Precorso di Matematica 2008

Degli stessi autori ...

Il seguente elenco è aggiornato al 14 settembre 2010. La collocazione editoriale (casa editrice) è in molti casi ancora in via di definizione. Ulteriori informazioni saranno rese disponibili appena possibile sulla home page di Massimo Gobbino.

[1] M. Gobbino; Precorso di Matematica 2008.

Descrizione. Stampato integrale delle lezioni tenute dall'autore durante il Precorso 2008 per Ingegneria, con ripasso della teoria e svolgimento di parecchi esercizi. Si tratta dei prerequisiti irrinunciabili per affrontare un qualunque corso di laurea di natura scientifica.

Target. Studenti che iniziano il primo anno di Facoltà scientifiche ed hanno necessità di colmare lacune di base.

[2] M. Ghisi, M. Gobbino; *Esercizi per Precorsi di Matematica*, Società Editrice Esculapio.

Descrizione. Esercizi sugli argomenti di base di matematica: equazioni e disequazioni, polinomi, potenze e logaritmi, geometria piana, solida, analitica, trigonometria.

Target. Studenti che iniziano il primo anno di Facoltà scientifiche e vogliono verificare la solidità della propria preparazione di base e, se necessario, migliorarla.

[3] M. Ghisi, M. Gobbino; Schede di Analisi Matematica, Società Editrice Esculapio.

Descrizione. Presentazione schematica (quello che una volta si chiamava un "bignamino") degli argomenti di Analisi Matematica svolti nei corsi di base (calcolo differenziale ed integrale in una e più variabili).

Tarqet. Studenti di tutti i corsi di Analisi Matematica.

[4] M. Ghisi, M. Gobbino; Esercizi di Analisi Matematica I – Parte A, Società Editrice Esculapio.

Descrizione. Raccolta di esercizi standard su calcolo differenziale ed integrale in una variabile (limiti, serie, successioni per ricorrenza, studi di funzione, integrali, integrali impropri, equazioni differenziali, numeri complessi).

Target. Per gli studenti dei corsi di servizio (ad esempio nei corsi di laurea in Ingegneria) è più che sufficiente per la preparazione dell'esame. Per gli studenti di corsi in cui l'Analisi Matematica viene trattata in modo più approfondito (ad esempio a Matematica o Fisica) è utile affiancarlo con [6].

[5] M. Ghisi, M. Gobbino; Esercizi di Analisi Matematica II – Parte A, Società Editrice Esculapio.

Descrizione. Raccolta di esercizi standard su calcolo differenziale ed integrale in più variabili (punti stazionari di funzioni di più variabili, massimi e minimi in due o tre variabili, moltiplicatori di Lagrange, integrali doppi e tripli, curve, superfici, formule di Gauss-Green e Stokes).

Target. Per gli studenti dei corsi di servizio (ad esempio nei corsi di laurea in Ingegneria) è più che sufficiente per la preparazione dell'esame. Per gli studenti di corsi in cui l'Analisi

Matematica viene trattata in modo più approfondito (ad esempio a Matematica o Fisica) è utile affiancarlo con esercizi meno standard.

[6] M. Ghisi, M. Gobbino; Esercizi di Analisi Matematica I – Parte B.

Descrizione. Raccolta di esercizi un po' meno standard su calcolo differenziale ed integrale in una variabile.

Target. Studenti dei corsi di servizio che non si accontentano degli esercizi base [4]. Studenti di corsi in cui l'Analisi Matematica viene trattata in modo più approfondito (ad esempio a Matematica o Fisica).

[7] M. Ghisi, M. Gobbino; Test d'esame di Analisi Matematica I, Società Editrice Esculapio.

Descrizione. Raccolta dei test d'esame assegnati in corsi di servizio, con risposte.

Tarqet. Studenti dei corsi di base di Analisi Matematica.

[8] M. Ghisi, M. Gobbino; Scritti d'esame di Analisi Matematica I, Società Editrice Esculapio.

Descrizione. Raccolta degli scritti d'esame assegnati in corsi di servizio, con risposte ed "aiutini".

Target. Studenti dei corsi di base di Analisi Matematica. Sicuramente utile anche per studenti di Matematica o Fisica per iniziare la preparazione alla prova scritta.

[9] M. Ghisi, S. Spagnolo; Prove d'esame di Analisi Matematica I.

Descrizione. Raccolta degli scritti d'esame assegnati a Matematica e Fisica in corsi su argomenti di Analisi Matematica I (calcolo differenziale e integrale in una variabile), con risposte ed "aiutini".

Target. Studenti di corsi in cui l'Analisi Matematica viene svolta in maniera approfondita.

[10] M. Ghisi, S. Spagnolo; Prove d'esame di Analisi Matematica II.

Descrizione. Raccolta degli scritti d'esame assegnati a Matematica e Fisica in corsi su argomenti di Analisi Matematica II (calcolo differenziale e integrale in più variabili), con risposte ed "aiutini".

Target. Studenti di corsi in cui l'Analisi Matematica viene svolta in maniera approfondita.

Indice

01-1 – Frazioni e semplici equazioni				 		7
01-2 – Potenze e radici				 		12
02-1 – Esercizi sulle potenze e scomposizioni classiche				 		18
02-2 – Divisione tra polinomi ed equazioni polinomiali				 		24
03-1 – Disequazioni di primo e secondo grado $\ \ldots \ \ldots \ \ldots \ \ldots$				 		30
03-2 – Disequazioni con prodotti e quozienti $\ .\ .\ .\ .\ .\ .\ .$				 		36
04-1 – Esponenziali e logaritmi $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$				 		41
04-2 – Equazioni e disequazioni con esponenziali e logaritmi $\ \ldots \ \ldots$						47
05-1 – Equazioni e disequazioni con radici $\ \ldots \ \ldots \ \ldots \ \ldots$				 		52
05-2 – Valori assoluti e relative equazioni e e disequazioni				 		58
06-1 – Trigonometria - Prime definizioni $\ \ldots \ \ldots \ \ldots \ \ldots$				 		64
06-2 – Trigonometria - Formule ed esercizi vari				 		71
07-1 – Trigonometria e triangoli				 		77
07-2 — Trigonometria - Esercizi vari $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$				 		83
08-1 – Geometria analitica – Equazione della retta				 		88
08-2 — Geometria analitica — Equazione della circonferenza $\ \ldots \ \ldots \ \ldots$				 		93
09-1 — Esercizi di geometria analitica e insiemi del piano $\ \ldots \ \ldots \ \ldots$				 		99
$09\mbox{-}2$ – Insiemi del piano e risoluzione parziale del test di fine Precorso	20	006	3.	 . .		104
10-1 – Geometria piana e solida				 		109
10-2 – Risoluzione del test di fine Precorso 2007				 		114

