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Abstract

Crumpling a sheet of paper leads to the formation of complex folding patterns
over several length scales. This can be understood on the basis of the interplay of a
nonconvex elastic energy, which favors locally isometric deformations, and a small
singular perturbation, which penalizes high curvature. Based on three-dimensional
nonlinear elasticity and by using a combination of explicit constructions and gen-
eral results from differential geometry, we prove that, in agreement with previous
heuristic results in the physics literature, the total energy per unit thickness of such
folding patterns scales at most as the thickness of the sheet to the power 5/3. For
the case of a single fold we also obtain a corresponding lower bound.

1. Introduction and main results

1.1. Overview

We consider compressed elastic sheets, and discuss the scaling of the elastic
energy with respect to the thickness h. This situation, corresponding to the crum-
pling of paper (see Fig. 1a), has received the attention of several authors [2, 5, 12,
14, 15, 19, 20] in the physics literature. They focus on specific types of canonical
singularities and, on the basis of heuristic arguments, propose that the elastic energy
per unit thickness scales as h5/3 for small h.

More recently, Venkataramani [27, 28] has given the first proofs supporting
the validity of this prediction. He focused on a specific single-fold deformation
(see Fig. 1b), which is believed to be the basic building block for the folding
patterns appearing in crumpling, and obtained a rigorous proof of the scaling of the
energy as h5/3 under some simplifying geometric assumptions, including use of a
linearization of the Föppl–von Kármán elastic energy.

In this paper we consider these problems in the context of nonlinear three-
dimensional elasticity. The key technical ingredient is an optimal construction for a
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(a) (b)

Fig. 1. A crumpled sheet of paper and a special approximation of a single fold. The dotted
lines delimit the part of the sheet where the construction is bent; the dashed lines are the ones
on which we impose the piecewise affine boundary conditions (see Proof of Lemma 2.1)

single fold, under boundary conditions which are suitable for using it as a building
block for more complex constructions (Lemma 2.1). This leads to an approximation
result for piecewise affine isometric maps (briefly, origami maps), which can be
visualized as the deformations one obtains by folding a finite number of times a
sheet of paper (Theorem 1.2). Choosing a particular origami map will then give the
scaling result for the crumpling problem, that is for the problem of determining the
energy needed to fold an elastic sheet into a fixed (small) ball in R

3.
The second main result of this paper is an approximation theorem. We show

that the origami maps are dense in the class of compressive deformations with
respect to uniform convergence (Theorem 1.8). This result is strongly related to the
Nash–Kuiper theorem on isometric C1 immersions, which indeed constitutes the
starting point of the proof [16, 17, 23] (see also [7]). Combining these results we
obtain constructions approximating any generic compressive map (Theorem 1.1),
hence a characterization of the Γ -limit of h−αEh for all α ∈ (0, 5/3). Here Eh

is the elastic energy per unit thickness, see (1.3) below. Related Γ -convergence
results have been obtained for α = 0 by LeDret and Raoult [18], and for α � 2
by Friesecke and James and Müller [8, 9]. The regime 5/3 � α < 2 remains
open. We recall that the optimal energy scaling for sheets which obey compressive
Dirichlet boundary conditions is linear in h, that is, corresponds to α = 1 [1].
Therefore our result shows that uniform convergence is a much softer compression
criterion. A very different situation arises for clamped membranes to which a force
is applied, see [4]. For a summary of the related literature see [9].

Finally, we prove that our single-fold construction is optimal, in the sense that
we provide a bound from below with the same scaling, but a different constant, under
boundary conditions corresponding to a single fold (Theorem 1.3). Optimality of
the global construction remains open.

This paper is organized as follows. In Section 1.2 we present the three-
dimensional model and state the main results. Then (Section 1.3) we move on
to a simplified two-dimensional model based on the Kirchhoff–Love ansatz, which
is more suitable for heuristic discussions as well as for explicit constructions. The
confinement problem is discussed in Section 1.4. In the rest of the introduction we
sketch the main ideas of the proofs, to motivate the general strategy. In particular, in
Section 1.5 we discuss the results on a single fold, in Section 1.6 the approximation
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of origami maps, and in Section 1.7 the relation between origami maps and short
maps. The following sections contain the proofs. Sections 2–5 are concerned with
the upper bounds: Section 2 proves the single-fold result, Section 3 discusses the
low-energy approximation of origami maps, and Section 4 the approximation of
generic short maps. In Section 5 we extend the previous results to three-dimensional
elasticity. Finally, Section 6 gives the lower bound for a single fold in the framework
of both two- and three-dimensional elasticity. A summary of the notation used can
be found at the end of the paper.

1.2. Main results

The deformation ψ : Ω × (0, h) → R
3 of a thin sheet is determined by

minimizing the elastic energy∫
Ω×(0,h)

W (∇ψ(x, y, z)) dx dy dz

among all ψ which meet additional requirements, specified later. Here Ω is a
bounded Lipschitz subset of R

2 and h > 0 the (small) thickness of the sheet.
We assume as usual that the stored-energy function W : R

3×3 → [0,∞] is
SO(3)-invariant, that is

W (QF) = W (F), ∀Q ∈ SO(3), F ∈ R
3×3,

and that it vanishes only on SO(3) and has quadratic growth, in the sense that

c dist2(F, SO(3)) � W (F) for all F ∈ R
3×3, (1.1)

and

W (F) � C dist2(F, SO(3)) in a neighborhood of SO(3). (1.2)

We factor out the trivial h-dependence arising from the size of the domain and
focus on the elastic energy per unit thickness

Eh(ψ,Ω) := 1

h

∫
Ω×(0,h)

W (∇ψ(x, y, z)) dx dy dz. (1.3)

When studying the behavior of sequences of deformationsψk : Ω×(0, hk) → R
3,

where hk → 0 as k → ∞, it is natural to introduce some notion of convergence
towards two-dimensional deformations u : Ω → R

3. We say that ψk ∈ W 1,2(Ω×
(0, hk); R

3) converges uniformly to u ∈ W 1,2(Ω; R
3) if

lim
k→∞ ess sup

(x,y,z)∈Ω×(0,hk )

|ψk(x, y, z)− u(x, y)| = 0. (1.4)

It turns out that the qualitative behavior of thin sheets is very different under tension
and under compression. The compressive case corresponds to limiting maps u which
are short. Precisely, we say that u ∈ W 1,∞(Ω; R

3) is short if

∇uT ∇u � Id almost everywhere, (1.5)
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that is, if Id −∇uT ∇u ∈ R
2×2 is positive semidefinite. Condition (1.5) is equivalent

to u ◦ γ being shorter than γ for any curve γ : [0, 1] → Ω . Typical examples of
short maps are the constant map (x, y) → (0, 0, 0), the map (x, y) → (x, 0, 0), as
well as the identity (x, y) → (x, y, 0). LeDret and Raoult have shown that for every
short map u and for every sequence hk → 0 there areψk ∈ W 1,2(Ω× (0, hk); R

3)

which converge uniformly to u and such that Ehk (ψk,Ω) → 0. This proves that
short maps are low-energy deformations for thin sheets, and corresponds to the
fact that thin bodies can relax compression by forming fine-scale oscillations. We
show that the actual energy is much lower. Precisely, we prove that short maps are
uniform limits of sequences ψk whose energy Ehk (ψk,Ω) goes to zero faster than
hαk , for every α ∈ (0, 5/3).

Theorem 1.1. Let Ω be an open bounded Lipschitz domain, α < 5/3, and let
W obey (1.2). Then for every short map u ∈ W 1,∞(Ω; R

3) and every sequence
hk → 0 we can find a sequence of deformations ψk ∈ C∞(Ω × (0, hk); R

3)

converging to u uniformly and such that

lim
k→∞

1

hαk
Ehk (ψk,Ω) = 0.

This theorem can also be expressed in the language ofΓ -convergence: together with
the results by LeDret and Raoult [18], it implies that, for every α ∈ (0, 5/3), the
Γ -limit of h−αEh with respect to uniform convergence (see also the discussion at
the end of this Section) is the functional

Γ − lim
h→0

1

hα
Eh(·,Ω)(u) =

{
0 if u is short

∞ otherwise.
(1.6)

In the limiting case α = 5/3 we can still find a sequenceψk with h−5/3 Ehk [ψk]
bounded, for a special class of limiting maps u, the origami maps. We say that u
is an origami map if u is composed of finitely many affine isometries separated by
sharp folds (see Fig. 2). More precisely an origami map is defined as a pair (T , u)
where T is a family of (not too degenerate) disjoint triangles covering Ω , and u
is affine on each triangle of T , with ∇u ∈ O(2, 3). To each such triangulation T
we associate its cardinality |T | and a degeneracy factor Γ (T ), defined in (1.10)
to be a number which controls the largest side length, the smallest angle, and the
maximal number of edges meeting at a point in the grid. To each origami map u
we associate its maximum jump ϕ, defined as the maximum discontinuity of ∇u
across the boundary of a triangle. Details are given in Section 1.6.

Theorem 1.2. LetΩ be an open bounded Lipschitz domain, and u ∈ W 1,∞(Ω; R
3)

be an origami map. Then, for every sequence hk → 0 we can find a sequence of
deformations ψk ∈ C∞(Ω × (0, hk); R

3) converging to u uniformly and such that
for sufficiently large k

1

hk

∫
Ω×(0,hk )

dist2(∇ψk, SO(3)) dx dy dz � CΓ (T ) |T |ϕ2 h5/3
k ,
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Fig. 2. Two origami maps. The first one is sometimes called Miura origami

where ϕ denotes the maximum jump of ∇u in Ω and CΓ (T ) is a nondecreasing
function of Γ (T ).

If ϕ CΓ (T ) � c∗, where c∗ is a positive constant only depending on W , and
(1.2) holds, then for large k

Ehk (ψk,Ω) � c−1∗ CΓ (T ) |T |ϕ2 h5/3
k .

In the following we shall not indicate explicitly the dependence of constants on W ;
a summary of the notation used is given at the end of the paper.

The scheme of proof of the two above theorems is the following. First we prove
Theorem 1.2, based on an explicit construction (Lemma 2.1) for each fold of the
origami map. In order to simplify the construction we work here first with the
reduced two-dimensional functional Ih , introduced in the next subsection, and later
prove that the result extends to Eh . Theorem 1.1 follows from Theorem 1.2 and the
fact that origami maps with small jumps are uniformly dense in the class of short
maps (see Section 1.7).

Our third main result states that the construction on a single fold presented in
Lemma 2.1 and used in the proof of Theorem 1.2, is indeed optimal.

Theorem 1.3. Letψ± : R
3 → R

3 be two affine isometries such thatψ+(x, 0, 0) =
ψ−(x, 0, 0), and let Q = {(x, y) : |x | + τ |y| � l}, for some τ , l > 0. Then (i) for
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any h � C min{lϕτ 3, lϕ−1/2} and any ψ ∈ W 1,2(Q × (0, h); R
3) which obeys the

boundary condition

ψ = ψ± on {(x, y, z) : |x | + τ |y| = l, σ < |y| < 2σ, 0 < z < h},

where

σ := l2/3h1/3

ϕ1/3 , ϕ := |∇ψ+ − ∇ψ−|,

one has

Eh(ψ, Q) � cτ ϕ
7/3l1/3h5/3.

Further, (ii) for any h < lϕ there is ψ ′ ∈ W 1,2(Q × (0, h); R
3) which obeys the

stronger boundary condition

ψ = ψ± on

{
(x, y, z) : |x | + τ |y| = l, |y| > h

ϕ
min{τ, 1}, 0 < z < h

}
,

such that

Eh(ψ
′, Q) � Cτ ϕ

7/3l1/3h5/3.

Both constants depend only on τ and W .

This result demonstrates the validity (in the framework of three-dimensional elas-
ticity) of the scaling law ϕ7/3l1/3h5/3 for a single fold over an infinite strip obtained
in [20, 19, 29, 28, 27]. The upper bound provided by Theorem 1.2 apparently gives
a different scaling in ϕ and l because there we are working with a generic triangu-
lation T , this corresponds to the difference between Lemma 2.1 and Lemma 2.5 in
Section 2. The proof of part (i) of Theorem 1.3 is given at the end of Section 6; that
of part (ii) at the end of Section 5.

In closing, we note that in the related literature it is customary to consider, in
place of the notion of convergence (1.4) for sequencesψk ∈ W 1,2(Ω×(0, hk); R

3),
the notion of weak convergence in W 1,2(Ω × (0, 1); R

3) for the rescaled defor-
mations ψ̃k(x, y, z) := ψk(x, y, hk z) to the limit ṽ(x, y, z) := v(x, y). For the
problem of interest here there is no significant difference. In particular, whenever
Ehk (ψk,Ω) is uniformly bounded, the coercivity assumption (1.1) ensures the weak
compactness in W 1,2(Ω × (0, 1); R

3) of ψ̃k . By the uniqueness of the limit, it is
not necessary to extract a subsequence, hence (1.4) and a uniform energy bound
imply weak convergence to the same limit. Therefore the Γ -convergence theorem
stated in (1.6) holds also with respect to weak convergence of the rescalings.
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1.3. The two-dimensional elastic model

The qualitative behavior of the functional Eh for small h can be understood by
considering special deformationsψ given by a simplified version of the Kirchhoff–
Love ansatz. Starting from an immersion of Ω into R

3, that is, from a map u ∈
C2(Ω; R

3) such that∇u has full rank everywhere, one definesψ : Ω×(0, h) → R
3

by

ψ(x, y, z) := u(x, y)+ zN (x, y), where N := ux ∧ uy

|ux ∧ uy |

is the normal to the surface u(Ω). The idea is that u defines a deformation of the
lower face of the sheet, and fibers which are normal to the lower face are deformed
into fibers which are normal to the deformed lower face.

