Scritto per il corso di Analisi Matematica II corso di laurea in Ingegneria Biomedica

Università di Pisa 20/7/2023

(Prima parte)

Tempo a disposizione: 55 minuti.

Scrivere solo la risposta nella tabella in fondo, in modo leggibile ed inequivocabile.

Nome:

Cognome:

Numero di matricola:

Esercizio 1. Sia $f:[0,1]\times[0,1]\to\mathbb{R}$ la funzione definita come $f(x,y)=(x-x^2)\sin(y-y^2)$. Si dica quanto valgono il sup f e inf f (e non quali siano gli eventuali punti di massimo o minimo).

Esercizio 2. Si calcoli l'area di $A = \{(x, y, z) \in \mathbb{R}^3, 0 \le x \le y \le 1, z = 2 + \cosh(x) \}.$

Esercizio 3. Si definisca $f: \mathbb{R}^2_+ \to \mathbb{R}^2$ come $f(x,y) = (x^2 - e^{xy}, x^y + yx)$. Si calcoli divf(2,1).

Esercizio 4. Si calcoli il volume dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3, \, x \ge 0, \, y \ge 0, \, z \ge 0, \, x + y + 2z \le 1 \right\}.$$

Esercizio 5. Si consideri la funzione $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ definita come

$$f(x,y) = \frac{(x^2 + 2y^2)^2}{x^4 + y^4}.$$

Per ogni $(a,b) \in \mathbb{R}^2$ diverso da 0, si chiami $g(a,b) = \lim_{t \searrow 0} f(ta,tb)$. Si trovi il minimo di g.

Esercizio 6. Si calcoli lo sviluppo di Taylor fino al quinto ordine in (x, y) = (0, 0) della funzione $f: \mathbb{R}^2 \to \mathbb{R}$ data da $f(x, y) = \operatorname{sen}(xy)e^{x+y} - 1$.

Esercizio 7. Si calcoli $\int_B x^2 + y$, dove $B = \{(x, y) \in \mathbb{R}^2 : y \ge 0, x^2 + y^2 \le 1\}$.

Esercizio 8. Si calcoli il perimetro dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, \ x \ge 0, \ y \ge 0, \ z \ge 0 \right\}.$$

1	2	3	4	5	6	7	8

Scritto per il corso di Analisi Matematica corso di laurea in Ingegneria Gestionale Università di Pisa $\frac{20/7/2023}{}$

(Soluzioni)

Esercizio	Soluzione
1	$\max f = \frac{1}{4} \operatorname{sen}\left(\frac{1}{4}\right) \qquad \min f = 0$
2	$\cosh(1) - \cosh(0)$
3	$6+2\ln 2-e^2$
4	$\frac{1}{12}$
5	$\min g = 1$
6	$-1 + xy\left(1 + x + y + \frac{(x+y)^2}{2} + \frac{(x+y)^3}{6}\right)$
7	$\frac{\pi}{8} + \frac{2}{3}$
8	$rac{5}{4}\pi$