Prefazione

Questo fascicolo contiene lo stampato integrale delle lezioni tenute dall'autore durante il Precorso di Matematica per Ingegneria svoltosi all'Università di Pisa nel settembre 2008. Il Precorso si è articolato in 10 lezioni della durata di 3 ore "lorde" ciascuna, svoltesi nell'arco di due settimane. Ogni lezione, a sua volta suddivisa in due sessioni, è stata registrata mediante Tablet PC. I video delle lezioni si possono liberamente scaricare dalla home page dell'autore.

Gli argomenti del Precorso sono le basi di matematica per poter seguire con successo un corso di laurea in Ingegneria. Quello che segue vuole essere solo un elenco indicativo.

- Numeri e algebra. Proprietà delle potenze, delle radici, dei logaritmi.
- Polinomi. Divisione tra poliniomi, radici e fattorizzazione, scomposizioni classiche.
- Equazioni polinomiali, esponenziali, logaritmiche, trigonometriche, con radici e valori assoluti.
- Disequazioni di primo e secondo grado, con prodotti e quozienti, radici, valori assoluti, esponenziali e logaritmi, funzioni trigonometriche.
- Trigonometria e risoluzione di triangoli.
- Geometria euclidea piana e solida.
- Geometria analitica nel piano. Equazioni di rette, circonferenze, parabole. Insiemi del piano descritti mediante semplici disequazioni o sistemi di disequazioni.

Le lezioni sono focalizzate sulla risoluzione di esercizi sugli argomenti sopra indicati. Ove necessario gli esercizi sono preceduti da brevi richiami della teoria. Questa vuole essere anche una indicazione sul metodo di studio. Di fronte alla teoria è facile dire "io queste cose più o meno le so". Solo risolvendo *in prima persona* parecchi esercizi emergono tutti i propri dubbi e si acquisisce con il tempo padronanza e sicurezza.

D'altra parte, l'esperienza di parecchi anni di insegnamento suggerisce che, senza dubbio, quelle del precorso sono le due settimane più importanti del primo anno. Infatti errori ed incomprensioni in questi argomenti di base si ripercuotono su quasi tutte le materie, impedendo prima di capire a lezione, poi di affrontare con successo gli esami.

Pisa, 14 settembre 2010

FRAZIONI	E SEMPLICI	EQUAZIONI	
a	b a+b	a.6	a a a a a a a a a a a a a a a a a a a
3	$\frac{1}{2}$ $\frac{1}{3}$ $+\frac{1}{2}$ $=$	6 6	3
1 1 2 =	$\frac{1}{3} \cdot 2 = \frac{2}{3}$		
a	5 3	£ ² 2 5	
atb			3-2
0=3	2		3 - 6
ab = 3	$\frac{1}{6} = \frac{1}{8}, \frac{0}{8}$	3 6 = 2	- 6
a =	$\frac{1}{3} : \frac{1}{2} = \frac{2}{3}$		

Sessione 01-1

$$b = 2 \quad a = 3 \qquad a = 3b = 6 \quad 2b = 0 - 2a = b = 2a = 2, \quad a = 1$$

$$b = 2, \quad a + b = 3 \quad 3a = a + b = 3 \quad 2a = b = 2a = 2, \quad a = 1$$

$$3a = a + b \quad Againnep - a \quad a \leq x = 5x$$

$$2a - a = a + b - a \quad 2a = b$$

$$2a = b \quad 2a = b \quad 2a = 2 \quad 2a = 2$$

Sessione 01-1

$$a+b = \frac{1}{2} \qquad a+b = \frac{1}{3} ; \quad 3a = a+b = \frac{1}{2}$$

$$3a = \frac{1}{2} \implies a = \frac{1}{6} ; \quad b = (a+b) - a = \frac{1}{2} - \frac{1}{6} = \frac{1}{3}$$

$$a+b = \frac{1}{3} \qquad a+b = \frac{1}{2} ; \quad a = \frac{1}{2} (a+b) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$$

$$b = (a+b) - a = \frac{1}{3} - \frac{1}{6} = \frac{1}{6}$$

$$a = \frac{3}{2} \qquad a = \frac{2}{3} \qquad 3a = 2a + 2b ; \quad a = 2b$$

$$b = \frac{1}{2}a = \frac{1}{2} \cdot \frac{3}{2} = \frac{3}{4}$$

$$a+b = \frac{1}{3} ; \quad \frac{a}{b} = \frac{1}{2} ; \quad a = \frac{1}{3} ; \quad a = \frac{1}{3}$$

$$2a = b \qquad a+2a = \frac{1}{3} ; \quad 3a = \frac{1}{3} ; \quad a = \frac{1}{3}$$