Under hypothesis (1.2) there exists a positive parameter c∗ > 0 only depending
on W such that, if

‖∇uT∇u − Id 2‖L∞(Ω;R2×2) + h‖∇2u‖L∞(Ω;R3×2×2) � c∗ (1.7)

and ψ = u + zN , then, for a suitable constant C independent of h,

Eh(ψ,Ω) � C

[∫
Ω

[
(u2

x − 1)2 + (u2
y − 1)2 + (ux · uy)

2
]

dx dy (1.8)

+h2
∫
Ω

[
(N · uxx )

2 + (N · uxy)
2 + (N · uyy)

2
]

dx dy

]
.

This (standard) statement is proven in Lemma 5.1, and shows that in the study of
upper bounds for the three-dimensional elastic energy it is sufficient to focus on
the functional

Ih(u,Ω) :=
∫
Ω

[
|(∇u)T∇u − Id 2|2 + h2|∇2u|2

]
dx dy.

The first term in the above estimate is called the stretching energy and takes into
account the stretching and compression of the lower surfaceΩ×{0}. Geometrically
this term corresponds to the L2 distance from the identity of the first fundamental
form of the parameterized surface u(Ω). The second term in (1.8), called the bend-
ing energy, can be seen as the L2 norm of the second fundamental form. If u is an
isometry taking Ω into a cylinder of radius R, then the stretching energy vanishes
and the bending energy equals h2|Ω|/R2. Indeed, this deformation stretches the
upper surfaceΩ×{h} more than the lower oneΩ×{0}, hence they cannot be at the
same time isometric. The difference in strain is of order h/R, leading to an energy
per unit volume of order h2/R2. For simplicity we replace the second fundamental
form with the full second gradient in the definition of Ih .
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1.4. The confinement problem

The confinement problem consists of studying deformations which confine a
sheet Ω × (0, h) into a small ball in R

3. Precisely, we consider the variational
problem

m(Ω, r, h) := inf
{

Ih(u,Ω) : u(Ω) ⊂ r B3
}
.

Here B3 = {x ∈ R
3 : |x | < 1} is the unit ball of R

3. Since any admissible
deformation u for a given r is also admissible for any larger r , m is nondecreasing
in r . We now discuss the different regimes in order of decreasing r , focusing on the
small-h behavior.

The functional Ih vanishes if and only if u is an affine isometry. If r is larger than
the radius rcirc of the circumscribed circle to Ω (that is, the radius of the smallest
ball in R

2 which contains Ω) then there are isometric affine maps from R
2 to R

3

taking Ω into r B3. In particular m = 0 for r � rcirc.
For smaller r a more complex behavior appears. For some values of r < rcirc

it can still be possible to achieve the confinement with (non-affine) deformations u
which are smooth isometries. More precisely, let us consider the critical radius

rcritical := inf
{

r > 0 : ∃u ∈ W 2,2(Ω; R
3), ∇u ∈ O(2, 3), u(Ω) ⊂ r B3

}
,

where O(2, 3) is the set of linear isometries from R
2 to R

3. Of course rcritical � rcirc
(a simple example where rcritical < rcirc is given by the unit square, for which
rcritical = 1/2 < rcirc = 1/

√
2, see Fig. 3), and in the regime r ∈ (rcritical, rcirc) one

expects to observe the energy scaling

m(Ω, r, h) ∼ c(Ω, r)h2, ∀r ∈ (rcritical, rcirc).

The regime of interest here is r � rcritical. One key observation is that necessarily
rcritical > 0, due to the rigidity of the isometry constraint:

Rigidity of isometries: For any W 2,2 map u with gradient in O(2, 3) the fol-
lowing holds: for any x ∈ Ω there is either a neighborhood of x , or a segment
containing x and with endpoints in ∂Ω , on which u is affine.

This was proven by Pogorelov [25, 26] under the assumption that u ∈ C1,
and H2(N (Ω)) = 0. The latter assumption follows by the area formula from the
condition ∇u ∈ O(2, 3), if u is sufficiently smooth. In the smooth case the rigidity
also follows from the results by Hartman and Nirenberg [10], a direct proof was
given by Massey [21] (see also [6]). Using techniques developed by Kirchheim
[13], Pakzad [24] has proven directly the above result for W 2,2 isometries, and
Müller and Pakzad [22] have shown that W 2,2 isometries are C1 and obey
H2(N (Ω)) = 0. Rigidity fails if only C1-smoothness is assumed, as can be seen
from the Nash–Kuiper theorem discussed in 1.7 below [16, 17, 23].

As a corollary of these results,

rcritical � sup
{
ρ > 0 : ρB2 ⊂ Ω

}
> 0.



Confining Thin Elastic Sheets and Folding Paper 9

Fig. 3. The circumscribed circle to the unit square has radius rcirc = 1/
√

2, and this is
the smallest confining radius with affine isometries. At the same time, a sequence of C∞
isometries can be constructed which approximates the folding of the unit square along the
dashed lines. The resulting square can be embedded into every ball of radius r > rcritical =
1/2

Higher-dimensional cases of this kind of statement are discussed, in a smooth
setting, in [29].

We address here the confinement problem in the range r ∈ (0, rcritical). In this
case there are no isometries with finite bending energy (since Ih is finite only on
W 2,2 maps). Therefore the optimal deformations are not exactly isometric, and the
optimal energy is determined by a nontrivial interplay of the two energy terms.
We shall give a construction which is suitable for arbitrarily small r , and for any
bounded Ω , with a scaling h5/3. Conical constructions allow in some cases, for
r close to rcritical, to confine with smaller energy, proportional to h2 ln 1/h. For
example, a conical deformation of the unit square with vertex in the center (which
can be thought of as an approximation of an isometry with a point singularity) can
map the square into any sphere whose radius is larger than 1/2

√
2. We shall not

address this special regime here.
The heuristic arguments of [2, 15, 20] and the results of [27, 28] lead to the

following conjecture.

Conjecture. For every bounded Lipschitz domain Ω there exists r∗(Ω) �
rcritical(Ω) such that, if r < r∗(Ω), there exist two constants 0 < c1(Ω, r) �
c2(Ω, r) < ∞ and h(Ω, r) > 0 such that

c1(Ω, r)h
5/3 � m(Ω, r, h) � c2(Ω, r)h

5/3,

for every h < h(Ω, r).

In this paper we prove the bound from above:
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Fig. 4. The map used in Remark 1.5

Theorem 1.4. LetΩ ⊂ R
2 be bounded, and let r > 0. There exist positive constants

h∗ = h∗(r) and C∗ = C∗(diamΩ, r) such that for every h < h∗ there is a map
uh ∈ C∞(Ω; R

3) with

uh(Ω) ⊂ r B3, Ih(uh,Ω) � C∗h5/3.

The idea of the proof is to first construct a map which realizes the confinement
by using sharp folds between isometric pieces, much as one would fold a sheet
of paper (see Figs. 2b and 4). Sharp folds, that is, discontinuous gradients, give
however, infinite elastic energy. A similar construction with small elastic energy is
then obtained by inserting appropriate smooth constructions in place of the sharp
folds. It is therefore clear that the crucial point is the analysis of a single fold, which
is discussed in the next section.

1.5. The approximation of a single fold

Given points a, b, c, and d in R
2, we denote by [abcd], [abc], and [ab] the

convex envelopes of the sets {a, b, c, d}, {a, b, c}, and {a, b}, respectively.
Definition (single fold, see Fig. 5). We say that a pair ([abcd], v) is a single

fold along [ac] if a, b, c, and d are the ordered vertices of a convex quadrilateral
in R

2, v ∈ W 1,∞(R2; R
3), and there exist F1, F2 ∈ O(2, 3) such that

∇v = F1 on [acb], ∇v = F2 on [acd].
The continuity of v implies a compatibility condition between F1 and F2,

namely, if n is a unit vector normal to [ac], then F1n⊥ = F2n⊥. As usual,

Fig. 5. A single fold deformation. See also Fig. 1b
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(x1, x2)
⊥ := (−x2, x1). The angle ϕ between F1n and F2n will be called the

angle of the fold ([abcd], v), while the length l of [ac] will be called the length
of the fold. The slope of the fold is the number τ defined as the smallest slope (in
absolute value) between the ones defined by the angles of [acd] and [acb] in a and
c.

An isolated single fold ([abcd], v) can be approximated by smooth isometries
in the uniform convergence by means of a natural one-dimensional construction.
To see this, notice that v has the form

v(p) = v(a)+ γ ((p − a) · n)+ (F1n⊥)
(
(p − a) · n⊥)

,

where γ (t) := t F1n if t > 0, γ (t) := t F2n if t < 0 and the normal n to
[ac] is assumed to be oriented towards b. For every ε > 0 we can then define
uε ∈ C2(R2; R

3) by

uε(p) = v(a)+ γε ((p − a) · n)+ (F1n⊥)
(
(p − a) · n⊥)

,

where γε ∈ C2(R; R
3) is a smooth curve parameterized by arc length, taking values

in the plane spanned by F1n and F2n, and such that γε(t) = γ (t) if |t | > ε. This
curve can be chosen in such a way that it satisfies

‖γε − γ ‖L∞(R;R3) � ε, ‖γ ′′
ε ‖L∞(R;R3) � C

ε

(see Lemma 2.2 and Fig. 10 below). Then we shall have

‖v − uε‖L∞(R2;R3) � ε, Ih(uε; [abcd]) � C l
h2

ε
.

A similar one-dimensional construction has been recently used by Horak, Lord
and Peletier [11] in the study of compressed cylinders; indeed [11, Lemma 3.2]
gives a bound analogous to (1.9) below. In our setting, we obtain the following
non-optimal estimate:

Remark 1.5. Under the same assumptions as Theorem 1.4, and for sufficiently
small h, there are maps uh such that

uh(Ω) ⊂ r B3, Ih(uh,Ω) � C∗(r,Ω)h4/3.

To see this, consider for simplicityΩ = (0, 1)2, and let vr ∈ W 1,∞(Ω; B(0, r))
be obtained by foldingΩ over horizontal and vertical lines spaced by r , as in Figs. 2b
and 4. This map is affine on each of finitely many squares, see Fig. 6a. Up to an
area of order ε2 around each corner, we can use γε as a smooth replacement for vr

along the edges, see Fig. 6b. In the small squares around the corners instead we use
a smooth interpolation. The total energy of the deformation uε so constructed is
then the sum of the contribution from the edges and the one from the vertices. We
can easily estimate both in the relevant case ε > h. On the one hand, the edges have
total length 2/r , and their energy per unit length is Ch2/ε (by the argument above).
On the other hand there are r−2 vertices, and on an area of order ε−2 around each
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(a) (b)

Fig. 6. Sketch of the one-dimensional construction leading to Remark 1.5. a The map vr
is an affine isometry on each of the squares of side r . b The map is then modified in an
ε-neighborhood of the jump set of the gradient (that is, of the sides of the squares); the
simple construction based on γε can only be used outside of the smaller black squares of
side ε

of them the energy density is of order one (because of the stretching term). Hence
the total energy of this construction can be estimated as

Ih(uε, Q) � C

(
h2

rε
+ ε2

r2

)
. (1.9)

Optimizing the value of ε we obtain ε = cr1/3h2/3 (which is admissible provided
h � cr ) and correspondingly

Ih(uε(h,r), Q) � C
h4/3

r4/3 .

This argument clarifies that the simple approximation of the single fold by cylinders
does not lead to the conjectured optimal scaling law. We have therefore to resort
to a more complex, genuinely two-dimensional construction. The construction,
presented in Section 2 (Lemma 2.1), is inspired by the pattern observed on a real
sheet of paper, see Fig. 8, and corresponds to the illustration of Fig. 1b. The basic
idea is that the fold will be sharper around the corners—that is, close to the points
a and c—and smoother in the center. This permits to reduce the bending energy in
the central part of the fold, and at the same time reduce the area of the “bad regions”
around the corners: at a heuristic level, it can be thought of as using a different value
of ε in the two terms entering (1.9). The cost of this operation resides in the cost of
the transition layer between the corners and the (central part of the) edges, which
generates in particular a small tension on the folding line [ac]. The result is that for
each single fold ([abcd], v) with length l > 0 a family of deformations uh can be
obtained so that uh agrees with v up to the gradient on the boundary of [abcd], is
smooth away from the two points a and c, and

Ih(uh, [abcd]h) � Cτ ϕ
2l1/3h5/3,

where ϕ ∈ (0, π) is the angle of the fold and Cτ is a constant (explicitly com-
putable, see Section 2) depending only on the slope of the fold τ . In this estimate
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we denote by [abcd]h the domain obtained by taking away from [abcd] the balls
B(a, h) and B(c, h). On these balls uh shall be extended by means of a smooth
interpolation. A similar estimate would not be possible in the entire domain. Pre-
cisely, Ih(u, [abcd]) = ∞ for all u which coincide with v up to the gradient on
∂[abcd]. To see this, notice that Ih(u, [abcd]) is larger than the squared W 1,2 norm
of ∇u (times a small factor h2), hence it can be finite only if the boundary values
for ∇u are in H1/2(∂[abcd],R3). But functions with jump discontinuities, such as
∇v on ∂[abcd], are not in H1/2.

