Secondo compitino per il corso di Analisi Matematica 2 con soluzioni corso di laurea in Matematica

Università di Pisa 28/03/2025

Esercizio 1 (12 punti). Si definiscano $E\subseteq\mathbb{R}^N$ e $F\subseteq\mathbb{R}^2$ gli insiemi

$$E = \left\{ x \in \mathbb{R}^N, \sum_{i=1}^N x_i^2 \le 1, \ x_j \ge 0 \ \forall j = 1 \dots, N \right\},\,$$

$$F = \left\{ x \in \mathbb{R}^2, \ x_1^2 + x_2^2 \le 1, \ x_1 \ge 0, \ |x_2| \le x_1^2 \right\}.$$

(i) Si dica per quali $\beta \in \mathbb{R}$ l'integrale

$$\int_E |x|^\beta \, dx \,,$$

è finito, e per tali β si calcoli il valore dell'integrale.

(ii) Si dica per quali $\beta \in \mathbb{R}$ l'integrale

$$\int_{F} |x|^{\beta} dx$$

è finito.

(i) L'insieme E è formato da tutti i punti della palla unitaria $B = \{x \in \mathbb{R}^N, |x| < 1\}$ che hanno tutte le N coordinate positive. Visto che la norma di un vettore non cambia se si cambia il segno ad una qualsiasi delle sue coordinate, l'integrale in E della funzione $|x|^{\beta}$ coincide con l'integrale sull'intera palla B diviso per 2^N . Indicando come al solito con $N\omega_N$ il perimetro della palla unitaria, si può allora calcolare

$$\int_{B} |x|^{\beta} dx = N\omega_{N} \int_{\rho=0}^{1} \rho^{\beta} \rho^{N-1} d\rho = N\omega_{N} \int_{\rho=0}^{1} \rho^{\beta+N-1} d\rho.$$

Tale integrale è finito se e solo se $\beta + N - 1 > -1$, ossia se $\beta > -N$, ed in tal caso si ha

$$\int_{E} |x|^{\beta} dx = \frac{1}{2^{N}} \int_{B} |x|^{\beta} dx = \frac{N\omega_{N}}{2^{N}} \int_{\rho=0}^{1} \rho^{\beta+N-1} d\rho = \frac{N\omega_{N}}{2^{N}(\beta+N)}.$$

(ii) Osserviamo che l'insieme F è dato dai punti del cerchio unitario di \mathbb{R}^2 per i quali la seconda coordinata è più piccola, in modulo, del quadrato della prima. Si può quindi esprimere comodamente l'insieme F in coordinate polari come

$$F = \{ (\rho \cos \theta, \rho \sin \theta) \in \mathbb{R}^2, 0 \le \rho \le 1, |\theta| \le \theta_\rho \},\$$

dove l'angolo "massimo" θ_{ρ} corrispondente ad un raggio $0 \le \rho \le 1$ è espresso dalla proprietà

$$\rho \operatorname{sen}(\theta_{\rho}) = \left(\rho \cos(\theta_{\rho})\right)^{2},$$

ossia

$$\frac{\mathrm{sen}\left(\theta_{\rho}\right)}{\mathrm{cos}^{2}(\theta_{\rho})} = \rho.$$

Visto che siamo nella palla unitaria, e quindi $\rho \leq 1$, l'equazione di sopra assicura che ogni angolo θ_{ρ} è più piccolo di $\pi/4$; dunque, $\cos^2(\theta_{\rho})$ è compreso fra 1/2 ed 1, il che assicura

$$\frac{\rho}{2} \le \operatorname{sen} \theta_{\rho} \le \rho$$
.

Ricordiamo poi che, per ogni angolo θ tra 0 e $\pi/4$, si ha $\theta/2 \leq \operatorname{sen} \theta \leq \theta$, e quindi l'ultima stima assicura che

$$\frac{\rho}{2} \le \theta_{\rho} \le 2\rho \,.$$

Integrando in coordinate polari, si ha

$$\int_{F} |x|^{\beta} dx = \int_{\rho=0}^{1} \int_{\theta=-\theta_{\rho}}^{\theta_{\rho}} \rho^{\beta} \rho d\theta d\rho = \int_{\rho=0}^{1} 2\theta_{\rho} \rho^{\beta+1} d\rho.$$

La stima su θ_{ρ} trovata sopra assicura che

$$\rho^{\beta+2} \le 2\theta_{\rho}\rho^{\beta+1} \le 4\rho^{\beta+2}$$

e dunque l'integrale è finito se e solo se $\beta + 2 > -1$, cioè se e solo se $\beta > -3$.