$$b = 2a = \frac{2}{3}$$

$$a + b = \frac{3}{3}, \quad a \cdot b = \frac{1}{9}$$

$$b = \frac{2}{3} - a \quad \text{Sockituisco nella } 2^{a};$$

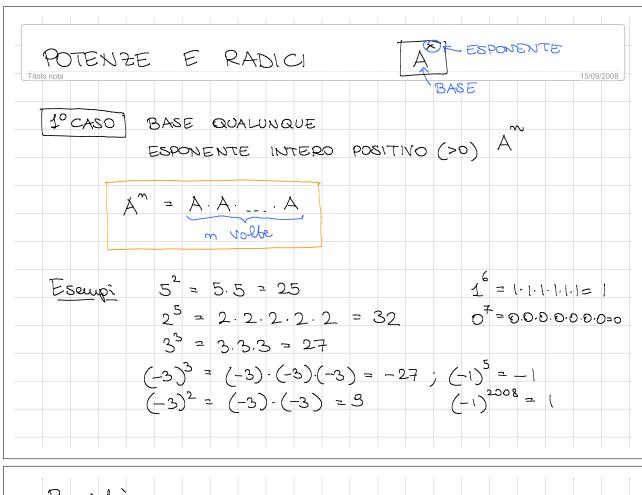
$$a \left(\frac{3}{3} - a\right) = \frac{1}{9}; \quad \frac{2}{3} a - a^{2} = \frac{1}{9}; \quad \text{Moltipuro per } 3$$

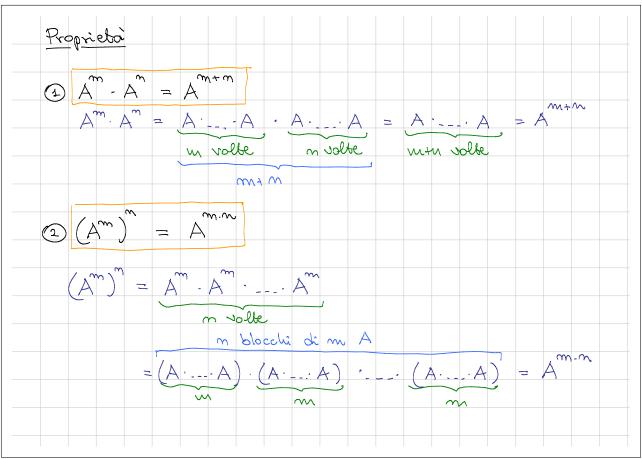
$$6a - 3a^{2} = 1 \quad \text{Porto tutto } a \rightarrow 2 \quad 3a^{2} - 6a + 1 = 0$$

$$a = \frac{6 \pm \sqrt{36 - 36}}{18} = \frac{6}{18} = \frac{1}{3}$$
Quiudi $a = \frac{1}{3}$ e poide $a + b = \frac{2}{3}$, and $a + b = \frac{1}{3}$

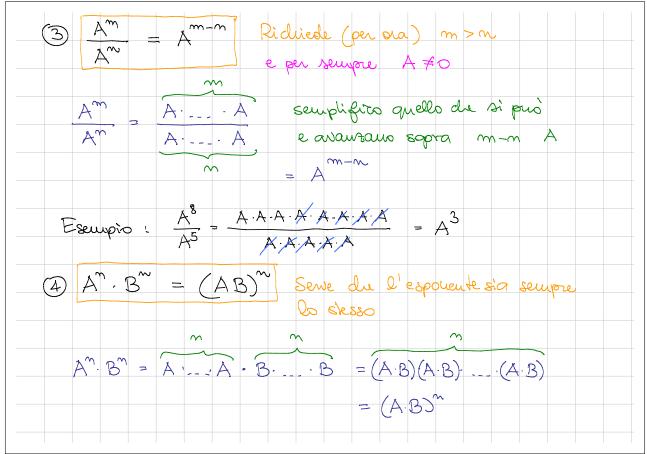
$$a - b = \frac{3}{4}; \quad a + b = \frac{2}{7}; \quad a = 2a + 2b; \quad 5a = 2b$$

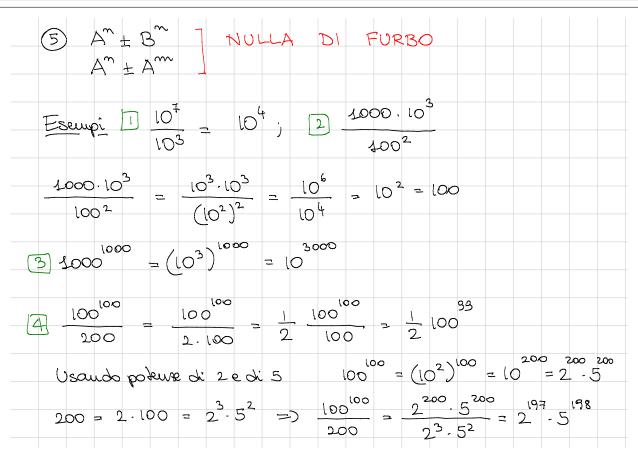
$$a - \frac{5}{2} a = \frac{3}{4}; \quad a \left(1 - \frac{5}{2}\right) = \frac{3}{4}; \quad -\frac{3}{2} a = \frac{3}{4}; \quad a = -\frac{25}{3}; \frac{8}{42} = -\frac{1}{2}$$

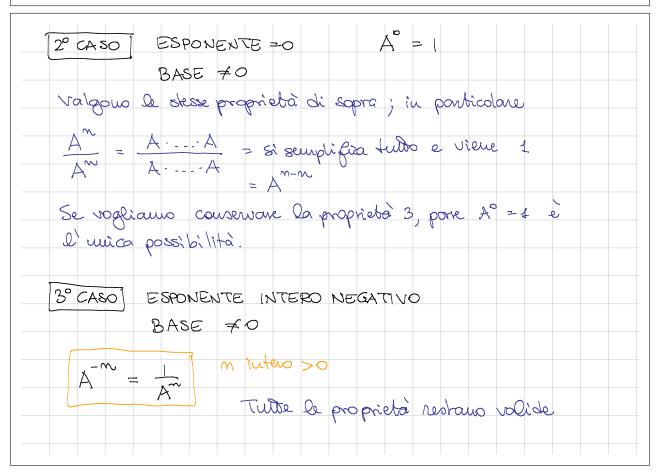

$$b = a - \frac{3}{4} = -\frac{1}{2} - \frac{3}{4} = -\frac{1}{2} - \frac{3}{4} = -\frac{1}{2}$$