Theorem 1.4 then follows by using Lemma 2.1 (in place of the one-dimensional
construction of Remark 1.5) to modify the map vr discussed above around the
discontinuities of its gradient, as sketched in Fig. 7. Details are given in Section 3
below.

The structure of single folds had been previously studied heuristically in the
physics literature, see for example [15, 20]. The first mathematical justification was
given by Venkataramani [27, 28], although in a simplified setting. More precisely,
he considers a single fold with an infinite stripe as reference configuration, and
uses for the energy functional a theory of the Föppl–von Kármán type, where the
contribution of the tangential displacements to rotations is linearized around the
reference state (in particular, this leads to two different linearizations on the two
sides of the fold). The plate model used here (that is, Ih) includes instead a complete,
nonlinear treatment of rotations. This generates a few additional terms in the upper
bound that we need to control, but at the same time leads us to a simpler argument
for the lower bound, which is based on a transparent balancing of stretching and
bending energies, see Section 6. Furthermore, the upper bound we obtain with the
fully geometrically nonlinear elastic model Ih allows to treat directly the three-
dimensional model Eh . The adaptation of the argument for the lower bound for Ih

to the case of Eh is however nontrivial, and shall in particular require to apply the
Friesecke–James–Müller rigidity theorem [8].

Fig. 7. Sketch of the construction leading from Lemma 2.1 to Theorem 1.4. The Lemma is
applied separately on each shaded region. On the black squares a generic smooth interpolation
is used
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Fig. 8. A real sheet of paper undergoing a single fold. The ideal folding line is drawn to put
in evidence the stretching

The fact that our treatment of single folds allows as reference configurations
generic convex quadrilatera [abcd], instead of infinite stripes only as in [28, 27],
is crucial in order to patch together the constructions for different adjacent single
folds, and thus approximate generic origami maps. This procedure is explained in
detail in the next subsection.

1.6. Origami maps and their approximation in energy

It is clear that we can use Lemma 2.1 to approximate much more general
deformations than the vr defined in Fig. 4. The class of limit maps that we can
directly reach in this way consists of what we call origami maps.

Definition (origami maps, see Fig. 2). An origami map on a bounded open set
Ω ⊂ R

2 is a pair (T , v) where

(i) T = {Tj } j is a finite family of (closed, nondegenerate) triangles with disjoint
interiors such that Ω is contained in ΩT := ⋃

Tj ∈T Tj ; each pair (Ti , Tj ) is
either disjoint, or shares a corner, or shares a side.

(ii) v ∈ W 1,∞(ΩT ; R
3) is affine on each Tj , and∇v ∈ O(2, 3) almost everywhere.

This definition implies that, if T1, T2 ∈ T have a side [ac] in common, then there
are points b ∈ T1 and d ∈ T2 such that ([abcd], v) is a single fold along [ac].
We shall in particular choose as b and d the barycenters of T1 and T2, so that the
domains of the single folds so constructed are disjoint (up to a null set).

To every triangulation T as the ones used in the definition of an origami map
we associate the maximum side length lmax of the triangles in T , their minimum
slope τmin, and the maximum number ν of triangles of T that meet at a point. The
degeneracy factor of T is the number

Γ (T ) := max

{
lmax, ν,

1

τmin

}
. (1.10)

We shall denote by |T | the cardinality of T , that is, the number of triangles contained
in T .
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By repeatedly using Lemma 2.1 and by patching together the different
constructions for each single fold in (T , v)we can extend our approximation result
with optimal scaling energy to the class of origami maps.

Theorem 1.6. Let (T , v) be an origami map on the bounded domain Ω and let ϕ
be the maximum jump of ∇v. Then for every h small enough [depending only on
Ω and T , see (3.1) below], there is a deformation uh ∈ C2(Ω; R

3) such that

‖v − uh‖L∞(Ω;R3) � CΓ (T ) ϕ h1/3, (1.11)

Ih(uh,Ω) � CΓ (T ) |T |ϕ2 h5/3, (1.12)

and

‖dist(∇uh, O(2, 3))‖L∞(Ω) + h‖∇2uh‖L∞(Ω;R3×2×2) � CΓ (T ) ϕ, (1.13)

where CΓ (T ) is a nondecreasing function of Γ (T ).

The parameter ϕ in the above statement corresponds, up to an inessential, universal
factor, to the largest angle between those of the various folds composing (T , v).

In the study of buckling of cylinders, origami maps with periodic boundary
conditions are of interest (the so-called Yoshimura pattern, see for example [11]).
Our argument applies with no change to that situation. Precisely:

Remark 1.7. If (T , v) are defined on a rectangle, with periodic boundary condi-
tions on one or both pairs of opposite sides, then the sequence uh inherits the same
periodicity.

1.7. The closure of origami maps in the uniform convergence

To bridge between Theorems 1.2 and 1.1 we shall show that the class of short
maps is the closure in the uniform convergence of origami maps. That the closure
is no larger follows from the fact that short maps are those for which the gradient
takes values in the convex hull of O(2, 3), whereas the gradient of origami maps
takes values in O(2, 3). We therefore only need to perform a construction. This is
subtle, since origami maps have a quite rigid structure.

As a first example, consider the deformation of Fig. 2a (the so-called Miura
origami). This is a periodic origami map, and after scaling gives rise to origami
maps uniformly converging to a biaxial compression. Similar patterns have recently
been observed in the buckling of compressed thin films on compliant substrates [3].
This construction is however too rigid for our purposes, and does not permit to deal
with non-affine limits. We shall therefore propose in Section 4 a different pattern,
which allows us to approximate uniformly not only affine biaxial compressions,
but all short maps.

We shall perform an explicit construction of the origami map only in the case
of C1 isometries, that is, for v ∈ C1 with ∇v ∈ O(2, 3) everywhere. The relevant
feature is that, if ṽ is obtained from v by triangulation and scaling, then ṽ is locally
uniformly close to an affine short map, which in turn is close to a scaled isometry.
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This permits to control the qualitative geometry of the construction, see Section 4
below.

That this special case is sufficient follows from the celebrated theorem by Nash
and Kuiper about isometric immersions of Riemannian manifolds in Euclidean
spaces, which in our setting states that for every short map v ∈ W 1,∞(Ω; R

3) and
every δ > 0 there is a deformation u ∈ C1(Ω; R

3) that is an isometry (that is,
∇u ∈ O(2, 3) everywhere) and such that ‖u − v‖L∞(Ω;R3) � δ [23, 16, 17] (see
also [7]). The crucial point here is the C1 regularity of u. Indeed, as discussed above
the same cannot hold with C2 or W 2,2 regularity.

Theorem 1.8. On bounded Lipschitz domains, the uniform closure of the set of
origami maps is the set of short maps.

More precisely, let u be a short map on a bounded Lipschitz setΩ ⊂ R
2. Then

for every δ > 0 we can find an origami map (Tδ, vδ) on Ω such that

‖u − vδ‖L∞(Ω;R3) � δ, |ϕδ| � δ,

where ϕδ is the maximum jump of ∇vδ in Ω . Furthermore Γ (Tδ) � C for some
universal constant C.

2. The approximation of a single fold: upper bound

We present below the construction of a single fold with optimal energy, as
discussed in Section 1.5 above.

Lemma 2.1. Let ([abcd], v) be a single fold, with length l, angle ϕ, and slope τ .
Then for every σ < l/8 there exists a deformation uσ such that

uσ ∈ W 1,∞([abcd]; R
3) ∩ C2([abcd] \ {a, c}; R

3),

(uσ ,∇uσ ) = (v,∇v) on ∂[abcd],
which obeys

‖uσ − v‖L∞([abcd];R3) � Cτ ϕ l2/3 σ 1/3, (2.1)

‖∇uσ − ∇v‖L∞([abcd];R3×2) � Cτ ϕ, (2.2)

‖∇2uσ‖L∞([abcd]σ ;R3×2×2) � Cτ
ϕ

σ
, (2.3)

and with elastic energy bounded by

Ih(uσ , [abcd]σ ) � C

[
ϕ4τ 5∗ l1/3σ 5/3 + ϕ8τ 7∗σ 2 + h2

(
ϕ2l1/3

τ∗σ 1/3 + ϕ4τ∗
)]
, (2.4)

where τ∗ = min{τ, 1} and we have denoted by [abcd]σ the domain obtained by
taking away from [abcd] the balls B(a, σ ) and B(c, σ ), and Cτ is a nonincreasing
function of τ .

If h = σ , then (2.4) reduces to

Ih(uh, [abcd]h) � Cτ ϕ
2l1/3h5/3. (2.5)
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Proof of Lemma 2.1, first part. We first observe that, if [abcd] ⊂ [ab′cd ′], then
any construction u used for ([abcd], v) can be extended (setting u = v outside) to
a construction u′ for ([ab′cd ′], v), with exactly the same estimates. This shows that
the estimates can only improve with increasing τ , and in particular that it suffices
to consider the case τ � 1.

After a change of coordinates, we can assume that 0 < ϕ < π and

v(x, y) =
{

xe1 + ye2, y � 0
xe1 + y cosϕ e2 + y sin ϕ e3, y � 0.

Let

Q :=
{
(x, y) ∈ R

2 : 0 � x � l, |y| � τ max{x, l − x}
}
.

Clearly [ac] ⊂ Q ⊂ [abcd], hence it will suffice to focus on the rhombus Q. In
order to prove the lemma we shall construct a deformation

u ∈ W 1,∞(R2; R
3) ∩ C2((0, l)× R; R

3), (2.6)

u = v on R
2 \ Q (2.7)

which obeys the estimates (2.1), (2.2), (2.3) and (2.4); (2.5) is then an immediate
consequence. The estimates involving [abcd]σ shall be proved in consequence of
analogous estimates on the domain

Qσ := {(x, y) ∈ Q : min{x, l − x} > σ ′},
which makes some computations simpler. Here σ ′ = σ/

√
2, and in the following

we write σ for σ ′, since a constant factor does not change the estimates. We divide
the proof into various steps.

I. Structure of the deformation u. We shall construct u by scaling a univer-
sal fold profile γ to a position-dependent fold width f , and inserting a suitable
correction β.

Given a function f ∈ C∞([0, l]; R) such that

0 � f (x) � τ min{x, l − x},
we define the subdomain Ω ⊂ Q (see Fig. 9) by

Ω := {(x, y) ∈ (0, l)× R : |y| < f (x)}.
Given γ ∈ C2([−1, 1]; R

3) and β ∈ C2(Ω; R
3), we define u : R

2 → R
3 as

u(x, y) :=
{
β(x, y)e1 + f (x)γ (y/ f (x)), if (x, y) ∈ Ω,
v(x, y), else.

We shall choose γ parameterized by arc length and orthogonal to the e1 direction,
that is,

(γ ′)2 = 1, γ · e1 = 0. (2.8)
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Fig. 9. Subdivision of the domain in the construction of the proof of Lemma 2.1

This curve constitutes a suitable one-dimensional interpolation between the two
values taken by the gradient of v on the two sides of the fold: thus we require

γ (t) = t e2 in a neighborhood of t = 1

γ (t) = t (cosϕe2 + sin ϕe3) in a neighborhood of t = −1.

Analogously we require that, for every fixed x ∈ [0, l],

β(x, y) = x in a neighborhood of |y| = f (x). (2.9)

This ensures a smooth matching at the boundary of Ω , up to the two points (0, 0)
and (l, 0), including condition (2.6).

The profile f , the curve γ , and the function β will be chosen in order to achieve
the claimed scalings. In particular γ is constructed in Lemma 2.2, f in Lemma 2.4,
and β is defined in Equation (2.18).

In order to compute the energy we have to express ∇u and ∇2u in terms of f ,
γ and β. To this end it is useful to introduce the following functions related to γ :

η(t) := γ (t)− tγ ′(t),
ζ(t) := γ ′(t) · η(t) = γ ′(t) · γ (t)− t.

For later reference we notice that η = 0 = ζ around ±1. For every (x, y) ∈ Ω the
gradient of u is given by

ux (x, y) = βx (x, y)e1 + f ′(x) η
(

y

f (x)

)
, (2.10)

uy(x, y) = βy(x, y)e1 + γ ′
(

y

f (x)

)
, (2.11)
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while the second derivatives are

uxx (x, y) = βxx (x, y)e1 + f ′′(x) η
(

y

f (x)

)
+ y2 f ′(x)2

f (x)3
γ ′′

(
y

f (x)

)
, (2.12)

uxy(x, y) = βxy(x, y)e1 − y f ′(x)
f (x)2

γ ′′
(

y

f (x)

)
, (2.13)

uyy(x, y) = βyy(x, y)e1 + 1

f (x)
γ ′′

(
y

f (x)

)
. (2.14)

II. Computation of the stretching energy and the choice of β. The stretching
energy, which involves only first derivatives of u, is well defined on R

2, and it
vanishes on R

2 \Ω . It remains to compute∫
Ω

(u2
x − 1)2 + (ux · uy)

2 + (u2
y − 1)2 dx dy.

For every (x, y) ∈ Ω , according to (2.10) and (2.11), and taking into account (2.8),
we find

(u2
x − 1)2 =

(
( f ′η)2 + β2

x − 1
)2

� 2
[
( f ′)4η4 + (β2

x − 1)2
]
, (2.15)

(u2
y − 1)2 =

(
(γ ′)2 + β2

y − 1
)2 = β4

y , (2.16)

(ux · uy)
2 = ( f ′ζ + βxβy)

2 = (
( f ′ζ + βy)+ βy(βx − 1)

)2
, (2.17)

where u, β and their derivatives are computed at (x, y), f is computed at x , and η
and ζ at y/ f (x).