Esercizio 2 (12 punti). Si consideri il problema di Cauchy in avanti dato da

$$\begin{cases} u'(t) = u(t)|u(t)|^{\frac{t}{t+1}} + \arctan t & \forall t > 0, \\ u(0) = u_0. \end{cases}$$

- (i) Si discuta l'esistenza di soluzioni massimali al variare di $u_0 \in \mathbb{R}$;
- (ii) si dimostri che esiste qualche valore di u_0 in corrispondenza del quale la soluzione esplode $a + \infty$ in tempo finito, e qualche altro valore per il quale la soluzione esplode $a \infty$ in tempo finito;
- (iii) si dimostri che esistono soluzioni globali limitate, e si discuta il loro limite per $t \to +\infty$;
- (iv) si dica quante sono le soluzioni globali.
- (i) L'equazione differenziale è del tipo u'(t) = F(t, u(t)), corrispondente ad una F data da $F(t,y) = y|y|^{\frac{t}{t+1}} + \arctan t$. Dal momento che questa funzione F è localmente Lipschitziana su $\mathbb{R}^+ \times \mathbb{R}$, sappiamo che per qualsiasi $u_0 \in \mathbb{R}$ esiste un'unica soluzione massimale.
- (ii) Notiamo che per t grandi il termine in u assomiglia ad u(t)|u(t)|; più precisamente, per ogni $t \ge 1$ si ha che, se $u(t) \ge 1$, allora

$$u'(t) \ge u(t)^{3/2} + \arctan t \ge u(t)^{3/2}$$
.

Invece, se $t \ge 1$ e $u(t) \le -\pi$ si ha

$$u'(t) \le -|u(t)|^{3/2} + \arctan t \le -\frac{1}{2} |u(t)|^{3/2}.$$

Visto che l'esponente 3/2 è strettamente maggiore di 1, sappiamo che le soluzioni positive del problema $v'=v^{3/2}$ esplodono a $+\infty$ in tempo finito; per i risultati di confronto che conosciamo, qualunque soluzione che al tempo t=1 sia strettamente maggiore di 1 rimane maggiore della soluzione del problema

$$\begin{cases} v'(t) = v(t)^{3/2} & \forall t > 1, \\ v(1) = 1, \end{cases}$$

e quindi esplode a $+\infty$ in tempo finito perché lo fa v. Ad esempio, questo accade se $u_0 > 1$, perché in tal caso si ha che la u è crescente e quindi u(1) > 1. Analogamente, qualunque soluzione che al tempo t = 1 sia strettamente minore di $-\pi$ rimane minore della soluzione del problema

$$\begin{cases} w'(t) = -|w(t)|^{3/2} & \forall t > 1, \\ w(1) = -\pi, \end{cases}$$

e quindi esplode a $-\infty$ in tempo finito perché lo fa w. Ad esempio, questo accade se $u_0 < -2\pi$, perché in tal caso sicuramente per $0 \le t \le 1$ si ha che $u'(t) < \arctan(t) < \pi/2$, e quindi $u(1) < -\pi$.

Ricapitolando, abbiamo mostrato non solo che esistono soluzioni massimali che esplodono a $+\infty$ (risp., $-\infty$) in tempo finito, ma anche che questo accade per ogni soluzione che in un qualunque istante si trovi sopra al livello 1 (risp., sotto al livello -2π). In particolare, tutte le soluzioni che esplodono lo fanno sicuramente in tempo finito!