Sessione 01-1

Verifica $a-b = -\frac{1}{2} - (-\frac{5}{4}) = -\frac{1}{2} + \frac{5}{4} = \frac{-2+}{4}$	5 = 3
$\frac{a}{a+b} = \frac{-\frac{1}{2}}{-\frac{1}{2} + (-\frac{5}{4})} = \frac{-\frac{1}{2}}{-\frac{1}{2} - \frac{5}{4}} = \frac{1}{2} + \frac{\frac{1}{2}}{2} = \frac{1}{2} + \frac{\frac{1}{2}}{7} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{\frac{1}{2}}{7} = \frac{\frac{1}{2}}{7} = \frac$	2 7
a+b = 2 $a+b = 7$ $a+b = 2$ $a+b = 2$ $a+b = 2$ $a+b = 2$	Ь
$2^{\alpha} = 0$	
Metteudo in si une attempo	
$a = -\frac{9}{5}b$ $+\frac{9}{5}b = +\frac{5}{7}b$ $63b = 25b$	
$a = -\frac{5}{7}b$ $38b = 0$ $b = 0$ $a = -\frac{9}{5}b = 0$	
Ma la Brossiani man anvelboero seuso => 1MPOSSIBILE	

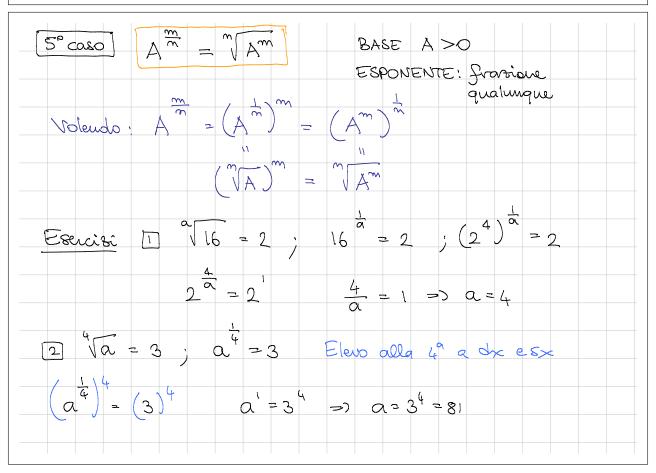

725 VERA 6 725 FALSA 6
1999 > 1999 VERA! -2000 -1889
-1983 < -2000 FALSA 6
-2000 < -1893
Se x2 >0, allorg x >0 FALSA & Per esempto x = -2
Se x z 3, allore x² z 3 VERA
Se x > 3, allora x² >0 VERA (a maggior vagione!)
Se $\times \ge 3$, allora $\times^2 \ge -7$ VERA
Se x > 3, allora x² 29 VERA je implies
Se x > 3, allora x² > 9 VERA
Se x < 3, allora x² < 9 FALSA: per exempio
$x = -327$ (<3, mail sup \square
(ALMENO UD) è >3)
Esiste x e IR tale du x² ≤0 VERA! Esiste ed è x=0


Sessione 01-1

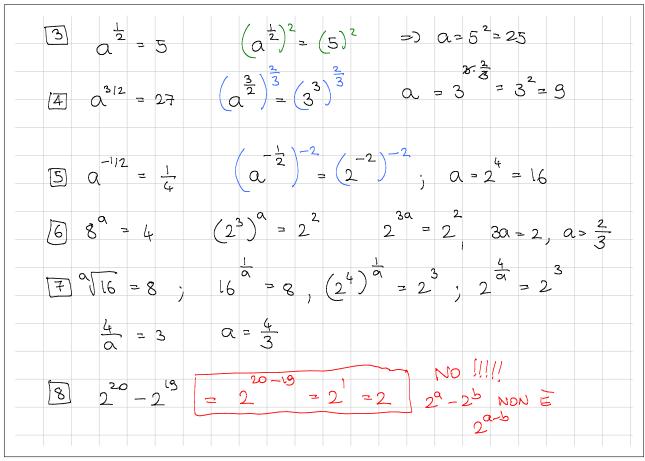

Sessione 01-2

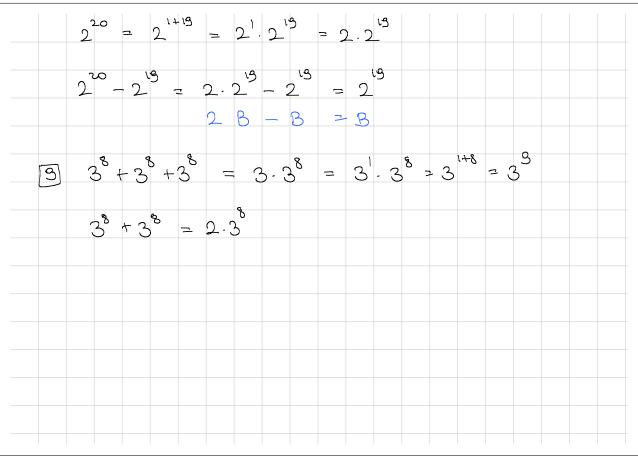
Sessione 01-2

1000	$\frac{1}{(10^2)^{1000}} = \frac{10^{300}}{(10^2)^{1000}} = \frac{10^{300}}{10^{1700}}$
6 200° 400°	$200 = 2.100 = 2^3.5^2$
200 200 400 loo	$= \frac{(2^{3} \cdot 5^{2})^{200}}{(2^{4} \cdot 5^{2})^{100}} = \frac{(2^{3})^{200} \cdot (5^{2})^{200}}{(2^{4})^{100} \cdot (5^{2})^{100}} =$
2 - 2 - 2 4 00	
Altro wodo	$\frac{(2.100)^{200}}{(2^{2}.100)^{100}} = \frac{2^{200}}{(2^{2}.100)^{100}} = \frac{2^{200}}{(2^{2}.100)$
400	(2-100) 200 100