We now choose β so that βx is close to 1, and f ′ζ + βy = 0. Precisely, we set

β(x, y) := x − f (x) f ′(x)ω
(

y

f (x)

)
, (x, y) ∈ Ω (2.18)

where

ω(t) :=
∫ t

−1
ζ(s) ds.

Since ζ = 0 around ±1, and
∫ 1
−1 ζ(t) dt = 0, we see that ω = 0 around ±1, and

hence (2.9) holds. Furthermore f ′ζ + βy = 0 so that (2.17) reduces to

(ux · uy)
2 = β2

y (βx − 1)2, on Ω . (2.19)

Now that β has been chosen we introduce

ξ(t) := tω′(t)− ω(t) = tζ(t)− ω(t),

and then we compute

βx = 1 + ( f ′)2ξ − f f ′′ ω, βy = − f ′ζ, (2.20)

βxx = − y2( f ′)3

f 3 ζ ′ + 3 f ′ f ′′ξ − f f ′′′ω, (2.21)

βyy = − f ′

f
ζ ′, βxy = y( f ′)2

f 2 ζ ′ − f ′′ζ, (2.22)
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(again, ζ , ξ , and ω are evaluated at y/ f ). We are now in the position to express the
stretching energy in terms of f and γ only. By (2.16) and (2.20) we have

∫
Ω

(u2
y − 1)2 dx dy =

∫
Ω

β4
y dx dy =

∫ l

0

∫ f (x)

− f (x)
f ′(x)4ζ(y/ f )4 dx dy

=
∫ l

0
f ′(x)4 f (x) dx

∫ 1

−1
ζ(t)4 dt. (2.23)

By (2.20)

(βx − 1)2 � 2
[
( f ′)4ξ(y/ f )2 + ( f f ′′)2ω(y/ f )2

]

and thus by (2.19)

∫
Ω

(ux · uy)
2 dx dy �

∫
Ω

β2
y (βx − 1)2 dx dy

� 2
∫ l

0
f ′(x)6 f (x) dx

∫ 1

−1
ζ(t)2ξ(t)2 dt (2.24)

+2
∫ l

0
f ′(x)2 f ′′(x)2 f (x)3 dx

∫ 1

−1
ζ(t)2ω(t)2 dt.

Finally, as (βx + 1)2 � C(1 + (βx − 1)2), we have

(β2
x − 1)2 � C

[
( f ′)4ξ2 + ( f ′)8ξ4 + ( f f ′′)2ω2 + ( f f ′′)4ω4

]
.

Thus from (2.15) it follows

1

C

∫
Ω

(u2
x − 1)2 dx dy �

∫ l

0
f ′(x)4 f (x) dx

∫ 1

−1
η(t)4 dt (2.25)

+
∫ l

0
f ′(x)4 f (x) dx

∫ 1

−1
ξ(t)2 dt

+
∫ l

0
f ′(x)8 f (x) dx

∫ 1

−1
ξ(t)4 dt

+
∫ l

0
f ′′(x)2 f (x)3 dx

∫ 1

−1
ω(t)2 dt

+
∫ l

0
f ′′(x)4 f (x)5 dx

∫ 1

−1
ω(t)4 dt.

In conclusion (2.23), (2.24) and (2.25) produce an estimate for the stretching energy
in terms of a sum of products of integrals depending only on f or on γ .

Before concluding the proof of Lemma 2.1 we introduce in the next three
lemmas the curves γ and f .
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Lemma 2.2. For all ϕ ∈ (−π, π) there is a curve γ ∈ C2([−1, 1]; R
3) such that

γ (t) · e1 = 0 and γ ′(t)2 = 1 ∀t ∈ [−1, 1]
γ (t) = t e2 in a neighborhood of t = 1

γ (t) = t (cosϕe2 + sin ϕe3) in a neighborhood of t = −1

which satisfies the estimates

|γ (t)− te2| � C ϕ ∀t ∈ [−1, 1], (2.26)

|γ ′(t)− e2| � C ϕ ∀t ∈ [−1, 1], (2.27)

|γ ′′(t)| � C ϕ ∀t ∈ [−1, 1]. (2.28)

We do not present a construction aiming to a realistic profile, but simply discuss
the origin of the scalings above, without optimizing the constants. The construction
is illustrated in Fig. 10.

Proof. We first construct a curve of length 2 which has the desired geometric
properties, and then re-parameterize it by arc length. To do this, we start from the
piecewise affine map

γ0(t) =
{

t e2 if t > 0

t (cosϕe2 + sin ϕe3) if t � 0

and define γ1 as the convolution of γ0 with a smooth kernel whose support is
contained in the interval (−1/3, 1/3). The curve γ1 is smooth, coincides with γ0
for |t | � 1/3, its derivative is ϕ-close to e2, and its second derivative is controlled

Fig. 10. Sketch of the construction of γ in Lemma 2.2. The curve γ0 is composed of two
segments: γ1 is smoothed around the center, and γ2 contains an additional hump on one of
the radii
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by Cϕ; hence it satisfies all requirements up to the one on the total length. The
length of γ1 can be estimated by

2 − Cϕ2 � Length(γ1) � 2.

To see this, it suffices to observe that for every point t the gradient γ ′
1 is a weighted

average between the two values taken by γ ′
0. Both have length 1, and their distance

is controlled by ϕ, hence the length of any convex combination is between 1 − ϕ2

and 1.
We shall now modify γ1 in the interval (1/3, 2/3) in order to reach length 2.

To do so, define for ε ∈ R the curve

γ2(t) = γ1(t)+ ερ1/6(t − 1/2)e3,

where ρ1/6 is a mollification kernel supported on (−1/6, 1/6). The length of γ2 is
a continuous function of ε; for ε = 0 it is less than 2, and since the maximum of
ρ1/6 is larger than 3, for ε = 1 the length of γ2 is larger than 6. This implies that
there is a value of ε ∈ (0, 1) such that the length is exactly 2.

It remains to show that for small ϕ also ε is small. This follows from the fact
that for small ε the length of γ2 behaves as the length of γ1 plus a term of order
C ε2, which shows that ε scales as ϕ for small ϕ. This in turn implies that also the
term ερ1/6 satisfies the estimate on the second derivative, and that the difference
between γ ′

2 and γ ′
1 (and hence e2) is controlled by a constant times ϕ.

To conclude the construction, it suffices to reparameterize by arc length, and
observe that by so doing we do not change our estimates, up to considering a bigger
constant C in (2.27) and (2.28). Then (2.26) is deduced from (2.27) by integration,
thanks to the fact that γ (1) = e2. ��

In the estimate for the stretching energy of u the integral of various quantities
related to γ are involved. For small values of ϕ the curve γ comes closer to a straight
segment, which has zero energy, hence we expect these quantities to be small. This
is made quantitative in the following lemma.

Lemma 2.3. The properties ofϕ stated in Lemma 2.3 imply that, for all t ∈ [−1, 1],
|η(t)| � Cϕ, |ζ(t)| + |ζ ′(t)| + |ω(t)| + |ξ(t)| � Cϕ2. (2.29)

Proof. We recall that the quantities entering the statement are defined by η =
γ − tγ ′, ζ = η · γ ′, ω(t) = ∫ t

−1 ζ(s) ds, and ξ = tζ − ω. To estimate η we use
(2.26) and (2.27),

|η| = |γ − tγ ′| � |γ − te2| + |γ ′ − e2| � Cϕ.

In order to estimate ζ , we first observe that (γ ′)2 = 1 implies that γ ′ is orthogonal
to γ ′′, and hence to η′ = −tγ ′′. Therefore

ζ ′ = η′ · γ ′ + η · γ ′′ = η · γ ′′.

Both factors are bounded by Cϕ, hence |ζ ′| � Cϕ2. Integrating (and using ζ(1) =
0) we obtain the estimate for ζ , integrating again and recalling that ω(1) = 0 we
get the estimate for ω, and we conclude by |ξ | ≤ |ζ | + |ω|.
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We now pass to the choice of f .

Lemma 2.4. For any τ, l > 0 and σ ∈ (0, l/8) there is f ∈ C∞([0, l]) such that

(i) f is even with respect to x = l/2, that is, f (x) = f (l − x);
(ii) f and its first three derivatives are controlled on (0, l/2) by

f0(x) = τσ 1/3(x + σ)2/3 − τσ,

in the sense that there is a universal constant C such that, for x ∈ (0, l/2),
1

C
f0 � f � f0, | f ′| � C | f ′

0|, | f ′′| � C | f ′′
0 |, and | f ′′′| � C | f ′′′

0 |.
(2.30)

Note that, since 0 � f0(x) � τ x for x � 0, (i) and (ii) imply 0 � f (x) �
τ min{x, l − x} for x ∈ (0, l).
Proof. It suffices to take a smooth interpolation between f0(x) and f0(l − x).
Precisely, let ψ ∈ C∞([0, 1]; [0, 1]) be such that ψ = 1 on (0, 1/4) and ψ(x) =
1 − ψ(1 − x), and set

f (x) = 1

4

[
ψ

( x

l

)
f0(x)+ ψ

(
1 − x

l

)
f0(l − x)

]
.

It is clear that 0 � f0/4 � f on (0, l/2). The upper bound on f has to be checked
only for x ∈ [l/4, l/2]. There, l − x � 3x , hence (l − x +σ)2/3 � 32/3(x +σ)2/3.
Analogously, since σ � l/8 � x/2, 32/3σ 2/3 � (x + σ)2/3. Combining these two
estimates we obtain

(l − x + σ)2/3 − σ 2/3 � (1 + 32/3)
[
(x + σ)2/3 − σ 2/3

]
.

We conclude that on [l/4, l/2] we have f0(l − x) � 4 f0(x), and hence f � f0.
The remaining bounds are proven by observing that, in the range [l/4, l/2], one

has

f0(x)

Cl
� | f ′

0(x)| + | f ′
0(l − x)| � C

f0(x)

l
,

and analogously for the higher derivatives.

Proof of Lemma 2.1, last part. III. The choice of γ and f . We take γ and f to
be the curves introduced in Lemmas 2.2 and 2.4, respectively. As a consequence of
Lemma 2.3 and of the estimates (2.23), (2.24) and (2.25) for the stretching energy
we find that

1

C

∫
R2
(u2

x − 1)2 + (ux · uy)
2 + (u2

y − 1)2 dx dy

� ϕ4
∫ l

0
f ′(x)4 f (x)+ f ′′(x)2 f (x)3 dx (2.31)

+ϕ8
∫ l

0
f ′(x)6 f (x)+ f ′(x)2 f ′′(x)2 f (x)3+ f ′(x)8 f (x)+ f ′′(x)4 f (x)5 dx .
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Using 2.4 we can explicitly estimate

∫ l/2

0
( f ′)4 f + ( f ′′)2 f 3 dx � Cτ 5σ 5/3

∫ l/2

0

dx

(x + σ)2/3
� Cτ 5σ 5/3l1/3,

∫ l/2

0
( f ′)6 f + ( f ′)2( f ′′)2 f 3 dx � Cτ 7σ 7/3

∫ l/2

0

dx

(x + σ)4/3
� Cτ 7σ 2,

∫ l/2

0
( f ′)8 f + ( f ′′)4 f 5 dx � Cτ 9σ 3

∫ l/2

0

dx

(x + σ)2
� Cτ 9σ 2.

By symmetry the same holds on (0, l). Thus from (2.31) we obtain the following
general estimate for the stretching energy:

∫
R2
(u2

x − 1)2 + (ux · uy)
2 + (u2

y − 1)2 dx dy

� C
[
ϕ4τ 5l1/3σ 5/3 + ϕ8τ 7(1 + τ 2)σ 2

]
. (2.32)

IV. Computation of the bending energy. From (2.12), (2.13), (2.14), by taking
into account the fact that |y| � f inΩ , and by using (2.28) and (2.29) we find that

|∇2u|2 � |∇2β|2 + Cϕ2 F1, F1 = 1 + ( f ′)4

f 2 + ( f ′′)2.

Similarly from (2.21), (2.22) and (2.29) we deduce

|∇2β|2 � Cϕ4 F2, F2 = ( f ′)2(1 + ( f ′)4)
f 2 + (1 + ( f ′)2)( f ′′)2 + f 2( f ′′′)2.

Therefore we have
∫

Qσ

|∇2u|2 dx dy � C

[
ϕ2

∫ l−σ

σ

F1 f dx + ϕ4
∫ l−σ

σ

F2 f dx

]
.

We first estimate the integral of F1.

∫ l−σ

σ

dx

f (x)
� C

τσ 1/3

∫ l/2

σ

dx

(x + σ)2/3 − σ 2/3

� C

τσ 1/3

∫ l/2

σ

22/3 dx

(x + σ)2/3
� C

l1/3

τσ 1/3 .

At the same time, the bounds on f give

∫ l−σ

σ

( f ′)4

f
dx +

∫ l

0
( f ′′)2 f dx � Cτ 3,

and we obtain
∫ l−σ

σ

F1 f dx � C
1

τ

l1/3

σ 1/3 + Cτ 3.
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Concerning F2 we remark that, by using the properties of f as we did in the previous
part of the proof,

∫ l−σ

σ

( f ′)2

f
dx � Cτ,

∫ l

0
( f ′′′)2 f 3 dx � Cτ 5,

so that
∫ l−σ

σ

F2 f dx � C
(
τ + τ 5

)
.

