Primo compitino per il corso di Analisi Matematica 2 con soluzioni corso di laurea in Matematica Università di Pisa $\frac{23/2/2024}{2024}$

Esercizio 1 (12 punti). Si definisca

$$\Omega := \left\{ (x, y) \in \mathbb{R}^2, \, x \ge \sqrt{y^2 + 1} \right\},\,$$

 $e \ sia \ f : \Omega \to \mathbb{R}$ la funzione data da

$$f(x,y) = x^2 - |xy| + 2|y| - x.$$

- (i) Si discutano la continuità e la differenziabilità di f in Ω .
- (ii) Si discuta il limite

$$\lim_{\substack{|(x,y)|\to\infty\\(x,y)\in\Omega}} f(x,y).$$

- (iii) Si dica se la funzione f ammette punti di massimo e/o minimo globale.
- (iv) Si trovino tutti i punti di massimo e minimo globale e locale.

La funzione f è continua in tutto il suo dominio, visto che è ottenuta come somma e prodotto di funzioni elementari continue. Per quanto riguarda la differenziabilità, le funzioni che compongono f sono tutte differenziabili eccetto il modulo, differenziabile ovunque tranne in 0. Si noti che |xy| = x|y| nel dominio, visto che se $(x,y) \in \Omega$ allora necessariamente $x \geq 1$. Di conseguenza, possiamo già essere sicuri che f sia differenziabile in ogni punto di Ω° (ossia ogni punto interno al dominio) tale che $y \neq 0$, mentre la differenziabilità in punti del tipo $(x,0) \in \Omega^{\circ}$ va investigata. Visto che $x^2 - x$ è differenziabile ovunque su Ω° , il problema è dato solo dal termine (2-x)|y|. Osserviamo che in tutti i punti $(x,y) \in \Omega^{\circ}$ con $y \neq 0$ si ha

$$\nabla f(x,y) = \left(2x - 1 - |y|, (2-x)\frac{y}{|y|}\right).$$

Tale espressione è continua in y=0 se x=2, mentre i limiti per $y \searrow 0$ e per $y \nearrow 0$ sono diversi se $x \ne 2$. Deduciamo quindi che nei punti $(x,0) \in \Omega^{\circ}$ la funzione è differenziabile se e solo se x=2.

Per quanto riguarda il limite di f all'infinito, osserviamo subito che $x \geq |y|$ per ogni punto $(x,y) \in \Omega$. Di conseguenza,

$$|(x,y)| = \sqrt{x^2 + y^2} \le \sqrt{2x^2} = \sqrt{2} x$$

e quindi se |(x,y)| diverge deve farlo anche x. Distinguiamo due possibili casi: se $|y| \le 0.9 x$,

$$f(x,y) \ge x^2 - 0.9x^2 - x = x(0.1x - 1) > x \ge \frac{|(x,y)|}{\sqrt{2}},$$

dove la penultima disuguaglianza è vera se x > 20, quindi certamente è vera se $|(x,y)| > 20\sqrt{2}$. In altre parole, abbiamo dimostrato che

$$f(x,y) \ge \frac{|(x,y)|}{\sqrt{2}}$$
 se $|(x,y)| > 20\sqrt{2}$ e $|y| \le 0.9 x$.

Se invece |y| > 0.9x, ricordando che $x \ge |y|$ abbiamo che

$$f(x,y) > 0.8x \ge \frac{0.8}{\sqrt{2}} |(x,y)|.$$

Mettendo insieme la stima corrispondente al caso $|y| \le 0.9x$ e quella corrispondente al caso |y| > 0.9x deduciamo allora che

$$\lim_{\substack{|(x,y)|\to\infty\\(x,y)\in\Omega}} f(x,y) = +\infty.$$

Una prima ovvia conseguenza di questo fatto è che f non ammette massimo globale. Invece, il minimo globale esiste grazie ad un ragionamento standard: se $\{P_n\} \subseteq \Omega$ è una successione minimizzante per f, ossia $f(P_n) \to \inf\{f(P), P \in \Omega\}$, il fatto che f diverga all'infinito assicura che la successione $\{P_n\}$ è limitata. Essendo limitata, esiste una sua sottosuccessione che converge ad un certo punto \overline{P} . Visto che Ω è un insieme chiuso, il punto \overline{P} appartiene ad Ω , e visto che f è continua il valore f in \overline{P} è il limite dei valori di f lungo la successione. Ovvero, $f(\overline{P}) = \inf\{f(P), P \in \Omega\}$, ossia f ammette un minimo globale.

