Definizione di limite

11 ottobre 2002

- 1. Dati comunque una successione a_n ed un numero reale a verificare che le seguenti affermazioni sono tutte equivalenti:
 - (a) $\forall \varepsilon > 0 \,\exists \nu \,\forall n > \nu \quad |a_n a| < \varepsilon;$
 - (b) $\forall \varepsilon > 0 \,\exists \nu \,\forall n \geq \nu \quad |a_n a| < \varepsilon;$
 - (c) $\forall \varepsilon > 0 \,\exists \nu \,\forall n > \nu \quad |a_n a| \leq \varepsilon;$
 - (d) $\forall \varepsilon > 0 \,\exists \nu \,\forall n \geq \nu \quad |a_n a| \leq \varepsilon;$
 - (e) $\forall \varepsilon > 0 \,\exists \nu \,\forall n > \nu + 23 \quad |a_n a| < \varepsilon;$
 - (f) $\forall \varepsilon > 0 \,\exists \nu \,\forall n > \nu \quad |a_{n+1} a| < \varepsilon;$
 - (g) $\forall \varepsilon > 0 \,\exists \nu \,\forall n > 17\nu \quad |a_n a| < \varepsilon/12;$
 - (h) $\forall \varepsilon \in]0,1[\exists \nu \forall n > \nu \quad |a_n a| < \varepsilon.$

Mostrare invece (con degli esempi) che nessuna delle seguenti affermazioni è equivalente alle precedenti:

- (a) $\forall \varepsilon \geq 0 \,\exists \nu \,\forall n > \nu \quad |a_n a| < \varepsilon;$
- (b) $\forall \varepsilon > 0 \,\exists \nu \,\forall n > \nu \quad |a_n a| < 1 + \varepsilon;$
- (c) $\forall \varepsilon > 0 \,\exists n \quad |a_n a| < \varepsilon;$
- (d) $\forall \varepsilon > 0 \, \forall n \quad |a_n a| < \varepsilon;$
- (e) $\exists \nu \, \forall \varepsilon > 0 \, \forall n > \nu \quad |a_n a| < \varepsilon$;
- (f) $\forall \varepsilon > 0 \,\exists \nu \,\forall n > \nu \quad |a_{2n} a| < \varepsilon;$
- (g) $\forall \varepsilon > 0 \, \forall \nu \, \exists n > \nu \quad |a_n a| < \varepsilon;$
- (h) $\exists \varepsilon > 0 \, \forall n \quad |a_n a| < \varepsilon$.