sempre limiti

1. 1. ordini infinito

Scegliere l'unica affermazione corretta.

- $\sqrt{n!} \ll 2^n$
- $\ln(\sqrt{n} + \sqrt{n^n}) \ll \sqrt{n}$ $2^{(2^n)} \ll n!$
- $(n!)! \ll (n!)^{n!} \checkmark$

2. **2.** rapporto 1

Calcolare, se esiste

$$\lim_{n \to +\infty} \frac{(2n)!}{(n!)^2}.$$

- +∞ ✓
- non esiste

3. 3. rapporto/radice

Calcolare, se esiste

$$\lim_{n \to +\infty} \sqrt[n]{\frac{(2n)!}{(n!)^2}}$$

4. 4. ricorrenza

Qual è il limite della successione definita per ricorrenza

$$\begin{cases} a_0 = 0 \\ a_{n+1} = \frac{a_n - 1}{2} \end{cases}$$

 \bullet $-\infty$

5. **5.** invariante

Si consideri la funzione $f: \mathbb{R} \setminus \{\sqrt{2}, -\sqrt{2}\} \to \mathbb{R}, f(x) = \frac{1}{2-x^2}$. Quale dei seguenti insiemi è invariante per f?

- $[2, +\infty)$ $\mathbb{R} \setminus \{\sqrt{2}, -\sqrt{2}\}$ (-1, 0]• $\mathbb{Q} \checkmark$

6. **6. punto fisso**

Quanti sono i punti fissi della funzione $f \colon \mathbb{R} \to \mathbb{R}, f(x) = \lfloor x \rfloor$?

- 1
- infiniti ✓