Occupiamoci ora di cercare tutti i massimi e minimi locali e globali per f. Tali punti potrebbero essere punti sul bordo di Ω , oppure punti interni di non differenziabilità, oppure punti interni critici. Possiamo subito escludere tutti i punti interni, a prescindere dal fatto che siano o meno punti di differenziabilità: infatti, come già osservato, la derivata parziale di f nella direzione x esiste in tutti i punti di Ω° , e visto che per ogni $(x,y) \in \Omega^{\circ}$ si ha x > 1, e $x \ge |y|$, abbiamo

$$\frac{\partial f}{\partial x}(x,y) = 2x - 1 - |y| > 0.$$

Preso un qualsiasi punto di Ω° , quindi, la funzione è strettamente crescente muovendosi nella direzione orizzontale, e dunque tale punto non può essere né massimo né minimo locale (e quindi meno che mai globale).

Tutti i punti da ricercare, quindi, saranno lungo il bordo di Ω ; si ricordi che almeno un minimo globale deve esserci, come già osservato. Si osservi subito che, se $(x,y) \in \partial \Omega$, allora tutti i punti (t,y) con t>x appartengono ad Ω . Nessun punto di $\partial \Omega$ può quindi essere di massimo locale (e meno che mai globale), visto che muovendosi verso destra la f aumenta strettamente. Visto che, se $(x,y) \in \Omega$, allora anche $(x,-y) \in \Omega$ e f(x,y) = f(x,-y), possiamo limitarci a considerare i punti di $\partial \Omega$ della forma $(x,\sqrt{x^2-1})$ con $x \geq 1$. La ricerca del minimo globale è semplice: si ha infatti che f(1,0) = 0, e si può mostrare facilmente che f > 0 in qualunque punto di $\partial \Omega \setminus \{(1,0)\}$. Per farlo, notiamo che se x < 2 allora

$$f(x, \sqrt{x^2 - 1}) = x^2 - x + (2 - x)\sqrt{x^2 - 1} \ge 0$$

con uguaglianza solo nel caso x=1. Se invece $x\geq 2,$ in particolare $2\sqrt{x^2-1}>x,$ e quindi

$$f(x, \sqrt{x^2 - 1}) = x(x - \sqrt{x^2 - 1}) + 2\sqrt{x^2 - 1} - x > 0.$$

Esiste cioè esattamente un punto di minimo globale, e tale punto è (1,0).

Si può infine escludere che esistano altri punti di minimo locale lungo il bordo di Ω . Un possibile modo di farlo è quello di definire $\varphi(x) = f(x, \sqrt{x^2 - 1})$ e mostrare che $\varphi'(x) > 0$ per ogni x > 1. Si ha infatti

$$\varphi(x) = x^2 - x + (2 - x)\sqrt{x^2 - 1},$$

e quindi

$$\varphi'(x) = 2x - 1 - \sqrt{x^2 - 1} + \frac{2x - x^2}{\sqrt{x^2 - 1}} = \frac{(2x - 1)\sqrt{x^2 - 1} - 2x^2 + 1 + 2x}{\sqrt{x^2 - 1}},$$

e allora dire che $\varphi' > 0$ per x > 1 è equivalente a dire che

$$(2x-1)\sqrt{x^2-1} > 2x^2-2x-1$$
;

visto che il termine a sinistra è positivo per x > 1, questa disuguaglianza è sicuramente vera se

$$(2x-1)^2(x^2-1) > (2x^2-2x-1)^2 \iff 4x^3-3x^2+8x > 2$$

che ovviamente è vero per ogni x > 1. Abbiamo cioè mostrato che $\varphi' > 0$, ossia che la f è strettamente crescente muovendosi verso destra lungo il bordo di Ω ; concludiamo quindi che non esista nessun massimo o minimo locale o globale eccetto il punto (1,0), che è minimo globale.

