Z$
The antipodal map $d: S^{i} \rightarrow S^{i}$ astricts to $d: S^{i+1} \rightarrow S^{i+4}$
and $i = a$ howevery light $\Rightarrow i = j \times i = a$ generator of $H: (E^{i}, S^{i+1})$
then $d_{i} \times i$ generally $H: (E^{i}, S^{i+1})$.
Here $d_{i} \times i = \pm (d_{i} \times X^{i-1} + (-1)^{i} \times i^{i-1})$.
Here $d_{i} \times i = \pm (d_{i} \times X^{i-1} + (-1)^{i} \times i^{i-1})$.
Here $d_{i} \times i = \pm (d_{i} \times X^{i-1} + (-1)^{i} \times i^{i-1})$.
Here $d_{i} \times i = 4 \circ \partial = d_{i} = 4 \circ d_{i} \circ \partial = (-A)^{i} d^{i} \circ (A)^{i} \circ = (-A)^{i} d^{i} \circ (A)^{i} \circ (A)^{i}$

Theorem

$$C_{\cdot}^{cw}(\mathbb{P}^{n}) = 0 \rightarrow \mathbb{Z} \xrightarrow{(-1)^{n}+1} \mathbb{Z$$

Proof. Consider the map
$$S^n \rightarrow P^n$$
 identifying antipoles. [29
It respects CW decompositions \Rightarrow inclues
 $C_{i}^{CW}(S^n) \rightarrow C_{i}^{CW}(P^n)$
In $C_{i}^{CW}(S^n) = H_{i}(E_{+i}^{n} S^{n-i}) \oplus H_{i}(E_{-i}^{n} S^{n-i})$
both components map via the ridentity map to
 $C_{i}^{CW}(P^n) = H_{i}(E_{+i}^{n} S^{n-i})$
In particular, X^{i} , $d \times X^{i}$ map to the same generator
 Y^{i} satisfying $d_{i}^{CW}(Y^{i}) = \pm (1 + (-1)^{Cr}) Y^{i-r}$.
Let now X be a finite CW complex.
Set $m_{i}(X) := \#$ of i -cells in X
Def. $\chi(X) := Z(-1)^{i} n_{i}(X)$ is the Euler characteristic
Proof. $\chi(X) = Z(-1)^{i} n + H_{i}(X)$
Pf. Use $C_{i}^{CW}(X) = h_{i}ch$ is a finite complex of free
 $ab.$ group
 $n_{i}(X) = \pi k C_{i}^{CW}(X) = \sum (-1)^{i} (\pm \pm k_{i-1})$
 $\chi(X) = Z(-1)^{i} n_{i}(X) = \sum (-1)^{i} (\pm \pm k_{i-1})$
 $= Z(-1)^{i} (\pm i - k_{i}) = \Sigma(-1)^{i} rk H_{i}(X).$

Cohoustogy groups Def. A cohouses gical complex is a sequence C' , C' di C' di C' ... C' ... st. din odi = O Vi. We set Hⁱ(C') := Ker(din)/Im(di) If C. is a homological complex of abilian groups, A an abelian group, Hom (C., A) is a cohomological complet: d: Ci -> Cint ~> How (Cin, A) -> How (Ci, A), q >> qodi. Def. If X is a top. space, A an abelian group, i=0, H'(X, A) = H'(How(S.(X), A)) i-th cohourdogy group of X with coeff's in A. X ~ Hi(X, A) is a contravariant functor A milli(X, A) is a covariant functor. Recall: if 0 -> 51 -> 52 -> 53 -> 0 is an exact seq. of abelian gps => O > How (S3, A) -> How (S2, A) -> How (S1, A) exact, but the last map is not always surjective. $\begin{bmatrix} E_k & 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} | \mathbb{Z}_{1} \rightarrow 0, \quad A = \mathbb{Z}_{2} \end{bmatrix}$ But: Lemma. If O -> S1 -> S2 -> S3 -> O is an exact seq. of abelian groups with S3 free =) O→ Hom (S3, A) → Hom (S2, A) → Hom (S1, A) → O exact. Pf. Let ex, ez, es,... be a free basis of Sz. For Vei choose fi E Sz: y(fi) = Ri. Seuding li Hofi induces a hom. $S: S_3 \rightarrow S_2$ with $y \circ g = id$. So $S_2 \simeq S_4 \oplus g(S_3) =)$ How (S2, A) ~ How (S1, A) & How (S(S3), A) = 2 Surj. Cor. If C. is a complex of publican groups s.t. Hi-1 ((.) is free => I canonical isour. H'(Hom(C., A)) ~ Hom (Hi(C.), A) In general I exact sequence [universal coefficient seq.] Rem. O -> Ext(Hi-1(C.), A) -> H'(Hom(C., A)) -> Hom(H:(C.), A) >0.