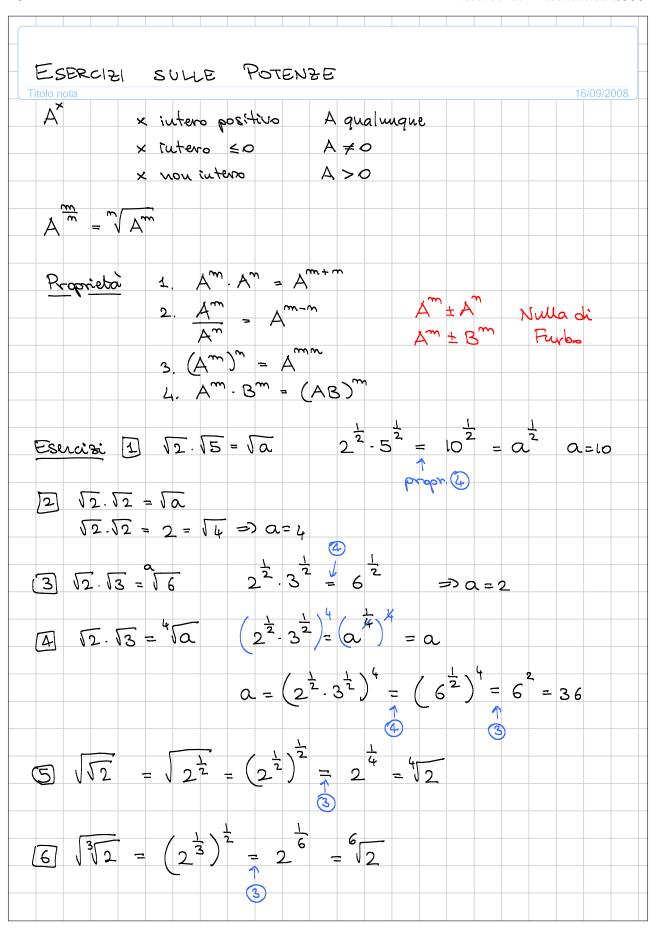


Sessione 01-2


Esempi $\prod_{7-7} 7^{-7} \cdot (\frac{1}{7})^5 = \frac{1}{7^7} \cdot \frac{1}{7^5} = \frac{1}{7^{12}}$
poteura di Am. Am = Amon
Ju alternativa
$\frac{1}{7^{3}} \cdot \frac{1}{7^{12}} = \frac{1}{7^{3}} \cdot 7^{12} = 7^{2-3} = 7^{3}$ $(12^{-12} \cdot 4^{-4}) \cdot 3^{-3} = (\frac{1}{12^{12}} \cdot \frac{1}{4^{4}}) \cdot \frac{1}{3^{3}} =$
$= \frac{1}{12^{12}} \cdot \frac{1}{4^{8}} \cdot \frac{1}{3^{3}} = \frac{1}{(3 \cdot 4)^{12}} \cdot \frac{1}{4^{4}} \cdot \frac{1}{3^{3}} = \frac{1}{3^{12}} \cdot \frac{1}{4^{12}} \cdot \frac{1}{4^{12}} \cdot \frac{1}{3^{3}}$ $= \frac{1}{3^{15}} \cdot \frac{1}{4^{8}} = 3^{-15} \cdot \frac{1}{4^{8}} = 3^{-15} \cdot \frac{1}{2^{18}} = 3^{-15} \cdot \frac{1}{2^{18}} = 3^{-18} \cdot $


ACHTUNG! Torri de esponeuriali vs poteura di poteura $2^{3} = 2 = 2 \qquad (2^{3}) = 2$ POTENZA DI
[4°CASO] A > 0 m intero positivo (ESPONENTE = Francious con mun. =1)
dove $\sqrt[3]{27} = 3$, $\sqrt[3]{8} = 2$ è l'unico $\times > 0$ tale die $\times^m = A$ Esempi $\sqrt[3]{27} = 3$, $\sqrt[3]{8} = 2$ è l'unico $\times > 0$ to
T4 = 2) è l'unico x >0 +-c. x ² = 4

L'ea (per	•							2 80 UNSC								- –2		
4516	- , =	2_	_	_				lb eres						X =	2	و ×	:= -	2
Propr	iebà	, _	Qe.	ste	-SSC	9	el	cas	ю c	7 C	ebc	પ્રલ	rte	ùil	900			
[NB]	la Le		Siw	(Z)O	ىقد	ે	dat						est		لعده	Qe.	Ьюk	אי,כ
Pote	w . a	dì	pote	W.e			A		n									
					Po) SO TEN POT	JZA JZA	DI BA		A) W. <u>i</u>	ja ,	- A	2	Д			