Esercizio 2 (12 punti). Si definisca lo spazio $D = \{f : (5,10) \to \mathbb{R}, f \ \dot{e} \ continua \ e \ limitata \}, e si ponga <math>d : D \times D \to \mathbb{R}^+ \ come$

$$d(f,g) = \int_{\mathbf{E}}^{10} \sqrt{|f(t) - g(t)|} \, dt \,.$$

- (i) Si verifichi che d'è una distanza, e quindi che (D,d) sia uno spazio metrico.
- (ii) Per ciascuno dei due insiemi

$$A = \left\{ f \in D, \, f(7) = 1 \right\}, \qquad B = \left\{ f \in A, \, \forall \, 5 < s < t < 10, \, |f(s) - f(t)| \le 2|s - t| \right\},$$

si dica se è chiuso, se è compatto, se è convesso, se è completo, se è totalmente limitato.

Innanzitutto si noti che d è ben definita: se infatti $f, g \in D$, allora $t \mapsto \sqrt{|f(t) - g(t)|}$ è una funzione continua e limitata, e dunque integrabile. Il fatto che d sia positiva, simmetrica, e che d(f,g) = 0 se e solo se f = g è banale. Per controllare la disuguaglianza triangolare, basta notare che se $a, b \in \mathbb{R}^+$ si ha

$$\sqrt{a} + \sqrt{b} \ge \sqrt{a+b}$$
,

e quindi date tre funzioni $f, g, h \in D$, per ogni 5 < t < 10 si ha

$$\sqrt{|f(t) - h(t)|} \le \sqrt{|f(t) - g(t)| + |g(t) - h(t)|} \le \sqrt{|f(t) - g(t)|} + \sqrt{|g(t) - h(t)|}$$

e integrando questa disuguglianza per $t \in (5,10)$ si ottiene d(f,h) < d(f,q) + d(q,h).

Consideriamo adesso le proprietà degli insiemi A e B. Partiamo dall'insieme A: per ogni n > 0, la funzione $f_n : (5, 10) \to \mathbb{R}$, definita da

$$f_n(t) = (1 - n|t - 7|)^+,$$

è un elemento di A. Tuttavia le funzioni f_n tendono (nel senso della distanza d) alla funzione nulla, che sta in D ma non in A, quando $\lambda \to +\infty$, e quindi A non è chiuso. Per lo stesso motivo, non è completo: la successione $\{f_n\}$ è di Cauchy, visto che converge in D, ma non converge in A, e dunque A non è completo. Non essendo completo, non può essere nemmeno compatto. Infine, non è totalmente limitato perché non è neppure limitato, visto che per un qualsiasi $M \in \mathbb{R}$ l'insieme A contiene, ad esempio, funzioni che valgono costantemente M sull'intervallo [8, 9]. E' invece banalmente convesso, visto che se $f, g \in A$ allora per ogni $\sigma \in (0, 1)$ si ha chiaramente che $\sigma f + (1 - \sigma)g \in A$.

Passiamo ora a considerare l'insieme B. Possiamo subito osservare che sia convesso, per lo stesso motivo per cui lo è A. Siano ora f e g due funzioni in B, e sia $|f(s) - g(s)| \ge \varepsilon$ per un qualche $\varepsilon > 0$ e per un qualche 5 < s < 10. Dalla proprietà di Lipschitz di B, si deduce che per ogni $t \in (5, 10)$ tale che $|s - t| \le \varepsilon/5$ si deve avere $|f(t) - g(t)| \ge \varepsilon/5$. Ma allora

$$d(f,g) \geq \int_{\{t \in (5,10): |s-t| \leq \varepsilon/5\}} \sqrt{|f(t) - g(t)|} \, dt \geq \frac{\varepsilon}{5} \sqrt{\frac{\varepsilon}{5}} \, .$$

Da questo deduciamo subito che, detta d_{∞} la distanza del sup, per ogni $f, g \in B$ si ha

$$d_{\infty}(f,g) \le 5d(f,g)^{2/3}.$$

Se allora una successione $\{f_n\}\subseteq B$ tende, nel senso di d, ad una funzione $f\in D$, allora deve tendere anche uniformemente. Visto che sia la proprietà di Lipschitz che il valore in t=7 sono preservati per limite uniforme, e quindi limiti uniformi di funzioni in B stanno ancora in B, si deduce che i limiti di funzioni di B stanno ancora in B, ossia B è chiuso.

Osserviamo ora che le funzioni che stanno in B sono equilimitate, visto che la proprietà di Lipschitz (con costante 2) ed il fatto che il valore in 7 sia 1 assicurano che un elemento di f può assumere valori compresi tra -5 e 7. Essendo tutte Lipschitz con costante 2 sono anche equicontinue. Per il Teorema di Ascoli–Arzelà, da ogni successione in B se ne può estrarre una che converga uniformemente. Dal momento che si ha $d(f,g) \leq 5\sqrt{d_{\infty}(f,g)}$, e quindi che la convergenza uniforme assicura la convergenza secondo d, otteniamo che da ogni successione in B se ne può estrarre una che converga secondo la distanza d. In altre parole, (D,d) è compatto per successioni; dalla teoria, abbiamo allora che (D,d) è anche compatto, completo e totalmente limitato.

