Terzo compitino per il corso di Analisi Matematica 2 corso di laurea in Matematica Università di Pisa 19/05/2025

Tempo a disposizione: 180 minuti.

Esercizio 1 (12 punti). Si definisca l'insieme $A \subseteq \mathbb{R}^3$

$$A = \left\{ (x, y, z) \in \mathbb{R}^3 : y \ge 0, \sqrt{x^2 + y^2} \le z \le \sqrt{2 - x^2 - y^2} \right\}.$$

Si calcoli il perimetro di A.

Esercizio 2 (12 punti). Definito per ogni $N \in \mathbb{N}$ il cubo unitario $Q_N = [0,1]^N$ in \mathbb{R}^N , si definiscano $\Phi: Q_2 \to \mathbb{R}^3$ e $\Psi: Q_3 \to \mathbb{R}^3$ come

$$\Phi(x,y) = \left(x^2y, y, xy^2\right), \qquad \qquad \Psi(x,y,z) = \left(x+y, y+z, xz\right).$$

Si consideri la 2-catena in \mathbb{R}^3 data da $\mathcal{C} = \Phi - \partial \Psi$. Sia poi ω la 2-forma su \mathbb{R}^3 data da

$$\omega = ada \wedge db + bda \wedge dc$$
,

usando (a, b, c) come coordinate in \mathbb{R}^3 . Si calcoli $\int_{\mathcal{C}} \omega$.

Esercizio 3 (12 punti). Sia $\Omega = \{(x,y) \in \mathbb{R}^2, (x,y) \notin \mathbb{Z} \times \{0\}\}$, e sia ω la 1-forma su Ω data da

$$\omega = \frac{x}{x^2 + y^2} dy + \frac{1}{\sin^2(\pi x) + y^2} d(\sin^2(\pi x) + y^2).$$

Sia poi $n \in \mathbb{N}$, e sia $\gamma : [0, \pi/2] \to \Omega$ la curva definita come

$$\gamma(t) = \left(n + \frac{1}{2}\right) \left(\cos t, \, \sin t\right).$$

Si calcoli $\int_{\gamma} \omega$.

Suggerimento: per quanto riguarda il secondo termine della definizione di ω , non si cerchi di fare calcoli complicati: si definisca $f(x,y) = \sin^2(\pi x) + y^2$ e si lavori con f.