Thus we come to the following general estimate for the bending energy:

h2
∫

Qσ

|∇2u|2 dx dy � Ch2
[
ϕ2l1/3

τσ 1/3 + ϕ4(τ 5 + τ)

]
. (2.33)

Since τ � 1, in each term only the lowest power of τ is relevant. In particular (2.4)
follows by adding up (2.32) and (2.33), and (2.5) follows by choosing σ = h. We
have now to check that the deformation u realizes also (2.1), (2.2) and (2.3).

V. Further properties. We start from the estimate on the gradient. By using
(2.10), (2.20), (2.29) and (2.30) we have

|ux − e1| � |βx − 1| + | f ′||η| � C(τ 2ϕ2 + τϕ),

and analogously from (2.11), (2.20),

|uy − e2| � |βy | + |γ ′ − e2| � C(τϕ2 + ϕ).

Since vx = e1 and |vy − e2| � Cϕ we deduce (2.2).
For (x, y) ∈ Ω , since u = v on ∂Ω we estimate

|u(x, y)− v(x, y)| � |y − f (x)| sup
Ω

|uy − vy | � Cϕ f (x) � Cτϕl2/3σ 1/3.

This proves (2.1). The estimate (2.3) for the second gradient can be deduced by
similar considerations. This concludes the proof of Lemma 2.1.

In concluding this Section, we briefly remark the implications of the above
Lemma for the optimal energy of a single fold. In Lemma 2.1 we have constructed
a test function which fulfills boundary values on the full boundary ∂Q, but which has
“good” energy only in the smaller set Qσ . In order to relate our result to estimates
on a single fold we present here a modification of the construction, where boundary
values are piecewise affine only in part of the boundary, but the energy is estimated
on the entire boundary.

Lemma 2.5. Let ([abcd], v) be a single fold with length l, angle ϕ, and slope τ .
Then for every h < lϕ there exists a deformation uh such that

uh ∈ C2([abcd]; R
3),

(uh,∇uh) = (v,∇v) on (∂[abcd]) \ (
Bh/ϕ(a) ∪ Bh/ϕ(c)

)
,
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which obeys

‖uh − v‖L∞([abcd];R3) � Cτ ϕ
2/3 l2/3 h1/3,

‖∇uh − ∇v‖L∞([abcd];R3×2) � Cτ ϕ,

‖∇2uh‖L∞([abcd];R3×2×2) � Cτ
ϕ2

h
,

and with elastic energy bounded by

Ih(uh, [abcd]) � Cτ ϕ
7/3l1/3h5/3,

with Cτ is a nonincreasing function of τ .

Proof. The key idea is to modify the function uσ constructed in Lemma 2.1 close to
the endpoints a and c of the fold, for a suitable value of σ . Doing this by extension
and mollification on scale σ , as is done in Section 3 below, does not lead to the
optimal dependence on the angle ϕ. Indeed, if the interpolation does not use the
specific structure of the problem, then the distance from O(2, 3) turns out to be
of order ϕ, as in (3.7) below; see also (2.2). Thus this kind of extension leads to
a stretching energy of order σ 2ϕ2 from the region (B(a, σ ) ∪ B(c, σ )) ∩ [abcd],
which in the relevant case σ = h/ϕ equals h2. The latter is smaller than the
desired ϕ7/3l1/3h5/3 scaling only under the somewhat artificial condition h � lϕ7.
Therefore a more careful construction is needed.

We give here a direct construction based on a redefinition of the function f in
the proof of Lemma 2.1 to make it constant close to the extrema. Precisely, let

f̂0(x) = 1

2
τσ 1/3(x + σ)2/3,

so that f̂0(x) � τ x on [σ, l/2] and f0(x) � τσ/2 on [0, l] (as above, we can replace
τ by max{τ, 1} in the entire computation). Proceeding as in Lemma 2.4, we find a
function f̂ ∈ C∞([0, l]) which obeys the same inequalities as in (2.30). We repeat
the construction used in the proof of Lemma 2.1 with f̂ replacing f , and working
on the full domain Q; we denote the resulting function by ûσ . All estimates for
the stretching term are unchanged; some differences appear in the treatment of the
bending term in Step IV. Precisely, we estimate

∫ l

0

dx

f̂ (x)
� C

∫ l/2

0

dx

f̂0(x)
� C

l1/3

τσ 1/3 .

Hence f̂ obeys on [0, l] the same estimate that f obeys on [σ, l − σ ]. This is true
also for the other combinations of derivatives used in Step IV above, as simple
computations show. We conclude that

h2
∫

Q
|∇2û|2 dx dy � Ch2

[
ϕ2l1/3

τσ 1/3 + ϕ4(τ 5 + τ)

]
,

and as a consequence

Ih(ûσ , Q) � Cτ

[
ϕ4l1/3σ 5/3 + ϕ8σ 2 + h2 ϕ

2l1/3

σ 1/3 + h2ϕ4
]
.
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We finally choose σ so that the sum of the first and third terms is minimal, which
gives σ proportional to h/ϕ. For notational convenience we take σ = h/(8ϕ). This
choice is admissible if h � lϕ, and leads to the bound

Ih(ûh/8ϕ, Q) � Cτ ϕ
7/3l1/3h5/3.

The second and fourth terms could be dropped since in the stated admissibility range
we have ch2ϕ6 � h2ϕ4 � h5/3l1/3ϕ4+1/3. The other estimates follow analogously.
Notice that ûσ = v on the set {(x, y) : |y| > f̂ (x)}, which in particular includes
{(x, y) : |y| = τ x, x ∈ [σ, l/2]}. Therefore setting uh = ûσ concludes the proof.

3. Origami maps as compositions of single folds

In this section we provide the details of the proof of Theorem 1.6.

Proof of Theorem 1.6. Let (T , v) be an origami map defined on a domain Ω , as
described in Section 1.6; let ν, lmax, and lmin be the maximum number of triangles
from T intersecting at a point, the maximum, and the minimum side length of a
triangle from T , respectively. Let also ϕ be the maximum jump of ∇v. Let h∗
be such that, for any p ∈ Ω , B(p, 2h∗) intersects at most 2ν triangles of T . We
assume

h < min

{
h∗, 1

8
lmin

}
. (3.1)

We note that, for the grids constructed in the next section, one can take h∗ propor-
tional to the side of the starting equilateral triangles.

The key idea of the construction is to apply Lemma 2.1 to each single fold
defined by (T , v), as sketched in Fig. 11. Precisely, we subdivide each triangle
in T into three triangles, by joining the barycenter with the vertices. Then, for
every edge L of T we consider as the domain of the corresponding single fold the
quadrilateral which has additional vertices in the barycenters in the two triangles of
whom L is a side. These quadrilatera are disjoint. In each of them we replace v by
the result of Lemma 2.1 for σ = h: let us denote by u be the resulting deformation.

Fig. 11. Subdivision of a grid into single folds. The full lines separate the grid triangles,
the dashed lines separate the quadrilatera composing the single folds. One of the rhombi is
dashed
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Since the construction of Lemma 2.1 preserves the boundary values, u is continuous,
and—away from the vertices—has a continuous derivative and small energy:

‖u − v‖L∞(Ω;R3) � Cτ ϕ l2/3
max h1/3, (3.2)

‖∇u − ∇v‖L∞(Ω;R3×2) + h‖∇2u‖L∞(Ω\Ωh;R3×2×2) � Cτ ϕ, (3.3)

Ih(u,Ω \Ωh) � Cτ |T |ϕ2 l1/3
maxh5/3. (3.4)

Here Ωh is the union of the balls B(qi , h), where {q1, . . . , qN } denote the vertices
of the triangulation, and Cτ denotes a nonincreasing function of the smallest slope
of the various triangles from T . Around the exterior edges, that is, those segments
which are sides of only one grid triangle, we set u = v.

Let Ω∗
h denote the union of the balls B(qi , 2h), which are disjoint by (3.1). In

each ball ∇v takes at most 2ν values, let Fi be one of them. Since the jumps of ∇v
are less than ϕ, using (3.3) we have

|∇u − Fi | � Cτ ν ϕ on B(qi , 2h). (3.5)

We now define u : Ω∗
h → R

3 as

u = u(qi )+ Fi (x − qi ) if x ∈ B(qi , 2h).

It is clear that ∇u(x) ∈ O(2, 3) and ∇2u = 0, and by (3.5) we have

‖∇u − ∇u‖L∞(Ω∗
h ;R3×2) � Cτ ν ϕ, ‖u − u‖L∞(Ω∗

h ;R3) � Cτ ν ϕ h. (3.6)

Let now α ∈ C∞
c (B

2(0, 2); [0, 1]) with α(p) = 1 if p ∈ B2(0, 1), let

αh(p) :=
N∑

i=1

α

(
p − qi

h

)
,

and define

uh := αhu + (1 − αh)u.

It is clear that uh ∈ C2(Ω; R
3). As |uh − v| � αh |u − u| + |u − v|, by (3.2) and

(3.6) we obtain (1.11). As ∇uh − ∇u = αh(∇u − ∇u) + (u − u) ⊗ ∇αh , from
(3.3) and (3.6) we obtain

|∇uh − ∇v| � Cτ ν ϕ,

which in turn implies

‖dist(∇uh, O(2, 3))‖L∞(Ω) � Cτ ν ϕ. (3.7)

The second derivatives are treated analogously: on the balls B(qi , h) we have
uh = u, hence ∇2uh = 0, while outside these balls,

|∇2uh | � |∇2u| + C

h
|∇u − ∇u| + C

h2 |u − u|.
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By combining (3.3) and (3.6) we obtain

h‖∇u2
h‖L∞(Ω;R3×2×2) � Cτ ν ϕ. (3.8)

It remains to estimate the energy. By (3.7) and (3.8) we have

Ih(uh,Ω
∗
h ) � Cτ |T | h2

(
ν2ϕ2 + ν2ϕ2

)
� Cτ ν

2 l1/3
max |T |ϕ2 h5/3.

Since Ih(uh,Ω) � Ih(u,Ω \Ωh)+ Ih(uh,Ω
∗
h ) combining with (3.4) we deduce

(1.12) and conclude the proof.

Theorem 1.4 is then a simple consequence of Theorem 1.6:

Proof of Theorem 1.4. Let Q be a square of side 2 diamΩ and containingΩ . We
divide Q into many squares Q(i) of side length l < r/

√
2. The number of squares

needed is proportional to (diamΩ/r)2. Let vr ∈ W 1,∞(Q; R
3) be the map taking

Q into r B3 by folding along the sides of the Q(i)’s, see Figs. 4 and 2b. Precisely,
we set vr (x, y) = (ηl(x), ηl(y), 0), where η is the 2l-periodic function defined by
η(t) = min{t, 2l − t} for t ∈ (0, 2l). By applying Theorem 1.6 to this particular
origami map we conclude the proof.

4. Short maps as uniform limits of origami maps

In this section we are concerned with the proof of Theorem 1.8. Before going
into this we state and prove two lemmas we shall need.

Lemma 4.1. LetΩ ⊂ R
n be a bounded Lipschitz domain. Then there is a sequence

of diffeomorphisms Φk ∈ C∞(Rn; R
n) such that

lim
k→∞ sup

p∈Rn
[|Φk(p)− p| + |∇Φk(p)− Id n|] = 0,

and Ω ⊂⊂ Φk(Ω).

Proof. We claim that it is sufficient to construct a single map Φ ∈ C∞
c (R

n; R
n)

such that Φ(p) · ν(p) > c > 0 for almost every p ∈ ∂Ω , where ν is the outer
normal to ∂Ω . Indeed, if such a Φ exists, it is easy to see that

Φk(p) := p + 1

k
Φ(p)

satisfies the statement, for k large enough.
To construct the function Φ, observe that by definition ∂Ω can be covered

by a finite family of balls Bi = B(pi , ri ), such that in each of the double balls
B ′

i = B(pi , 2ri ) the set of Ω is the subgraph of a Lipschitz function. Precisely,

Ω ∩ B ′
i = {

p ∈ B ′
i : p · ei < fi (Pi p)

}
,

where ei ∈ Sn−1, Pi denotes orthogonal projection onto the space normal to ei , and
fi ∈ W 1,∞(Rn−1; R). It is clear that ei · ν > c > 0 on B ′

i ∩ ∂Ω . Then it suffices
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to choose for each i a cutoff function ψi ∈ C∞
0 (B

′
i ; [0, 1]) such that ψi = 1 on Bi ,

and set

Φ(p) =
∑

i

ψi (p)ei .

This concludes the proof.

Let now u ∈ W 1,∞(Ω; R
3) be such that (∇u)T ∇u � λId . If [pq] ⊂ Ω then

integration of ∇u over the segment [pq] leads to

|u(p)− u(q)| � λ|p − q|.
Thus a λ-short map onΩ is also λ-Lipschitz on every convex component ofΩ . For
C1 maps the converse inequality holds as well, for short segments. Precisely:

Lemma 4.2. Let u ∈ C1(Ω; R
3) be such that for some λ1 > 0

λ1Id 2 ≤ (∇u)T ∇u.

Then for every λ2 < λ1 there exists l > 0 such that

λ2|p − q| � |u(p)− u(q)|, whenever [pq] ⊂ Ω, |p − q| � l.