53/a

Rem. We also have homology groups with coeff's in A, defined by $Hi(X, A) := Hi(S.(X) \otimes A)$. Similar properties hold.

We also have excision for cohomolog.
Finally, if X is a CW complex,

$$C_{CW}(X, A) := Hom (C.^{CW}(X), A)$$

computes $H'(X, N)$ [same proof J
For instance, we have
 $H^{i}(S^{n}, A) = \begin{cases} A & i = h_{i} \\ 0 & ow. \end{cases}$
 $H^{i}(CIP^{n}, A) = \begin{cases} A & 21i, i \leq 2n \\ 0 & 2+i \\ 0 & 1 \neq 2n \end{cases}$
 $H^{i}(IRIP^{n}, K) = \begin{cases} 72/2 & i \leq n \\ 0 & i > 0 \end{cases}$

155

)

Cup-products
Let A be a comm. ring. We'll define A - bilinear
product maps
$$H^{i}(X, A) \times H^{i}(X, A) \xrightarrow{i} H^{i+i}(X, A)$$

Satisfying nice properties. In this way
 $H^{*}(X, A) := \bigoplus H^{i}(X, A)$
will have a non-commutative ring structure. In fact
it will be a graded ring i.e. a non-comm. ring H^{*}
s.t. $H^{*} = \bigoplus H^{i}$ as abelian group [or A-module] and
the product sends $H^{i} \times H^{i}$ to H^{i+i} .
We first need.

Def: Let C., D. be howological complexes.
We define a complex C.
$$o$$
 D. by
 $(C, o D_{0})_{n} := \bigoplus C_{p} \circ D_{q}$
 $d_{n}: (C. \circ D_{0})_{n} \rightarrow (C. \circ D_{0})_{n-1}$ defined by
 $d_{n} (Cod) := d_{c}(c) \circ d + (-1)^{p} c \circ d_{0}(d)$
for $c \in C_{p}$, $d \in D_{q}$ and extending linearly.
One checks $d_{n-1} \circ d_{n} = \circ$ [one get $d_{c}(c) \circ d_{0}(d)$
with signs $(-1)^{p}$ and $(-1)^{p-1} \Rightarrow$ they cancel out]

Rem If C', D' are whose. completes, C'OD' is defined
in the same way:
Lemma. If C. is contractible (i.e.
$$rd_{c}$$
, is chain house topic
to 0) \Rightarrow C.OD. is contractible \forall D.
Pf. Assume $rd_{c} = d_{c}k + kd_{c}$ with $k : C. \rightarrow C...$
Define $\overline{k}: (COD), \rightarrow (COD)_{i+1}$ by $\overline{k}(COd) = k(C)d.$
 $d\overline{k}(COd) = d(k(C)d) - d_{c}k(C)d + (-1)^{p+1}k(C)d_{c}(c)d_{c}(d)$
 $\overline{kd}(COd) = d(k(C)d) - d_{c}k(C)d + (-1)^{p+1}k(C)d_{c}(c)d_{c}(d)$
 $\overline{kd}(COd) = k(d_{c}(C))d + (-1)^{p}k(C)d_{c}(c)d_{c}(d)$
 $\overline{kd}(C)d + (-1)^{p}k(C)d_{c}(d)$
 $\overline{kd}(C)d + (-1)^{p}k(C)d_{c}(d)$