Esercizio 3 (12 punti). Per un qualsiasi $u_0 \in \mathbb{R}$, si consideri il problema di Cauchy in avanti dato da

$$\begin{cases} u'(t) = e^{tu(t)} - u(t)^2 & t > 0, \\ u(0) = u_0. \end{cases}$$

- (i) Si dimostri che esiste ed è unica la soluzione massimale $u : [0, M) \to \mathbb{R}$ di tale problema, qualunque sia il valore di u_0 , con qualche $M \in (0, +\infty]$ che dipende da u_0 .
- (ii) Si dimostri che esiste qualche valore di u_0 per il quale la soluzione tende $a + \infty$ per $t \to M$.
- (iii) Si dimostri che esiste qualche valore di u_0 per il quale la soluzione tende $a \infty$ per $t \to M$.
- (iv) Si dimostri che esiste qualche valore di u₀ per il quale la soluzione resta limitata.
- (v) Si dimostri che la soluzione è globale (ossia, $M = +\infty$) se e solo se è limitata.

(vi) Si dimostri che il valore di u_0 per il quale la soluzione resta limitata è unico (suggerimento: si supponga che esistano due diverse soluzioni limitate, e si consideri la loro differenza).

Innanzitutto osserviamo che il problema è del tipo u'(t) = F(t, u(t)) con una F di classe C^1 , quindi il fatto che esista una soluzione massimale unica per qualunque dato iniziale è noto.

Supponiamo adesso che u sia una soluzione, e che per un qualche $\bar{t} \geq 0$ si abbia $u(\bar{t}) > 0$. Ma allora, u(t) > 0 per qualunque $t \geq \bar{t}$: notiamo infatti che una soluzione che passa da 0 ha derivata strettamente positiva in tale punto, e quindi la soluzione era strettamente negativa subito prima di passare da 0; di conseguenza, una soluzione che sia strettamente positiva in qualche punto rimarrà positiva finché esiste. In realtà lo stesso vale anche per una soluzione per la quale per un qualche $\bar{t} \geq 0$ si abbia $u(\bar{t}) \geq 0$: infatti, se in \bar{t} si ha che u = 0, allora come appena notato subito dopo \bar{t} la funzione è strettamente positiva, e quindi ci si riconduce a quanto già osservato.

Notiamo ora che se $t \ge 2$ e $u(t) \ge 0$ allora si ha

$$u'(t) = e^{tu(t)} - u(t)^2 \ge e^{2u(t)} - u(t)^2 \ge 1 + 2u(t) + 2u(t)^2 - u(t)^2 \ge 1$$
.

Si ha allora che una soluzione che in un qualche \bar{t} sia positiva rimarrà sempre positiva, ed avrà derivata maggiore di 1 per tutti gli istanti successivi a \bar{t} e maggiori di 2. Tale soluzione deve quindi esplodere all'infinito. Abbiamo cioè che $u(t) \to +\infty$ per $t \to M$ per ogni $u_0 \ge 0$, ma anche per valori di u_0 leggermente negativi.

Consideriamo invece una soluzione u tale che $u(\bar{t}) \leq -1$ per un qualche $\bar{t} \geq 0$. Ma allora

$$u'(\bar{t}) = e^{-t|u(\bar{t})|} - u(\bar{t})^2 \le e^{-t} - u(\bar{t})^2 \le 1 - u(\bar{t})^2 \le 0$$

e la disuguaglianza è stretta se $u(\bar{t}) < -1$, così come se t > 0. Questo assicura che una soluzione che in un qualunque momento passa sotto a -1, da quel momento in poi scenderà sempre. Essendo una funzione continua e decrescente, se $t \to M$ può tendere a $-\infty$ oppure ad un valore $L \in (-\infty, -1)$. Ma questa seconda possibilità può essere esclusa: se infatti $u(t) \to L$, allora per forza deve essere $M = +\infty$, visto che altrimenti la soluzione non sarebbe massimale. E se $u(t) \to L$ per $t \to +\infty$, con L < -1, allora di sicuro $u'(t) \to -L^2$. Una funzione decrescente che tenda ad un limite finito, tuttavia, non può avere derivata che tende ad un numero diverso da 0, e quindi si ha l'assurdo cercato. Ricapitolando, $u(t) \to -\infty$ per $t \to M$ per ogni $u_0 \le -1$, ma anche per valori leggermente superiori a -1.