Proof. As ∇u is continuous on Ω̄ , there is a uniform modulus of continuity ω :
R+ → R+ with limt→0+ ω(t) = 0 such that

|u(p)− u(q)− ∇u(p)(p − q)|
|p − q| � ω(|p − q|)

for every p, q ∈ Ω with [pq] ⊂ Ω . Thus

|u(p)− u(q)| � |∇u(p)(q − p)| − ω(|p − q|)|p − q|
� (λ1 − ω(|p − q|))|p − q|.

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. We start by explaining the strategy of the proof. We are
given a short map u on Ω , and we want to approximate it uniformly with origami
maps, that is, with piecewise affine isometries, which are affine on a finite number
of triangles. In the first part we show that it suffices to consider the case in which u
is a C1 isometry defined on a domain strictly larger than Ω . In the second part we
construct explicitly the approximating origami map.

I. Reduction to the case of a C1 isometry. LetΦk : R
2 → R

2 be the sequence
of diffeomorphisms given by Lemma 4.1, and define

vk(p) =
u

(
Φ−1

k (p)
)

‖∇Φ−1
k ‖L∞(R2;R2×2)

, p ∈ Ωk := Φk(Ω).

Then vk is a sequence of short maps converging uniformly to u. By the Nash–
Kuiper theorem, for every k we can find uk ∈ C1(Ωk; R

3) arbitrarily close to
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vk in C0(Ω; R
3), and such that ∇uk ∈ O(2, 3). If we can approximate uk with

origami maps, taking a diagonal sequence we can approximate vk , and taking
another diagonal sequence we can approximate u. Hence it suffices to consider
C1 isometries defined on a larger domain.

II. The explicit construction for a C1 isometry. Let u ∈ C1(Ω∗; R
3) with

∇u ∈ O(2, 3) and Ω ⊂⊂ Ω∗. For any δ ∈ (0, 1/2) we define

uδ := (1 − δ)u.

The triangles of T will be constructed at a scale where uδ is approximately an affine
contraction. We make this quantitative by fixing a parameter κ ∈ (1, 3/2) (chosen
below), and using Lemma 4.2 to see that there is l(uδ, κ) > 0 such that

(1 − κδ)|p − q| � |uδ(p)− uδ(q)| � (1 − δ)|p − q| (4.1)

for all pairs p, q ∈ Ω∗ such that |p − q| � l(uδ, κ) and [pq] ⊂ Ω∗. We choose

l � min

{
1

2
l(uδ, κ), δ, dist(Ω, ∂Ω∗)

}
.

Consider a partition of R
2 in equilateral triangles of side length l and let Tl be the

triangulation defined by those which are contained in Ω∗. The choice of l ensures
that Ω ⊂ ΩT , and that (4.1) holds for any pair of vertices of any triangle of Tl , as
well as for any pair of vertices of a couple of triangles of Tl which share a side.

We start by defining v on the vertices of Tl , by setting

v(a) = uδ(a), if a is a vertex of Tl . (4.2)

Claim. We claim that we can find a subtriangulation T of Tl , and values of v on
the vertices of T that were not vertices of Tl , so that the following holds: for every
edge (r, s) of every triangle of T , one has

|v(r)− v(s)| = |r − s|. (4.3)

If the claim holds, then it suffices to define v in each triangle as the affine extension
of the values in the corners to obtain an origami map. Further, since both v and uδ
are 1-Lipschitz on each of those triangles, they are equal on the vertices, and the
diameter of the triangles is bounded by l, we have

‖v − u‖L∞(Ω;R3) � ‖v − uδ‖L∞(Ω;R3) + ‖uδ − u‖L∞(Ω;R3)

� 2l + δ diamΩ � CΩδ. (4.4)

Since δ is arbitrary, the claim implies the thesis.

Proof of the claim. This is the more technical part of the proof. To illustrate the
construction we first present it for the particular case that u is an affine isometry; we
show later how the extension to the general case can be obtained by a perturbation
argument. The construction for this case is illustrated in Figs. 12, 13 and 14. Before
starting, we remark that the construction is separated in two parts, and that each
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(a) (b) (c)

Fig. 12. Construction of the origami map for an affine compression. a First stage, where the
midpoints of the triangles have been raised (only two triangles shown). b Final construction,
where also a point in each edge has been raised. c Domain subdivision for the construction
in (b)

(a) (b) (c)

Fig. 13. Analogue of Fig. 12, for a larger portion of the domain

(a) (b)

Fig. 14. Grid refinement. a One equilateral triangle [abc], with side |a−c| = l, is subdivided
into three using its midpoint p, with |a − p| = l/

√
3. b An edge between two neighboring

equilateral triangles is subdivided using a point e ∈ [ac]

of them is done locally. Precisely, we first modify the map inside each of the
triangles, without changing the value on the boundary. In this process we introduce
new “interior” boundaries, which separate the edges of the original triangle. In the
second step we work on each of the original edges separately, keeping the function
constant on the boundary of an appropriate quadrilateral. This separation method
permits us to consider only a small number of points in each construction step, and
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to adapt the local construction to the local structure of the map u to be approximated.
This is remarkably different from the rigid structure of the Miura origami illustrated
in Fig. 2a.

Part 0 (special case): Affine compression. Assume that uδ is a uniform com-
pression, that is it equals 1−δ times an isometry. To approximate it with an origami
map, we first raise the midpoint of each triangle, and then choose and raise a point
on each edge. This is done in such a way that the resulting map obeys (4.3) on all
edges of the new grid.

To see how this is done, consider for definiteness a triangle [abc], and call p
its midpoint. We have v = uδ on a, b and c, and seek v(p) so that v is isometric
along the segments [ap], [bp], and [cp], that is

|v(a)− v(p)| = |a − p|, and the same for b and c (4.5)

(see Figs. 12a and 14a). Due to the symmetry of this situation it suffices to consider
points of the form v(p) = uδ(p)+ ξN , where N is the normal to the plane defined
by uδ and ξ > 0. Since v(a) = uδ(a), condition (4.5) is equivalent to

|uδ(a)− uδ(p)|2 + ξ2 = |a − p|2.
We compute explicitly |uδ(a)−uδ(p)|2 = (1− δ)2|a − p|2 = (1− δ)2l2/3, which
gives ξ2 = l2(2δ − δ2)/3. In reducing to a one-dimensional problem we made
use of the symmetry of this special case; existence of a solution for v(p) ∈ R

3 is
however a generic fact, as we shall show below. Having chosen v(p), we replace
the triangle [abc] with the three triangles [abp], [bcp], and [cap]. At this stage,
the map obtained by linear interpolation has the appearance illustrated in Figs. 12a
and 13a. We remark that this intermediate map is not short. Indeed, it is easy to see
that the distance of v(p) from the midpoint of [v(a), v(b)] is longer than the one
of p from the midpoint of [ab].

Now we treat the edges. Consider the edge [ac], which is common to the two
triangles [abc] and [adc], and let p and q be their midpoints, respectively (see
Fig. 14b). We seek e ∈ [ac] and v(e) ∈ R

3 with the properties

|v(e)− v(a)| = |e − a|, |v(e)− v(c)| = |e − c|,
|v(e)− v(p)| = |e − p|, |v(e)− v(q)| = |e − q|. (4.6)

If this holds, then replacing [acp] with the pair [ape], [cpe], and [acq] with [aqe],
[cqe], gives a grid which satisfies (4.3) on all edges.

Condition (4.6) implies that v(e) has to lie in the plane of symmetry between
v(p) and v(q), which contains v(a) and v(c). We can therefore set e = λc+(1−λ)a,
v(e) = ηv(c)+ (1 − η)v(a)+ ζN . A straightforward computation shows that

|v(e)− v(a)|2 = |η(v(c)− v(a))+ ζN |2 = η2(1 − δ)2l2 + ζ 2

and so on, hence our problem reduces to finding η, ζ ∈ R and λ ∈ (0, 1) such that

η2(1 − δ)2l2 + ζ 2 = λ2l2

(1 − η)2(1 − δ)2l2 + ζ 2 = (1 − λ)2l2

(
1

2
− η

)2

(1 − δ)2l2 + 1

12
(1 − δ)2l2 + (ζ − ξ)2 =

(
1

2
− λ

)2

l2 + 1

12
l2.
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Subtracting the first equation from the other two, solving for η and ζ , and inserting
back, leads, after some computations, to

λ2 − λ+ 4 − (1 − δ)2

16
= 0. (4.7)

This has the two solutions

λ1 = 1 + δ

4
, λ2 = 3 − δ

4
.

The relevant observation is that the quadratic equation (4.7) is soluble for all δ ∈
(0, 1), and that the resulting values of λ are uniformly bounded away from the
endpoints 0 and 1. We shall show below that, for κ sufficiently close to 1, these
properties are preserved in the general case.

For completeness, we also give the corresponding expressions for η and ζ :

η1 = 1 − 2δ

4 − 4δ
, η2 = 3 − 2δ

4 − 4δ
, ζ1 = ζ2 = 3

4
ξ =

√
3

4

√
2δ − δ2l.

Part 1: Triangle centers. We now repeat the argument for a generic uδ . Again,
in the first step we focus on [abc] ∈ T with center p, assume that v = uδ on the
vertices, and seek v(p) ∈ R

3 which obeys (4.5). This means that v(p)must belong
to the intersection of three spheres in R

3,

v(p) ∈ ∂B3
(
v(a),

l√
3

)
∩ ∂B3

(
v(b),

l√
3

)
∩ ∂B3

(
v(c),

l√
3

)
. (4.8)

We further require v(p) to lie on the side of the plane containing [v(a)v(b)v(c)]
determined by the normal N to uδ (since uδ is C1, and ∇uδ ∈ (1 − δ)O(2, 3) has
full rank, the normal is globally defined and continuous; since l is small the point
of [abc] on which we evaluate N does not matter).

We have already shown that for κ = 1 these conditions identify a single point,
and it is easy to see that (for κ = 1) the three spheres intersect transversally.
Therefore we can perturb the position of each of them by a small amount, and still
have one transversal intersection around the original one. This means, that for κ−1
small there will be a solution, and that the solution depends continuously on v(a),
v(b), and v(c). We write for brevity

v(p) := G(v(a), v(b), v(c)),

with G continuous.
Part 2: Edge points. Consider as above an edge [ac], which is common to

the two triangles [abc] and [adc], having midpoints p and q, respectively, (as in
Fig. 14b). Given the points v(a), v(b), v(c), and v(d) in the domain D(δ, κ) of
(R3)4 defined by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l(1 − κδ) � |v(a)− v(b)| � l(1 − δ),

l(1 − κδ) � |v(a)− v(c)| � l(1 − δ),

l(1 − κδ) � |v(b)− v(c)| � l(1 − δ),

l(1 − κδ) � |v(a)− v(d)| � l(1 − δ),

l(1 − κδ) � |v(c)− v(d)| � l(1 − δ),√
3l(1 − κδ) � |v(b)− v(d)| �

√
3l(1 − δ),

, (4.9)
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and setting

v(p) := G(v(a), v(b), v(c)), v(q) := G(v(a), v(c), v(d)), (4.10)

as above, we seek e ∈ [ac] and v(e) ∈ R
3 which obey (4.6).

We need to consider b and d, even if they seem to play no role in the thesis,
since they enter the definition of v(p) and v(q).

Again, we show that the general case can be obtained by the special case com-
puted explicitly above by a continuity argument. In order to do this, it is convenient
to restate the problem in suitable Cartesian coordinates. The points considered are

a = (0, 0), c = (l, 0), p = (l/2, l/2
√

3), q = (l/2,−l/2
√

3).

Since |v(a) − v(p)| = |v(c) − v(p)| = l/
√

3, and the same for v(q), we can
assume that

v(a) = (0, 0, 0), v(c) = (α, 0, 0)l,

v(p) =
⎛
⎝α

2
,

√
1

3
− α2

4
, 0

⎞
⎠ l,

v(q) =
⎛
⎝α

2
,−

√
1

3
− α2

4
cosψ,

√
1

3
− α2

4
sinψ

⎞
⎠ l.

Here α and ψ are such that (1 − κδ) � α � (1 − δ) and ψ ∈ [0, 2π). In these
coordinates the unknowns e and v(e) can be written as

e = (λl, 0) with λ ∈ (0, 1), v(e) = (x, y, z)l.

We compute explicitly

|p − e|2 = |q − e|2 = l2(λ− 1/2)2 + l2/12 = l2(1/3 − λ+ λ2),

and so on. The conditions (4.6) are therefore equivalent to the system

x2 + y2 + z2 = λ2

(x − α)2 + y2 + z2 = (1 − λ)2

(x − α/2)2 +
⎛
⎝y −

√
1

3
− α2

4

⎞
⎠

2

+ z2 = 1

3
− λ+ λ2

(x − α/2)2 +
⎛
⎝y +

√
1

3
− α2

4
cosψ

⎞
⎠

2

+
⎛
⎝z −

√
1

3
− α2

4
sinψ

⎞
⎠

2

= 1

3
− λ+ λ2.

We seek a solution (x, y, z) ∈ R
3 and λ ∈ (0, 1). Subtracting the first equation

from the others we see that this is equivalent to⎧⎪⎪⎨
⎪⎪⎩

x2 + y2 + z2 = λ2

−2αx + α2 = 1 − 2λ
−αx − 2

√
1/3 − α2/4 y = −λ

−αx + 2
√

1/3 − α2/4 (y cosψ − z sinψ) = −λ.
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If sinψ �= 0 we can solve the last three equations for x , y and z, giving

x = 2λ− 1 + α2

2α
, y = 1 − α2

4
√

1/3 − α2/4
, z = 1 + cosψ

sinψ
y.