Set
$$EZ_{4}(S^{4}) := d$$
 [d is not unique, we usele a choid!] [S]
Now given $S: \Delta^{4} \rightarrow X \times X_{1}$ if factors as $\Delta^{4} \stackrel{\leq}{\rightarrow} \Delta^{4} \times \Delta^{4} \rightarrow X \times X$
[to see this, compole with the pojechors $p_{1}, p_{1}: X \times X \rightarrow X$]
Also, set $S: := p_{1} \circ S: \Delta^{4} \rightarrow X$ $i = 1/2$ and fundly
 $EZ_{1}(\sigma) := (S_{1} \circ S_{1})(EZ(S^{4})) \in (S.(X) \circ S.(X))_{3}$.
Construction of $EZ_{n}, n > 4$: assume $EZ_{1}(iZh)$ has been
construction of $EZ_{n}, n > 4$: assume $EZ_{1}(iZh)$ has been
construction of $S(\Delta^{n}) \rightarrow S_{n-4}(\Delta^{n} \times \Delta^{n}) \rightarrow S_{n-2}(\Delta^{n} \times \Delta^{n})$
 $\int EZ_{n-1} \qquad \downarrow EZ_{n-2}$
 $(S.(\Delta^{n}) \circ S.(\Delta^{n}))_{n} \rightarrow (S.(\Delta^{n}) \circ S.(\Delta^{n}))_{n-1} \rightarrow (S.(\Delta^{n}) \circ S.(\Delta^{n}))_{n-2}$
As before, the diagonal $\Delta^{n} \rightarrow \Delta^{n} \times \Delta^{n}$ gives $\delta^{n} \in S_{n}(\Delta^{n} \times \Delta^{n})$
whose image in $(S.(\Delta^{n}) \circ S.(\Delta^{n}))_{n-1} \rightarrow (S.(\Delta^{n}) \circ S.(\Delta^{n}))_{n-1}$
tible \Rightarrow $S.(\Delta^{n}) \circ S.(\Delta^{n})$ contractible by Lemma \Rightarrow
the lower row is exact \Rightarrow the image of $S^{n} m (S.(\Delta^{n}) \circ S.(\Delta^{n}))_{n-1}$
Finally, if $S: \Delta^{n} \rightarrow X \times X$ is in a simplex, set
 $EZ_{n}(\sigma) := (S_{n} \circ S_{1}) (EZ_{n}(S^{n}) \in (S.(X) \circ S.(X))_{n}$.
Howeberg $EZ_{n} = a$ morphism of complass we construct
inductively $E_{1}: S_{1}(X \times X) \rightarrow (S.(X) \circ S.(X))$ is, functorially
 $m X_{1} \leq L$ ding of $(Y \times X) \rightarrow (S.(X) \circ S.(X))$ is, functorially
 $m X_{1} \leq L$ ding of $= q_{n-1} \circ d_{n} - q_{n-1} \circ d_{n} - (d_{n} \circ d_{n}) = 0$.
So $(q_{n} - q_{n} - k_{n-1} \circ d_{n}) = q_{n-1} \circ d_{n} - q_{n-2} \circ d_{n-1} \circ d_{n}) = 0$.
So $(q_{n} - q_{n} - k_{n-1} \circ d_{n})(\delta^{n}) \in Z_{n}(S.(\Delta^{n}) \otimes S.(\Delta^{n})) \Rightarrow$
 \Rightarrow in equal to $d_{nic}(\beta)$ for some $\beta \in (S.(\Delta^{n}) \circ S.(\Delta^{n}))$ and
 $d_{n} \circ (q_{n} - k_{n-1} \circ d_{n})(\delta^{n}) \in Z_{n}(S.(\Delta^{n}) \otimes S.(\Delta^{n})) \Rightarrow$