Sessione 01-2

Sessione 01-2

Sessione 02-1

Sessione 02-1

Sessione 02-1

	01 1/0×41 E	20040021210111	
	OLINOPII E	SCOMPOSIZIONI	
p(x) = x4 +37	$(2 + 6 \times - 25)$	grado 4 (mass	imo espouente
p(x) ha grado	W) = 2 6 (1) . di	(x) ha grado h q (x) ha grado s	1+ M
Gircido della sour	mo: se m	7 m, allora	
come grado il u • Se m= n il il che accade cano "	grado di po	gradi (x) + q (x) può c viui di grado u	ruche scendere, nav "si semplifi
		7 (x) = -x ³ + 6	
Escupio p(x)	$= 2x^2 - 3$	q (x) = x +2	
		$= 2x^3 + 4x^2 - 3x -$	
Radice di un polinoui			
		$= 2 \times^3 + 5 \times^2 - 6 \times 4$	
Radici di un pol			
		$\triangle = b^2 - 4ac$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	soluzioni reoli soluzione reole soluzioni reoli	e distinte di molbeplicità 2	

```
SCOMPOSIBIONI E POTENZE
   a^2-b^2 = (a-b)(a+b)
   a^3-b^3=(a-b)(a^2+ab+b^2) [= a^3+a^2b+a^2-ba^2-a^2-a^2-b^3]
   a^4 - b^4 = (a - b)(a^3 + a^2b + ab^2 + b^3)
   a^5 - b^5 = (a - b) (a^4 + a^3b + a^2b^2 + ab^3 + b^4)
  a^6 - b^6 = (a - b)(a^5 + a^4b + a^3b^2 + a^3b^3 + a^4b^5)
   --- e così via ...
  Se c'è il segue + :

a²+b² NULLA DI PURBO
  a^3 + b^3 = (a+b)(a^2 - ab + b^2)[= a^3 - a^2b + ab^2 + ba^2 - ab^2 + b^3]
  a4+b4 NULLA
  a^5 + b^5 = (a+b)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)
  a6+66 NOUA
  a^{7}+b^{7}=(a+b)(a^{6}-a^{5}b+a^{4}b^{2}-a^{3}b^{3}+a^{2}b^{4}-ab^{5}+b^{6})
  --- و ده الانم...
   (a+b)^2 = a^2+b^2+2ab (a-b)^2 = a^2+b^2-2ab
               (a+b)^2 = (a+b)(a+b) = a^2 + ab + ba + b^2 = a^2 + b^2 + 2ab
   (a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ac
   [Mostro] = souma di tulli i quadradi + somma di tutti i
                                               doppi prodotti
  (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3, (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
(a+b+c)^3 = a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc
[ Per esercisio dimostraria calcolamba (a+b+c) (a+b+c) (a+b+c) ]
[Mostro]3 = somma di tubi i cubi + somma di tubi i tripli
              prodotti + 6 valbe tulbi i prodotti a 3 a 3
```

$$(a+b)^4 = a^4 + (a^3b) + (b^2a^2b^2 + (ab)^3 + b^4$$

$$(a+b)^5 = a^5 + 5a^4b + (aa^3b^2 + (aa^2b^3 + 5ab^4 + b^5)$$

$$Tryansolo b i Tartasua: 1 1 (a+b)^4 = (a+b)^4 = a^2 + 2ab + b^4$$

$$del 1 dhe "stamo sopra" 1 3 3 1 (a+b)^4 = 1$$

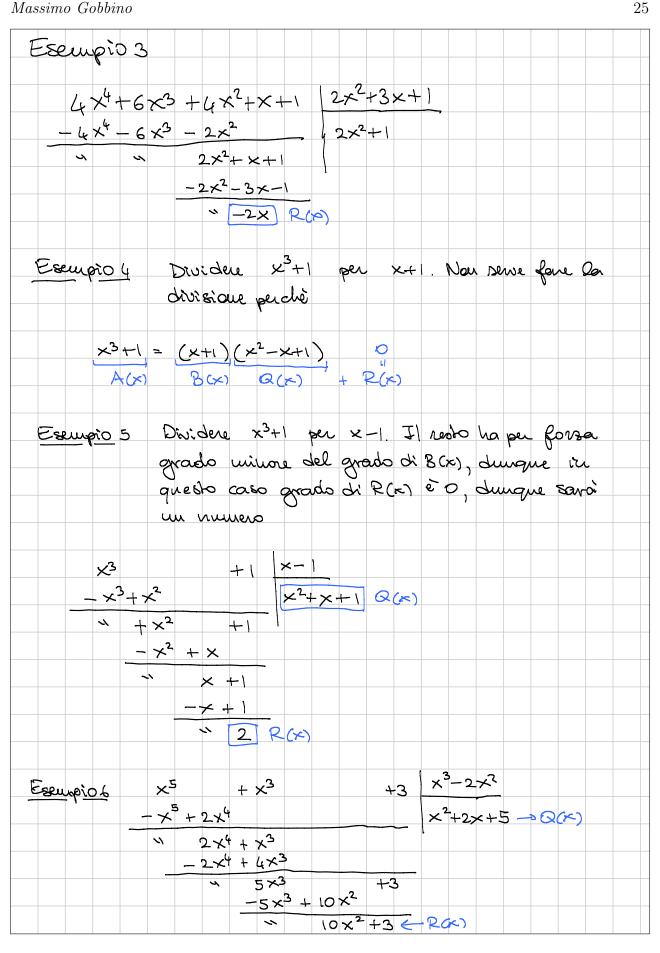
$$(a+b)^6 = a^6 + 6 a^5b + (5a^4b^2 + 20a^3b^3 + (5a^2b^4 + 6ab^5 + b^6)$$