It remains to check that the first equation gives a solution for λ. Substituting these
values, it becomes

1 − α2

α2 λ2 − 1 − α2

α2 λ+ (1 − α2)2

4α2 +
[

1 + (1 + cosψ)2

sin2 ψ

]
(1 − α2)2

16(1/3 − α2/4)
= 0.

After multiplication by α2(1 − α2)−1 this is equivalent to

f (λ) := λ2 − λ+ 1 − α2

4
+ 2 + 2 cosψ

sin2 ψ

(1 − α2)α2

16(1/3 − α2/4)
= 0,

which is the generalization of (4.7). It remains to be shown that, for κ sufficiently
close to 1, this equation is a continuous perturbation of (4.7), and in particular
that the two relevant properties (existence of the solution, uniform bounds) are
preserved. Since this is a quadratic equation, where only the last term is nontrivial,
this reduces to proving that, if δ and κ satisfy appropriate bounds, then f (0) is a
small perturbation of the value given in (4.7).

The key remark is that for κ = 1 the domain set D(δ, κ) defined in (4.9) shrinks
to a point, up to isometries. Indeed, if κ = 1 it is easy to see that the map v equals
1 − δ times an affine isometry on the four points {a, b, c, d}. Then, we are exactly
in the situation discussed in Part 0, and have constructed the same v(p) and v(q),
hence in this case f (0) has the value entering (4.7). In the following we call the
values corresponding to κ = 1 (that is, to the construction given in Part 0) “rigid”
values.

Assume now that κ−1 is small, that is that v(a), v(b), v(c), and v(d) can move
in a neighborhood of their rigid position (again, up to isometries). Then in particular
α is close to (1 − δ)l [precisely, (1 − κδ)l < α < (1 − δ)l]; v(p) and v(q), which
are fixed via the continuous function G, are also close to their rigid positions, and
therefore also the angleψ is close to its rigid value. This proves that for small κ−1
the value f (0) has small deviation from its rigid value, hence that there is always a
solution λ1 close to the one obtained for the rigid case. In particular we can assume
λ1 ∈ (1/4, 1/2). Note that the necessary smallness of κ − 1 can depend on δ, but
not on l.

Both steps are local, in the sense that they do not modify the function outside
a small (fixed) region, as explained at the beginning, hence we can perform them
independently on the entire grid. The only exception are the edges that belong to
∂ΩT , since there is no neighboring triangle. They are simply dropped from the
construction. Precisely, if the point d (in the notation above, see Fig. 14b) is not a
grid point, then we eliminate the triangle [acp] from the grid. Since l was chosen
small enough, the resulting grid still covers Ω .
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5. Short maps and three-dimensional elasticity

Here we show how the upper bounds for the two-dimensional functional Ih

can be translated into corresponding bounds on the three-dimensional functional
Eh . This is done through the Kirchhoff–Love ansatz introduced in Section 1.3. The
following estimate is now standard; we give the explicit construction for complete-
ness.

Lemma 5.1. Let u ∈ W 2,2 ∩ W 1,∞(Ω; R
3), and let M ∈ R be such that

‖∇u‖L∞(Ω;R3×2) � M. Then there is ψ ∈ W 1,2(Ω × (0, h); R
3) such that

ψ(x, y, 0) = u(x, y) (in the sense of traces), |ψz | � 2, and

dist(∇ψ, SO(3)) � C(M)
[
dist(∇u, O(2, 3))+ h|∇2u|

]
, (5.1)

where C(M) denotes a universal constant depending only on M.

Proof. Let us considerψ(x, y, z) := u(x, y)+zN (x, y), where N := f (∇u)(ux ∧
uy) and f : R

3×2 → R is defined by

f (F) = min

{
2,

1

|F1 ∧ F2|
}
.

Then we have

∇ψ = ∇u + z∇N + N ⊗ e3,

where ∇u = ux ⊗e1+uy ⊗e2 and ∇N = Nx ⊗e1+Ny ⊗e2. Let F : Ω → O(2, 3)
be such that

|∇u − F | = dist(∇u, O(2, 3)).

Then G := F + (F1 ∧ F2)⊗ e3 belongs to SO(3), and thus (5.1) follows from

|∇ψ − G|2 � C(M)
[
dist2(∇u, O(2, 3))+ h2|∇2u|2

]
. (5.2)

It remains to prove (5.2). We first compute

|∇ψ − G|2 = |∇u + z∇N − F |2 + |N − F1 ∧ F2|2.
We observe that |z∇N |2 � C(M)h2|∇2u|2 almost everywhere. Indeed, on the set
where |ux ∧ uy | � 1/2 we have N = (ux ∧ uy)/|ux ∧ uy | and thus

|∇N | � C
|∇u| |∇2u|
|ux ∧ uy | � C(M)|∇2u|.

On the other hand, on the set |ux ∧ uy | � 1/2, we have N = 2ux ∧ uy and thus

|∇N | � C |∇u||∇2u| � C(M)|∇2u|.
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To conclude the proof of (5.2) we have to estimate |N − F1 ∧ F2|. Again, we
distinguish two cases. If |ux ∧ uy | � 1/2,

|N − F1 ∧ F2| =
∣∣∣∣ ux ∧ uy

|ux ∧ uy | − F1 ∧ F2

|F1 ∧ F2|
∣∣∣∣ � C

(|ux − F1| + |uy − F2|
)
.

On the other hand if |ux ∧ uy | < 1/2 then necessarily |∇u − F | � 1/C , hence

|N − F1 ∧ F2| � |N | + |F1 ∧ F2| � 2|∇u|2 + 1 � C(M)|∇u − F |.
This concludes the proof of (5.2) and therefore of the lemma.

Now we are in a position to prove Theorems 1.2 and 1.1.

Proof of Theorem 1.2. Let (T , v) be an origami map, with ϕ the maximum jump
of ∇v and Γ (T ) the degeneracy parameter of T , and let hk → 0. For k sufficiently
large we can apply Theorem 1.6 in order to find uk ∈ C2(Ω; R

3) such that

‖v − uk‖L∞(Ω;R3) � CΓ (T ) ϕ h1/3
k , Ihk (uk,Ω) � CΓ (T ) |T |ϕ2 h5/3

k ,

and

dist(∇uk, O(2, 3))+ hk |∇2uk | � CΓ (T ) ϕ. (5.3)

We apply now Lemma 5.1 to each uk , with M = CΓ (T ) + √
2, and obtain maps

ψk ∈ W 1,2(Ω × (0, hk); R
3). Since

|ψk(x, y, z)− v(x, y)| � |uk(x, y)− v(x, y)| +
∫ z

0
|(ψk)z(x, y, t)| dt

� CΓ (T ) ϕ h1/3
k + 2hk,

the uniform convergence of ψk to v follows. From (5.1) we get

1

hk

∫
Ω×(0,hk )

dist2(∇ψk, SO(3)) � CΓ (T ) Ihk (uk,Ω) � CΓ (T ) |T |ϕ2 h5/3
k .

This proves the first part of the statement. If ϕ � c∗/CΓ (T ), then by (5.1) and (5.3)
we get dist(∇ψk, SO(3)) � c̃∗, and the proof is concluded by (1.2).

Proof of Theorem 1.1. For any δ > 0, by Theorem 1.8 applied to the short map
u ∈ W 1,∞(Ω; R

3) there is an origami map (Tδ, vδ) such that

‖u − vδ‖L∞(Ω;R3) � δ, |ϕδ| � δ,

where ϕδ denotes the maximum jump of ∇vδ inΩ and CΓ (Tδ) � C . Thus, for small
enough δ, the product CΓ (Tδ) ϕδ is smaller than c∗. Then, by the second part of
Theorem 1.2 we find for every k � k(δ) a mapψδ,k ∈ W 1,2(Ω× (0, hk); R

3) such

that ψk,δ converges uniformly to vδ as k → ∞ and Ehk (ψk,δ,Ω) � C |Tδ| δ2 h5/3
k .

We conclude the proof by taking a diagonal subsequence in k → ∞ and δ → 0.

Proof of Theorem 1.3 (ii). Part (ii) of Theorem 1.3 follows immediately from
Lemma 2.5 and Lemma 5.1.
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6. The approximation of a single fold: lower bound

In this Section we prove that the construction presented in Section 2 for the
energy of a single fold is optimal. We do this first in the simplified two-dimensional
setting of the energy Ih , then we extend the argument to the three-dimensional
functional Eh . The latter result is based on the quantitative rigidity result recently
obtained by Friesecke, James and Müller [8].

We first sketch the main idea of the proof, which is common to the two- and
three-dimensional arguments, with the help of Fig. 15. Let E be the total energy. The
boundary data are satisfied in a strip σ � |y| � 2σ . For each such y (and fixed z, in
three dimensions), we have a one-dimensional problem, describing deformation of a
rod with clamped endpoints. This implies that it can deviate from a straight segment
only by increasing its length, which is penalized by the stretching energy. More
precisely, we have a map ζ : (α, β) → R

3, such that |ζ(α)−ζ(β)| = |α−β|. Let ε
be the maximum deviation of ζ from the affine interpolation between the endpoints.
The length of the curve ζ([α, β]) must be at least |α − β|(1 + cε2/|α − β|2) (for
small ε), and hence the energy—on the segment—has to be at least cε4/|α−β|3. A
more careful estimate (Lemma 6.3) leads to an L2 bound on ζ ′, which implies the
L∞ estimate via a standard embedding. Since y can be chosen freely in an interval
of size σ , we get E � σε4/ l3. Further, we can repeat the argument for four values
y1, y2, y3, y4, two positive and two negative, and with all distances bounded from
above and below by multiples of σ .

Consider now a vertical section, intersecting the four lines at constant y. The
deformation must be in four points uniformly close to the sharp fold, that is, to
a map with a corner, hence it cannot be straight (see Fig. 16). Precisely, if u is
ε-close to a line with a kink of order ϕ, at four points with distances of order
σ , then either ε > cϕσ , or the oscillation of uy must be at least cϕ. In the first
case E � cσ 5ϕ4/ l3. In the second case, the squared L2 norm of uyy on the
segment is necessarily at least cϕ2/σ , and integrating we obtain E � ch2lϕ2/σ .
Combining the two estimates, and choosing the optimal value σ = (l2h/ϕ)1/3,

(a) (b)

Fig. 15. Geometry for the proof of the lower bound: a represents the boundary conditions,
b the values of yi , and one cross-section at constant x (dashed). The full dots mark the points
where the boundary values are used, the open dots the ones where the distance to v is small
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Fig. 16. No straight line can be in four points close to a curve with a kink. If the distances
between the four points are at least σ , and the angle of the kink is ϕ, then the distance in at
least one of the points must be at least cσϕ. (Note: three points would suffice, we use four
to match the symmetry of our problem). The four points and the horizontal axis correspond
to the open dots and the dashed line in Fig. 15

gives the result in two dimensions. In the three-dimensional case one needs an
extra argument showing that a term analogous to the bending energy arises from
the three-dimensional stretching energy, see below.

6.1. The lower bound in two dimensions

Let ([abcd], v) be a single fold of length l > 0, slope τ > 0, and angle
ϕ ∈ (0, π). For simplicity we shall restrict ourselves to consider the case in which
[abcd] is a rhombus, so that after a change of coordinates we have

Q := [abcd] = {(x, y) ∈ R
2 : 0 � x � l, 0 � |y| � τ min{x, l − x}}, (6.1)

v(x, y) =
{

xe1 + ye2, y > 0;
xe1 + y cosϕe2 + y sin ϕe3, y < 0.

(6.2)

(statement and proof apply with minor changes to the general case).

Proposition 6.1. Let uh ∈ W 2,2(Q; R
3) be such that uh = v on {p ∈ ∂Q :

dist(p, [ac]) ∈ (σh, 2σh)}, with

σh = l2/3h1/3

ϕ1/3 , h � Clϕτ 3.

Then

Ih(uh, Q) � cϕ7/3l1/3h5/3.

Proof. We shall first work with generic values of σ ∈ (0, lτ/8), and show that if

u(x, y) = v(x, y), on ∂Q ∩ {σ < |y| < 2σ } (6.3)

then

Ih(u, Q) � c min

{
lϕ2h2

σ
,
ϕ4σ 5

l3

}
. (6.4)

The Proposition will follow choosing σ = σh as given in the statement, which
makes this bound optimal. Choices with a different scaling would lead to a worse
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bound. In particular, if (6.3) holds with σ = h1/3−α for some α ∈ (0, 1/3), then
only a bound Ih(uh, Q) � ch5/3+α is obtained (and this cannot be improved, as
can be seen using the construction discussed before Remark 1.5).

It remains to prove that (6.3) implies (6.4). In order to do this, we use two lem-
mas, which correspond to the tension and bending part of the argument sketched
above. Notice that W 2,2 functions in two dimensions have a continuous represen-
tative, hence there is no difficulty in speaking of point values.

Lemma 6.2. Let v be as in (6.2), u ∈ W 2,2(Q), and y1, y2, y3, and y4 be such that

−2σ < y1 < y2 < −σ, σ < y3 < y4 < 2σ, (6.5)

|y2 − y1| � σ

2
, |y4 − y3| � σ

2
, (6.6)

for some σ < lτ/8. If

|u(x, yi )− v(x, yi )| � ϕσ

32
for all x ∈ (l/4, 3l/4), i = 1, 2, 3, 4. (6.7)

then
∫

Q
|∇2u|2 � C

lϕ2

σ
.