How Sⁿ is as before, and we set
$$k_n(S^n) := \beta$$

and $k_n(S) := (\overline{s}_i \otimes \overline{s}_i) k_n(S^n)$ for a general $\overline{s}: X^n \to X \times X$.
Gor. [Full eitenberg - 2ither thm] $S_i(X) \otimes S_i(X)$ is chain
lowelopy equivalent to $S_i(X \times X)$.
Pf Since $S_i(A^n \times A^n)$ is contractible, we may reverse the argument
to construct functionic maps $S_i(X) \otimes S_i(X) \to S_i(XX)$ exten-
ding $P \otimes Q \mapsto (P, Q)$. As the completions $S_i(X \times X) \to S_i(X) \otimes S_i(X)$
 $\to S_i(X \times X)$ and $S_i(X) \otimes S_i(X) \to S_i(XX) \otimes S_i(X)$
are functional, identity in degree 0 and all completes are contract?
If $Q = P \otimes Q \mapsto (P, Q)$, we had one user easy terms.
To construct curp products, we had one user easy terms.
Limma. If C', D' are choseological completes, the natural
longs $C' \otimes \bigcup \to (C' \otimes D')^{(1)}$ induce maps
 $H'(C') \otimes H^{(1)}(D') \to H^{(1)}(C' \otimes D') = X(i,j)$.
Proof H terms: $d(\alpha \otimes 0) = d\alpha \otimes b + (-x)^i \alpha \otimes db$.
So if $\alpha \in Z'(C)$, $(b \in Z^{(1)}(D) \to \alpha \otimes b \in Z^{(1)}(C' \otimes D')$
Alto, if $\alpha \in d\alpha' \in B^{(1)}$, $b \in Z^{(1)}(D') \to \alpha \otimes b = d\alpha' \otimes b = d(a' \otimes b)$
is in $B^{(1)}(C \oplus D')$. So we indered have an induced map
(Construction, Let X be a bay speec, A, B abedian groups.
 $S_i(X) \xrightarrow A S(X \times X) \xrightarrow S (X) \otimes S (X)$ induces
Hom $(S_i(X)_i A) \otimes Hom (S(X)_i B) \to Hom (S_i(X) \otimes S_i(X), A \otimes B)$
herma $\zeta \longrightarrow H^{(1)}(X, A \otimes B)$
 $h^{(1)}(X_i A) \otimes H^{(1)}(X_i \otimes B) \to H^{(1)}(X_i A \otimes B)$
 $h^{(1)}(X_i A) \otimes H^{(1)}(X_i \otimes B) \to H^{(1)}(X_i A) \otimes B$
 $H^{(1)}(X_i A) \otimes H^{(1)}(X_i \otimes B) \to H^{(1)}(X_i A)$
 $firsts do not depend on the choice of $E Z$ and more J
 $lf A = B$ is a ming is composing with m: A \otimes A \to A$
 $firsts H^{(1)}(X_i \otimes H^{(1)}(X_i \otimes$

Scanned with CamScanner

LED
Rem. An explicit EZ map is given as follows.
Define maps
$$h_{i, \mu}: \Delta^{i} \rightarrow \Delta^{i}$$
 by
 $h_{i}(to_{i-i}, t_{i}):= (to_{i-i}, t_{i}, \theta_{i-i}, 0)^{i}$ front face.
 $M: (to_{i-i}, t_{i}):= (0, ..., t_{i}, \theta_{i-i}, 1)^{i}$ back face.
Now for $\sigma: \Delta^{i} \rightarrow X \times X$ define
 $A.W_{ii}(\sigma):= \sum_{i+j=n}^{i} (t_{1} \circ h_{i}) \circ (t_{2} \circ \mu_{j}) \in (S.(X) \circ S(X))_{ii}$
[Alexander - Whithey map.] Recall: $\sigma_{i} = p_{i} \circ T$
 $p_{i}: X \times X \rightarrow X : (-1/2)$
 A calculation shows: $A.W.: S.(X \times X) \rightarrow S(X) \circ S(X)$
 $is a functionial morphism of complexes with
 $A.W_{0}(P_{i}) = P \circ Q$. So it is an EZ map.
This gives an applicit formula for the cup-product:
 $if a: S_{i}(X) \rightarrow A , b: S_{j}(X) \rightarrow 0$ represent
 $classes in H^{i}(X, A), H^{i}(X, B), a ob is upacented by
 $a \cup b : S_{i+j}(X) \rightarrow A \circ \theta_{j}(\tau: \Delta^{i+j} \rightarrow X) \mapsto \alpha(to A) \circ b(\sigma^{i} \mu_{j})$
Prop. If $a \in H^{i}(X, A), b \in H^{i}(X, B),$
 $a \cup b = (-1)^{ij} \delta \cup a \in H^{i+j}(X, A \circ B)$
Lemma. If C. is a homological complex,
 $\tau: C \circ C. \rightarrow C \circ C., \tau (a \otimes b) = (-1)^{ij} \delta \circ a$
 $[a \in C_{i}, b \in C_{j}]$ defines a morphism of complexes.
 $Noof: \tau (d(a \otimes b)) = t (da \otimes b + (-1)^{i} a \otimes db)$
 $= (-1)^{(i+1)} b \circ da + (-1)^{(j+1)} b \circ da$.
 $d(\tau(a \circ b)) = (-1)^{ij} d(b \circ a)$
 $= (-1)^{(i+1)} b \circ da + (-1)^{(j+1)} \delta \circ da$.
 $(-1)^{ij} = (-1)^{(i+1)} (-1)^{(i+j)} = (-1)^{(i+1)} \delta \circ da$.$$