(iii) Per unicità delle soluzioni, sappiamo che se la soluzione corrispondente ad un certo u_0 esplode a $+\infty$, allora lo stesso vale per tutte le soluzioni corrispondenti a valori maggiori di u_0 ; e se invece la soluzione esplode a $-\infty$, lo stesso accade per valori minori di u_0 . Detti quindi

$$\alpha = \inf \left\{ u_0 \in \mathbb{R}, u \to +\infty \right\},$$

$$\beta = \sup \left\{ u_0 \in \mathbb{R}, u \to -\infty \right\},$$

sappiamo che $\alpha \geq \beta$ e che le soluzioni esplodono a $+\infty$ per tutti i valori $u_0 > \alpha$ ed a $-\infty$ per tutti i valori $u_0 < \beta$. D'altra parte, consideriamo una soluzione u che esplode a $+\infty$. Esiste allora certamente un istante t in cui la soluzione è strettamente maggiore di 1; per il Teorema di dipendenza continua dai dati iniziali nella forma vista a lezione, sappiamo che lo stesso vale per soluzioni corrispondenti a valori di u_0 sufficientemente vicini. Ossia, l'insieme dei valori u_0 per i quali la soluzione corrispondente esplode a $+\infty$ è un aperto; un discorso perfettamente analogo vale per le soluzioni che esplodono a $-\infty$. Di conseguenza, per tutti gli $u_0 \in [\beta, \alpha]$ la soluzione non può esplodere, e dunque deve restare limitata tra -2π e 1, quindi in particolare si tratta di soluzioni globali limitate. Le soluzioni globali limitate sono dunque tutte e sole quelle corrispondenti ad $u_0 \in [\beta, \alpha]$, e visto che $\beta \leq \alpha$ vi è almeno una tale soluzione.

(iv) Per concludere, possiamo mostrare che esista un'unica soluzione globale, cioè che $\alpha=\beta$. Per farlo, consideriamo una soluzione globale u, che deve essere limitata tra -2π e 1 per quanto già visto. Supponiamo per il momento che u ammetta un limite ℓ all'infinito; in questo caso, si avrebbe

$$\lim_{t \to +\infty} u'(t) = \lim_{t \to +\infty} u(t)|u(t)|^{\frac{t}{t+1}} + \arctan t = \ell|\ell| + \frac{\pi}{2}.$$

Sappiamo che, se una soluzione ha un asintoto orizzontale e se esiste il limite per $t \to +\infty$ della derivata, allora tale limite deve essere 0. Di conseguenza, ℓ deve essere $-\sqrt{\pi/2}$. In altre parole, se la soluzione u ammette un limite, allora tale limite deve essere $-\sqrt{\pi/2}$. Dimostriamo che effettivamente questo è quello che accade.

Sia $C < -\sqrt{\pi/2}$: allora per continuità esiste un t_C abbastanza grande che $-C^{2-\frac{1}{t+1}} < -\pi/2$ per $t > t_C$. Ma allora, se per un qualche tempo $t > t_C$ si ha u(t) < C, deve essere u'(t) < 0, cioè la u è decrescente all'istante t. Si può però osservare che in realtà la u resta decrescente per tutti

i tempi successivi; se non fosse così, infatti, potremmo chiamare \bar{t} il primo istante successivo a t tale che $u'(\bar{t})=0$: per definizione si avrebbe $u(\bar{t})< u(t)< C$, e visto che $\bar{t}>t>t_C$ si dedurrebbe $u'(\bar{t})<0$, contro l'ipotesi che $u'(\bar{t})=0$. In altre parole, per tempi successivi a t_C , se la u si trova sotto al valore di C resta decrescente per sempre. Ma questo assicura che la u è una funzione decrescente, almeno da t in poi, e quindi deve ammettere un limite: per quanto detto sopra, tale limite deve essere necessariamente $-\sqrt{\pi/2}$, e dl'altra parte questo non è possibile perché u all'istante t è minore di $C<-\sqrt{\pi/2}$ e da lì in poi decresce. Cioè, per ogni $C<-\sqrt{\pi/2}$ esiste un tempo t_C tale che u>C per tutti i tempi successivi a t_C .

In maniera del tutto analoga, sia $C > -\sqrt{\pi/2}$: allora esiste un t_C abbastanza grande che $C|C|^{\frac{t}{t+1}} + \arctan t_C > 0$ per tutti i tempi $t > t_C$. Esattamente come prima, questo assicura che se per qualche tempo $t > t_C$ si ha u(t) > C, allora la u risulta crescente dall'istante t in poi; di nuovo, questo è impossibile perché la u dovrebbe tendere a $-\sqrt{\pi/2}$ ma non può farlo.