Proof. We claim that (6.7) implies that for almost everywhere x in (l/4, 3l/4) we
have

∫ 2σ

−2σ
u2

yy(x, y) dy � c∗
ϕ2

σ
(6.8)

for some universal constant c∗ defined below. Integrating in x will give the result.
The claim is proven by contradiction. If for some x (6.8) does not hold, then

∫ 2σ

−2σ
|uy − γ |2 dy < c∗ϕ2σ

for some γ ∈ R
3. Hence there is an affine function ξ : R → R

3 such that

‖ξ − u(x, ·)‖L∞(−2σ,2σ) � ‖γ − uy‖L1(−2σ,2σ)

� 2σ 1/2‖γ − uy‖L2(−2σ,2σ) � 2c1/2∗ ϕσ.

We choose c∗ so that 2c1/2∗ = 1/32, and combine with (6.7) to obtain

|ξ(yi )− v(x, yi )| � ϕσ

16
, i = 1, 2, 3, 4.

But this is impossible, as can be easily checked by applying the mean-value theorem
to ξ first on (y1, y2) and then on (y3, y4) (see also Fig. 16).

We now present the second Lemma, which concerns the stretching part of the
energy.
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Lemma 6.3. Letγ ∈ W 1,2([a, b]; R
3), e ∈ S2, and assume g(b)−g(a) = (b−a)e.

Then
∫ b

a
|γ ′ − e|2 dt �

∫ b

a

∣∣∣|γ ′|2 − 1
∣∣∣ dt.

Proof. For everyw ∈ R
3 and e ∈ S2 we have |w−e|2 = |w|2 −|e|2 +2e ·(e−w).

Take w = γ ′(t) and integrate over (a, b).

We are finally ready to conclude the proof of Proposition 6.1. We distinguish
two cases. If there are four points yi such that the assumption of Lemma 6.2 holds,
then we immediately have the result. If not, there is a set J of values of y of measure
at least σ/8 such that for all y ∈ J

|u(x, y)− v(x, y)| > ϕσ

32
for some x ∈ I y = (|y|/τ, l − |y|/τ).

Since at the extrema of the interval I y by the boundary condition u = v, we obtain

ϕσ

32
� ‖ux − vx‖L1(I y) � l1/2‖ux − e1‖L2(I y).

The last term is in turn estimated in terms of the stretching energy using Lemma 6.3.
We get
∫

I y
(u2

x − 1)2 dx � 1

|I y |
∥∥∥u2

x − 1
∥∥∥2

L1(I y)
dx � 1

|I y | ‖ux − e1‖4
L2(I y)

� C
ϕ4σ 4

l3 .

Integrating over y ∈ J we obtain

Ih(uh, Q) � C
ϕ4σ 5

l3 ,

which concludes the proof of (6.4) and hence of Proposition 6.1.

6.2. The lower bound in three dimensions

We again consider the single fold defined in (6.1–6.2), and extend it to three
dimensions via the Kirchhoff–Love ansatz as explained in Sect. 1.3.

Lemma 6.4. Let ψh ∈ W 1,2(Q × (0, h); R
3) be such that ψh(x, y, z) = v(x, y)+

N z for (x, y, z) ∈ {p ∈ ∂Q : dist(p, [ac]) ∈ (σh, 2σh)} × (0, h), with

σh = l2/3h1/3

ϕ1/3 , h � Clϕτ 3, h � Clϕ−1/2.

Then

Eh(ψh, Q) � cϕ7/3l1/3h5/3.

The general lines of the argument are as above, however, the estimate of the bending
energy is more complex. Therefore we replace Lemma 6.2 with the following.
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Lemma 6.5. Let T = (x0, x0 + h) × (−2σ, 2σ) × (0, h), σ > 5h, and let ψ ∈
W 1,2(T ; R

3) be such that

1

h3

∫
(x0,yi ,0)+(0,h)3

|ψ(x, y, z)− v(x, y)| dx dy dz � ϕσ

32
, i = 1, 2, 3, 4,(6.9)

where the yi satisfy (6.5–6.6), y4 < 2σ − 2h, and x0 ∈ (l/4, 3l/4 − h). Then

1

h

∫
T

dist2(∇ψ, SO(3)) dx dy dz � c
ϕ2h3

σ
.

Proof. Without loss of generality we assume σ = K h for some K ∈ Z (otherwise
we restrict to a smaller domain). Consider the cubes

Qk = (x0, kh, 0)+ (0, h)3, k ∈ 1

2
Z, −K � k � K − 1.

They are all contained in T . By the quantitative rigidity estimate of Friesecke,
James, and Müller [8] there is a universal constant C such that for each cube one
can find Rk ∈ SO(3) with∫

Qk

|∇ψ − Rk |2 � C
∫

Qk

dist2(∇ψ, SO(3)). (6.10)

Since each cube overlaps over half of its volume with the preceding one, it follows
that

1

2
h3|Rk − Rk−1|2 =

∫
Qk∩Qk−1

|Rk − Rk−1|2

�
∫

Qk∩Qk−1

|∇ψ − Rk |2 + |∇ψ − Rk−1|2

� C
∫

Qk∪Qk−1

dist2(∇ψ, SO(3)),

where we used (6.10) on Qk and on Qk−1. Summing over all cubes we obtain

∑
k

∫
Qk

|∇ψ − Rk |2 � ChE and
∑

k

|Rk − Rk−1|2 � C
E

h2 ,

where

E = 1

h

∫
T

dist2(∇ψ, SO(3)).

Let now m : (−2σ, 2σ) → R
3×3 be defined by m = Rk on (kh, (k + 1/2)h). Then

m ∈ BV , and

∫
(−2σ,2σ)

|Dm| =
∑

k

|Rk − Rk−1| � (2K )1/2
(∑

k

|Rk − Rk−1|2
)1/2

� C

(
E K

h2

)1/2

= C

(
Eσ

h3

)1/2

.
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Therefore there is m0 ∈ R
3×3 such that

∫ 2σ

−2σ
|m − m0|2 � σ

(∫
|Dm|

)2

� C
Eσ 2

h3 . (6.11)

Consider now the function g : (−2σ, 2σ) → R
3 defined by averaging ψ over x

and z,

g(y) = 1

h2

∫ x0+h

x0

∫ h

0
ψ(x, y, z) dx dz.

By the convexity of the norm it follows that g ∈ W 1,2, and

∫ 2σ

−2σ
|g′ − m · e2|2 dy � 1

h2

∫
T

|(∇ψ(x, y, z)− m(y)) · e2|2

� 1

h2

∑
k

∫
Qk

|∇ψ − Rk |2 � C
E

h
.

Combining with (6.11) we obtain, since σ � h,

∫ 2σ

−2σ
|g′ − m0 · e2|2 dy � C

Eσ 2

h3 .

Therefore there is an affine function ξ(y) = (m0 · e2)y + ξ0 such that

‖g − ξ‖L∞(−σ,σ ) � σ 1/2‖g′ − m0 · e2‖L2 � C

(
Eσ 3

h3

)1/2

.

At the same time, by averging (6.9) one has, since v is affine away from y = 0,

∣∣∣∣g(yi )− v

(
x0 + h

2
, yi

)∣∣∣∣ � ϕσ

32
, i = 1, 2, 3, 4.

Since there is no affine function ξ with

∣∣∣∣ξ(yi )− v

(
x0 + h

2
, yi

)∣∣∣∣ � ϕσ

16
,

we conclude that necessarily

ϕσ

32
� C

(
Eσ 3

h3

)1/2

,

which is the thesis.
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Proof of Lemma 6.4. We follow the same strategy used for Proposition 6.1, and
prove that for all σ ∈ (5h, lτ/8) and all ψ which satisfy the boundary condition
one has

Eh(ψ, Q) � c min

{
lϕ2h2

σ
,
ϕ4σ 5

l3 ,
ϕ2σ 3

l

}
(6.12)

(the last term will be irrelevant for the optimal σ ). If there are four points yi such that
the assumption of Lemma 6.5 holds for all x0 ∈ (l/4, 3l/4−h), then (6.12) follows
(indeed, there are l/4h values of x0 so that the corresponding T s are disjoint, and
all T are in the integration domain for Eh , since σ < lτ/8). Otherwise, there is a
set J ∈ (−2σ,−σ) ∪ (σ, 2σ) such that |J | � σ/8 and for all y0 ∈ J there is an
x0 ∈ (l/4, 3l/4 − h) such that

1

h3

∫
(x0,y0,0)+(0,h)3

|ψ(x, y, z)− v(x, y)| dx dy dz >
ϕσ

32
. (6.13)

For simplicity of notation, we focus on the case y0 > 0 (which implies y0 > σ ).
Using Lemma 6.3 for each fixed (y, z) ∈ (y0, y0 + h)× (0, h) we get

‖ψ − v‖2
L∞(I y) � l‖ψx − e1‖2

L2(I y)
� l‖ψ2

x − 1‖L1(I y),

where I y = (y/τ, l − y/τ). Averaging over Q0 = (x0, y0, 0)+ (0, h)3 gives

1

h3

∫
Q0

|ψ − v| � 1

h2 l1/2
∫ h

0

∫ y0+h

y0

(∫
I y

∣∣∣ψ2
x − 1

∣∣∣ dx

)1/2

dy dz

� l1/2

h

(∫
Ky

∣∣∣ψ2
x − 1

∣∣∣
)1/2

,

where Ky = (Q ∩ {y0 < y < y0 + h}) × (0, h) is the three-dimensional corre-
sponding integration domain. Comparing with (6.13) we get

l

h2

∫
Ky

∣∣∣ψ2
x − 1

∣∣∣ � Cϕ2σ 2.

Finally, since |J | � σ/8 there are at least Cσ/h values of y ∈ J where this holds,
and such that the corresponding Ky are disjoint. Summing we get

∫
∪Ky

∣∣∣ψ2
x − 1

∣∣∣ � C
ϕ2σ 3h

l
.

Finally, we estimate | ∪ Ky | � chσ l and |ψ2
x − 1| � C dist(∇ψ, SO(3)) +

C dist2(∇ψ, SO(3)). Therefore

∫
∪Ky

dist2(∇ψ, SO(3))+ (hσ l)1/2
(∫

∪Ky

dist2(∇ψ, SO(3))

)1/2

� C
ϕ2σ 3h

l
,
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that is,

∫
∪Ky

dist2(∇ψ, SO(3)) � min

{
ϕ2σ 3h

l
,
ϕ4σ 5h

l3

}
.

which concludes the proof of (6.12). Finally, it suffices to insert in (6.12) the value
of σ to prove the lemma.

Proof of Theorem 1.3 (i). Part (i) of Theorem 1.3 follows immediately from
Lemma 6.4.

7. Notation

Constants. We denote by c and C generic positive and finite constants that can
change from line to line and that are independent from the various parameters (h,
τ , l, ϕ, r , diamΩ , etc.), but that can depend on the energy density W .

Vectors. The vector space R
3 is spanned by an orthonormal system {e1, e2, e3},

and its generic point is (x, y, z) = xe1 + ye2 + ze3. The space R
2 is the subspace

generated by {e1, e2}, and its generic point is (x, y) = xe1 + ye2.
Tensors. The space R

j×k of j × k matrices has {e j ′ ⊗ ek′ }1� j ′� j,1�k′�k as an

orthonormal system. The set of linear isometries R
k → R

j is O(k, j) := {F ∈
R

j×k : FT F = Id k}, where Id k := ∑k
i=1 ei ⊗ ei ∈ R

k×k . A tensor F ∈ R
j×k

is said short if (Fe)2 � e2 for every e ∈ R
k , that is, if FT F � Id k . Further,

SO(3) := {F ∈ O(3, 3) : det F = 1}.
Domains. Given a, b, c, and d in R

2 or in R
3 the symbols [ab], [abc] and [abcd]

denote the convex hulls of the sets {a, b}, {a, b, c}, and {a, b, c, d}, respectively.
We use p, q, a, b, c, d, and e to denote points of R

2. Correspondingly, dx dy, d p,
and dq denote integration against the two-dimensional Lebesgue measure.

The letters Ω , Q, and variants are used to denote domains of R
2; the cor-

responding three-dimensional domains have the form Ω × (0, h) = {p + ze3 :
p ∈ Ω, z ∈ (0, h)}.

Maps. Three-dimensional deformations fromΩ × (0, h) to R
3 are denoted by

ψ , while we use u, v, and variants for two-dimensional deformations Ω → R
3.

Directional derivatives of ψ with respect to e1, e2, and e3 are denoted by ψx , ψy ,
and ψz , and an analogous notation is used for u and v. By uxx , uyy , and uxy we
denote the second-order directional derivatives of u : Ω → R

3, with respect to
{e1, e2}. A deformation u ∈ W 1,∞(Ω; R

3) is said short if ∇u(p) ∈ R
3×2 is a short

tensor for almost every p ∈ Ω .
Balls. The unit ball of R

k centered in the origin is denoted by Bk , while r Bk is
the ball with radius r . More generally B(·, ·) is the ball of the ambient space of the
first argument, having center in the first argument and radius equal to the second
argument. In this way if a ∈ Ω , v : Ω → R

3, and h > 0 then B(a, h) is the ball
of R

2 with center in a and radius h, while B(v(a), h) is the ball of center v(a) and
radius h in R

3.
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