Sia adesso \bar{u}_0 un valore tale che la soluzione corrispondente, che chiamiamo \bar{u} per comodità, tenda a $+\infty$: allora esiste un qualche $\bar{t}>0$ tale che $\bar{u}(\bar{t})>1$. Per continuità, esiste un intorno di \bar{u}_0 per il quale la soluzione u verifica $|u(\bar{t})-\bar{u}(\bar{t})|<1/2$. Per quanto detto sopra, per ciascun u_0 in tale intorno la soluzione deve esplodere all'infinito. In altre parole, l'insieme degli u_0 per i quali la soluzione esploda all'infinito è un aperto. Per unicità della soluzione, inoltre, una soluzione che parta più in alto deve rimanere più in alto, e dunque la soluzione esplode all'infinito per tutti gli u_0 contenuti in una semiretta aperta, diciamo $(\beta, +\infty)$. Lo stesso identico ragionamento si può fare per soluzioni che tendano a $-\infty$, e quindi l'insieme degli u_0 per i quali la soluzione esploda a $-\infty$ è un aperto del tipo $(-\infty, \alpha)$. Ovviamente $\alpha \leq \beta$.

Per ogni $\alpha \leq u_0 \leq \beta$, la soluzione non può tendere a $-\infty$ e nemmeno a $+\infty$, e dunque per quanto visto sopra è costretta e restare confinata tra -1 e 0. Si tratta quindi di una soluzione limitata; d'altra parte la F è Lipschitziana su tutti gli insiemi del tipo $[0,T] \times [-1,0]$, e quindi una soluzione confinata tra -1 e 0 deve esistere almeno fino all'istante t=T; dal momento che T è generico, questo vuol dire che le soluzioni limitate sono tutte globali.

Come appena notato, tutte le soluzioni limitate, dunque quelle corrispondenti a $u_0 \in [\alpha, \beta]$, sono soluzioni globali. D'altra parte per qualunque soluzione non limitata si ha $|u'(t)| \ge u(t)^2/2$ per t abbastanza grande, e visto che le funzioni non nulle per le quali $u' = \pm u^2/2$ esplodono in tempo finito si ottiene per confronto che tutte le soluzioni non limitate esplodono in tempo finito, ossia non sono globali.

Per concludere l'esercizio bisogna solo notare che $\alpha=\beta$, ossia che c'è un'unica soluzione limitata. Per farlo, consideriamo una soluzione u, e supponiamo che per un qualche $\bar{t}>0$ si abbia $u(\bar{t})<0$ e $u'(\bar{t})<0$. Allora, per tempi poco superiori a \bar{t} , si ha che la u è diminuita, e quindi sono diminuiti sia il termine $e^{tu(t)}$ che il termine $-u(t)^2$; ossia, per tempi poco superiori a \bar{t} la u' è più piccola di $u'(\bar{t})$, e quindi negativa. In altre parole, una soluzione che sia negativa e decrescente in un qualunque punto resta decrescente per sempre, e quindi deve tendere a $-\infty$ per quanto abbiamo visto. Questo vuol dire che tutte le soluzioni globali e limitate, quindi corrispondenti ad $u_0 \in [\alpha, \beta]$, sono comprese tra -1 e 0 e sono crescenti. Questo assicura che abbiano un limite all'infinito, e come già visto tale limite deve essere 0. Supponiamo ora che ci siano due diverse soluzioni di questo tipo, chiamiamole u e v, con v > u. Si ha allora che

$$(v-u)'(t) = v'(t) - u'(t) = e^{tv(t)} - e^{tu(t)} - (v(t)^2 - u(t)^2) > u(t)^2 - v(t)^2 > 0.$$

Due diverse soluzioni globali, quindi, hanno differenza che aumenta sempre. Visto che le soluzioni globali devono tendere a 0, è impossibile che ce ne siano due diverse, perché la loro differenza dovrebbe aumentare e al tempo stesso tendere a 0; si ha cioè un'unica soluzione globale e limitata, ossia $\alpha = \beta$.