Ricapitolando, abbiamo visto che tutte le soluzioni globali devono tendere a $-\sqrt{\pi/2}$. E finalmente, da questo si capisce che di soluzioni globali non possono essercene più di una (e quindi ce n'è esattamente una). Infatti, se u e v sono due soluzioni globali diverse, per definizione si ha che (u-v)'(t)>0 se e solo se u>v. Se quindi la soluzione u parte sopra v, allora la distanza tra u e v aumenta sempre; questo ovviamente non è compatibile col fatto che entrambe le soluzioni convergano allo stesso limite, e dunque l'unicità è dimostrata.

Esercizio 3 (12 punti). Si definiscano gli insiemi

$$A = \left\{ (x, y, z) \in \mathbb{R}^3, \ 1 \le x^2 + y^2 \le 2 - z^2 \right\},$$

$$B = \left\{ (x, y, z) \in \mathbb{R}^3, \ \max\{1, 2\sqrt{2}z\} \le x^2 + y^2 \le 2 - z^2 \right\}$$

- (i) Si calcoli il volume di A;
- (ii) si calcoli il volume di B.
- (i) L'insieme A è ottenuto rimuovendo il cilindro di raggio 1 con asse $\{z=0\}$ dalla palla di raggio $\sqrt{2}$ centrata nell'origine. Le sezioni di altezza z di A, in particolare, sono vuote se $2-z^2 \le 1$, ossia se $|z| \ge 1$, mentre se -1 < z < 1 sono delle corone circolari di raggio interno 1 e raggio esterno $\sqrt{2-z^2}$. Per il Teorema di Fubini, il volume di A è quindi dato semplicemente da

$$|A| = \int_{z=-1}^{1} \pi (2 - z^2 - 1) dz = \pi \left[z - \frac{z^3}{3} \right]_{z=-1}^{1} = \frac{4}{3} \pi.$$

(ii) Per quanto riguarda l'insieme B, esso è ottenuto rimuovendo da A la parte interna del paraboloide $2\sqrt{2}z=x^2+y^2$. In particolare, tutte le sezioni di altezza z con $|z|\geq 1$ sono vuote perché già lo erano quelle di A. Per gli altri z, si ha che $\max\{1,2\sqrt{2}z\}=1$ se $z\leq (2\sqrt{2})^{-1}$, mentre $\max\{1,2\sqrt{2}z\}=2\sqrt{2}z$ se $z\geq (2\sqrt{2})^{-1}$. In questo secondo caso, le sezioni sono vuote se $2\sqrt{2}z\geq 2-z^2$, ossia se $z\geq 2-\sqrt{2}$. Ricapitolando, le sezioni di altezza z sono vuote per z<-1 e $z>2-\sqrt{2}$, mentre altrimenti sono corone circolari di raggio esterno $\sqrt{2-z^2}$, e raggio interno che vale 1 per $-1< z<(2\sqrt{2})^{-1}$, e $\sqrt{2\sqrt{2}z}$ per $(2\sqrt{2})^{-1}< z<2-\sqrt{2}$. Il volume di B è quindi

dato da

$$\begin{split} |B| &= \int_{z=-1}^{\frac{1}{2\sqrt{2}}} \pi \left(2 - z^2 - 1\right) dz + \int_{z=\frac{1}{2\sqrt{2}}}^{2-\sqrt{2}} \pi \left(2 - z^2 - 2\sqrt{2}z\right) dz \\ &= \pi \left[z - \frac{z^3}{3}\right]_{z=-1}^{\frac{1}{2\sqrt{2}}} + \pi \left[2z - \sqrt{2}z^2 - \frac{z^3}{3}\right]_{z=\frac{1}{2\sqrt{2}}}^{2-\sqrt{2}} \\ &= \pi \left(\frac{1}{2\sqrt{2}} - \frac{1}{48\sqrt{2}} + \frac{2}{3} + \frac{16}{3} - \frac{10}{3}\sqrt{2} - \frac{1}{\sqrt{2}} + \frac{\sqrt{2}}{8} + \frac{1}{48\sqrt{2}}\right) = \pi \left(6 - \frac{83}{24}\sqrt{2}\right). \end{split}$$