Scanned with CamScanner

Proof of pop.
Both

$$E Z: S(X \times X) \rightarrow S. (X) \otimes S.(X)$$
 and to $EZ: S.(X \times X) \rightarrow S.(X) \otimes S.(X)$
are functorial morphisms of completes that coincide in degree zero =
they are chain homotopic. But then the induced maps
 $H^{itj}(S.(X) \otimes S.(X), K \otimes B) \rightarrow H^{itj}(S.(X \times X), A \otimes B) =>$
the induced maps $H^{i}(X, A) \otimes H^{i}(X, B) \rightarrow H^{itj}(X, A \otimes B).$
Dut these are $(a, b) \mapsto a \cup b$ and $(a, b) \mapsto (-1)^{ij} b \cup a.$
Theorem. $H^{*}(\mathbb{CP}^{n}, \mathbb{Z}) \cong \mathbb{Z}[X]/(X^{n+k})$ as a ming.
 $H^{2}(\mathbb{CP}^{n}, \mathbb{Z}) \cong \mathbb{Z}.$

An explicit computation is in Hatcher. We give an other proof based on Poincaré duality (to be studied later). Proof. Recall : Hi(CP", 7%) ~ {7% 21i, 0 & i & 2n 0 otherwise.

It follows from the construction that the cup-products

$$H^{\circ}(\mathbb{CP}^{n},\mathbb{Z}) \otimes H^{i}(\mathbb{CP}^{n},\mathbb{Z})$$
 give the $\mathbb{Z} \otimes H^{i}(\mathbb{CP}^{n},\mathbb{Z})$
 $H^{i}(\mathbb{CP}^{n},\mathbb{Z}) \otimes H^{i}(\mathbb{CP}^{n},\mathbb{Z})$ give the $\mathbb{Z} \otimes H^{i}(\mathbb{CP}^{n},\mathbb{Z})$.
Set $H^{i}(\mathbb{CP}^{n}) := H^{i}(\mathbb{CP}^{n},\mathbb{Z})$. We have b show:
if X is a generator of $H^{2}(\mathbb{CP}^{n})$, then
 $X \cup \dots \cup X$ [i times] is a generator of $H^{2i}(\mathbb{CP}^{n})$, $\forall i$.
Induction on $\pi i : \pi i = 1$ \checkmark Assume we know the claim
for n . Recall: \mathbb{CP}^{n} is the $2n$ -skeleton of \mathbb{CP}^{n+4}
cul \mathbb{CP}^{n+4} is obtained by attacking a $(2n+2)$ -cell.
Let $\tau: \mathbb{CP}^{n} \subseteq \mathbb{CP}^{n+4}$ be the natural embedding.
Lemma. The induced map $\tau^{*}: H^{i}(\mathbb{CP}^{n+n}) \to H^{i}(\mathbb{CP}^{n})$
is an isomorphism $\forall i \leq 2n$.

Scanned with CamScanner

Proof of Theorem. Suppose of exists.

$$[h \ge 1] S' Simply connected $\implies S' \rightarrow R R'''$ universal cover
and similarly for $S'' \rightarrow R P'''$. Here $P \text{ and } r(P)$
get identified $\implies 3$ commuting $n r = 1$, $S'' = 1$
and $\pi_1(RR') \cong \pi_1(RR') \cong R(R'')$ induced by f is 40.
If Suppose it is 0. This means. $\forall \text{ cover } X \rightarrow R R'''$ puts
back to the trivial cover of $RR'' \bowtie RR'' = RR'''' = 1$
but $S' = 0$. This means. $\forall \text{ cover } X \rightarrow R R''' = 0$
but $S' = 0$. This means. $\forall \text{ cover } X \rightarrow R R''' = 0$
but $S' = 0$. This means. $\forall \text{ cover } X \rightarrow R R''' = 0$
but $S' = 0$. This means. $\forall \text{ cover } X \rightarrow R R''' = 0$
but $S' = 0$. This means. $\forall \text{ cover } X \rightarrow R R''' = 0$
but $S' = 0$. This means. $\forall \text{ cover } X \rightarrow R R''' = 0$
but $S' = 0$. This means $R R'' = 0$. $R R'' = 0$.
 $R R'' = 0$. $R R'' = 0$.
 $R R'' = 0$. $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R R'' = 0$.
 $R$$$