Scritto per il corso di Analisi Matematica corso di laurea in Ingegneria Gestionale

Università di Pisa 12/9/2019

(Prima parte)

Tempo a disposizione: 55 minuti.

Scrivere solo la risposta nella tabella in fondo, in modo leggibile ed inequivocabile.

E' ammesso alla seconda parte chi avrà risposto correttamente ad almeno 5 dei sequenti esercizi.

Nome:

Cognome:

Numero di matricola:

Esercizio 1. Si calcoli (se esiste) il valore del seguente limite:

$$\lim_{x \to 0^+} \frac{\ln x \, \operatorname{sen} x}{1 - \cos x} \, .$$

Esercizio 2. Si dica per quali $\lambda \in \mathbb{R}$ il seguente integrale improprio converge

$$\int_0^{+\infty} \frac{\ln x}{x^{\lambda}} \cdot \frac{x}{x+1} \, dx \, .$$

Esercizio 3. Si scriva il polinomio di Taylor fino al terzo ordine in x=0 della funzione $f:(-1,1)\to\mathbb{R}$ data da

$$f(x) = \cos\left(\ln(1+x)\right).$$

Esercizio 4. Si calcoli

$$\int_{1}^{+\infty} \cos\left(\frac{\ln x}{x}\right) \frac{1 - \ln x}{x^2} \, dx \, .$$

Esercizio 5. Si calcoli $f^{(8)}(0)$, essendo $f: \mathbb{R} \to \mathbb{R}$ data da

$$f(x) = \operatorname{sen}\left(e^{x^2} - 1\right).$$

Esercizio 6. Si calcoli (se esiste) il valore del seguente limite:

$$\lim_{x\to +\infty} \frac{e^{x^2}-2^{e^x}}{x^{2^e}} \,.$$

Esercizio 7. Si dica il numero totale di massimi e minimi locali o globali della funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sin(2e^{-x^2})$.

Esercizio 8. Si calcoli, se esiste, il limite della serie

$$\frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \frac{1}{3^5} + \cdots$$

1	2	3	4	5	6	7	8

Scritto per il corso di Analisi Matematica corso di laurea in Ingegneria Gestionale Università di Pisa $\frac{12/9}{2019}$

(Soluzioni)

Esercizio	Risultato			
1	$-\infty$			
2	$1 < \lambda < 2$			
3	$1 - \frac{x^2}{2} + \frac{x^3}{2}$			
4	0			
5	$-\frac{5\cdot 8!}{24}$			
6	$-\infty$			
7	3			
8	$\frac{1}{6}$			