$$(a+b)^6 = a^6 + 6 a^5b + (5a^4b^2 + 20a^3b^3 + (5a^2b^4 + 6ab^5 + b^6)$$

$$(a+b)^6 = a^6 + 6 a^5b + (5a^4b^2 + 20a^3b^3 + (5a^2b^4 + 6ab^5 + b^6)$$

$$(a+b)^6 = a^6 + 6 a^5b + (5a^4b^2 + 20a^3b^3 + (5a^2b^4 + 6ab^5 + b^6)$$

$$(a+b)^6 = a^6 + 6 a^5b + (5a^4b^2 + 20a^3b^3 + (5a^2b^4 + 6ab^5 + b^6)$$


$$(a+b)^6 = a^6 + 6 a^5b + (5a^4b^2 + 20a^3b^3 + (5a^2b^4 + 6ab^5 + b^6)$$

$$(a+b)^6 = a^6 + 6 a^5b + (5a^4b^2 + 20a^3b^3 + (5a^2b^4 + 6ab^5 + b^6)$$

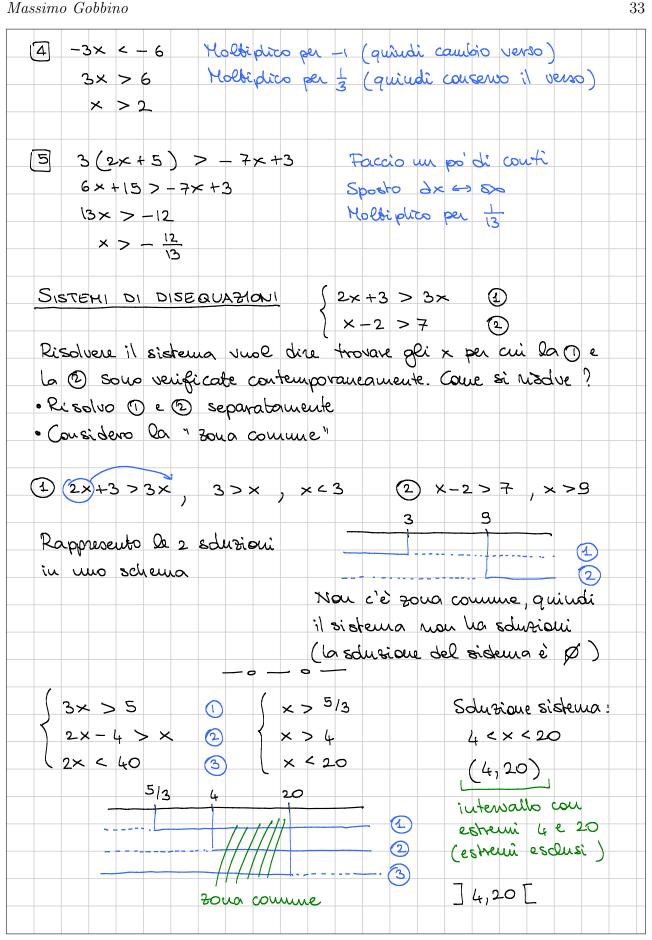
$$(a+b)^6 = a^6 + 6 a^5b + (5a^4b^2 + 2a^2b^4 + a^2b^4 + a$$

DIVISIONE TRA POLINOMI EQUAZIONI POLINOMIALI
Dotti 2 polivoui A(x) e B(x) la divisione tra A(x) e B(x) consiste mel trovore 2 polivoui Q(x) ed R(x) talli che
$A(x) = B(x) \cdot Q(x) + R(x)$ $quosiente \qquad resto$ dose il grado di $R(x)$ è <u>MINORE</u> (dretto) del grado di $B(x)$.
Come si trovano Q(=) ed R(=)? Facendo la "divisione per adonne"
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{-2\times^2}{\sqrt{-5\times-3}}$
Verifica: $x^3+2x^2-3x+1=(x^2+2)(x+2)+(-5x-3)$ A(x)=B(x)Q(x)+P(x)
Esempio 2 Voglio dividere x^5+2x^2-3 per x^2-x+1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

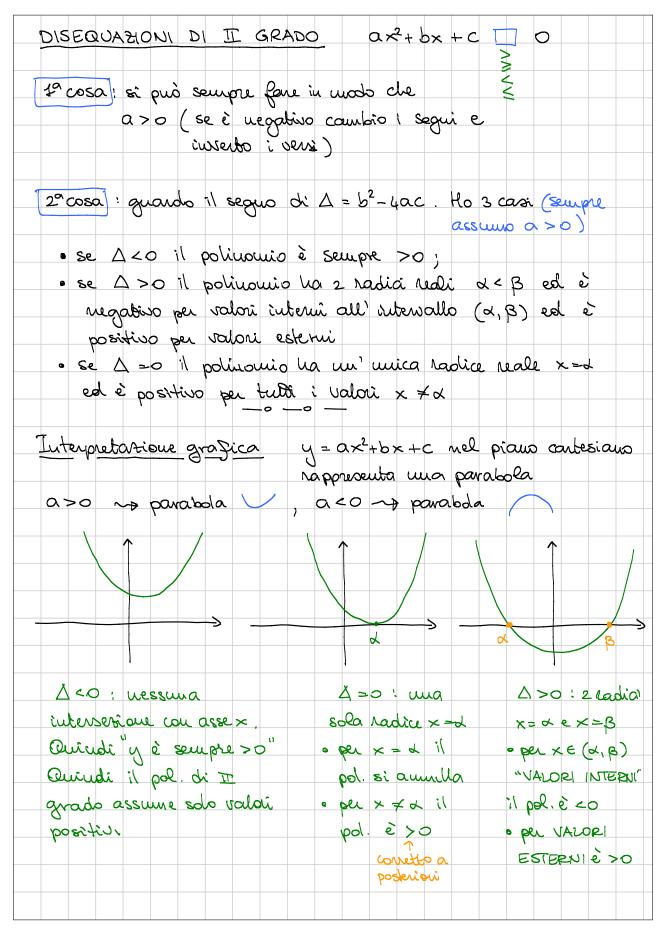
Sessione 02-2

Equazion	î polinounalî		
			0
4 2x-	-8×=0 2	×(x-4)=0 x	2 = 4
$2 \times^2$	-8 =0 , ×2=	= 4 , × = \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
$3) \times^2 -$	-7×+12=0	X1,2 = 7 ± 14	3-48 = 7-51 /4
		2	2 3
Se u	u'equatrious.	li 2º arado ha 2	radicia et, vuol
		o si falborizza n	
٠ ٠ ٠ ٠	(x-a)	V	30, 3003
N000 1	00 0	dia amus -	
1000	semplo se le	$x^2 - 4x - 3x + 12 =$	2 7 100
(*-	-5)(x-4) = x	1-4x + 3x + 12 =	x-7x+12
	2		2 ()
(x-a))(x-b) = x ⁻	-bx-ax +ab =	x^- (a+b) \times +ab
	radici = terr		
Souma	radici = coeq	ef. di x cambiato	di seguo
×2 -7×	1 + 12 = 0	Prodotio = 12 =	
		Somma = 7	S X1,12 < 3
	_ _	-0 - 0 -	
x2-×-	-6 -0	Prodotto = -6	Somma =1
		Radici: 3 e	
~2	×-6 = (×-3		
1 - 1 1			1 2 200 11 2
ACHION			quando il coeff. di x2
	è uquale		
	thir di di	widere boeso semb	re portarui in questa
	situaziou	l,oo	
x2 - 4×+	- 4 = 0 (x	$(-2)^2 = 0$ $\triangle = 0$	> x=2 rablice di
			upleplicità 2.

BIQUADRATICHE, BICUBICHE,... 1 x4-5x2+4=0 Pougo t=x2 l'equasione diventa $t^{2}-5t+4=0$ Risouro in t (P=4,S=5) => $t=\binom{1}{1}$ Torus in x nisolivendo x2=1 -> x= ±1 $x^2 = 4 \rightarrow x = \pm 2$ L'eq. cuiziale ha 4 soluzioni $2 \times 4 - 5 \times 2 + 6 = 0$ Poug $t = x^2$ $t^2 - 5t + 6 = \infty$ (S=5, P=6) $t = \binom{2}{3}$ $\chi^2 = 2$ $\Rightarrow \chi = \pm \sqrt{2}$ \Rightarrow in totale 4 soluzioni $x^2 = 3 \rightarrow x = \pm \sqrt{3}$ 3 $x^4 + 3x^2 - 4 = 0$ Pougo $t = x^2$ $t^2 + 3t - 4 = 0$ (S = -3, P = -4) t = (-6)x2=1 -> x= ±1 -> in totale 2 soluzioni x2 = -4 -> NULLA In termini di scomposizione $t^2+3t-4=(t-1)(t+4)$ auiudi $x^4 + 3x^2 - 4 = (x^2 - 1)(x^2 + 4)$ = (x+1)(x-1) (x2+4) 51 veolous le radia > Nou produce Unixa radice: t=2 ×2=2 -> × = ± \(\frac{1}{2} -> 2 \rangle \tag{2} \) $x^4 - 4x^2 + 4 = (x^2 - 2)^2 = (x + \sqrt{2})^2 (x - \sqrt{2})^2$ Le radici $\sqrt{2}$ e $-\sqrt{2}$ hanno molteplicità 2

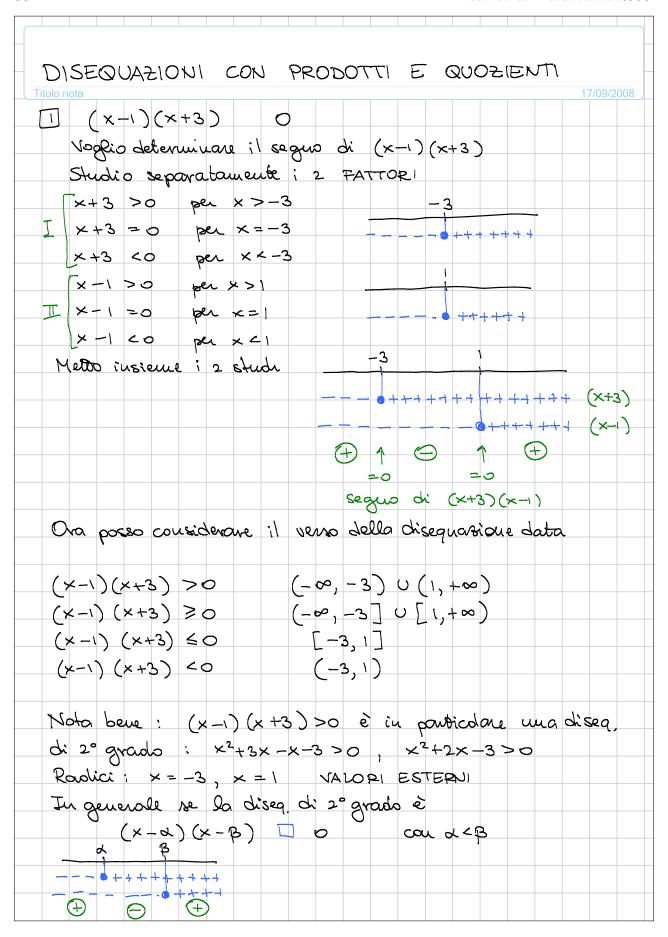

$5 \times ^3 - 2 \times ^2 + \times = 0$		
	$\times (\times -1)^2 = 0$	
radice x=0	-> MOLTEPLICITÀ 1	
radice x = 1	-> MOLTEPLICITÀ 2	
$6 \times^3 - 2 \times + 1 = 0$		
	δ!!! x=1 (se sostituisco x=1 viene 0)	
Ma allora il p	oblinouis à divisibile per x-1. Divido:	
\times^3 $-2\times$		
$-x^3+x^2$	$\times^2+\times-1$	
\times^2 $-2\times$ +		_
- / ² + /	Fattorizzariou!	
~ ~× +		
+×-	$\frac{1}{(x^2+x-1)}$	
	VENIRE 0 produce radice x=1	
	<u> </u>	
	x²+x-1=0 produce altre 2 radici	
_1+ \(\sqrt{5} \)	(Forse)	
$\times_{1,2} = \frac{-1 \pm \sqrt{5}}{2}$	Quiudi in tutto ci saro 3 solusipui	
	. ()	
Come trovare le	radiai a occlus?	
0,147,0	(-1) \times (-1) $+$ (-1) $+$ (-1) $+$ (-1) $+$ (-1) $+$ (-1) $+$ (-1) $+$ (-1)	
$u_n x + u_n$	(-) X +, + (1) X + (10)	
5.0 0-13	a coope interior	
	a coeff INTERI. Se questo polinamio ha	
	vale (cioè una Frazione m con un interi)	
Cillotte m state	de ao ed m divide an	
Quindi , toutal	io: de Jare sous un numero Sinito	
Canada () feature	not so Jenes and villiners gettion	

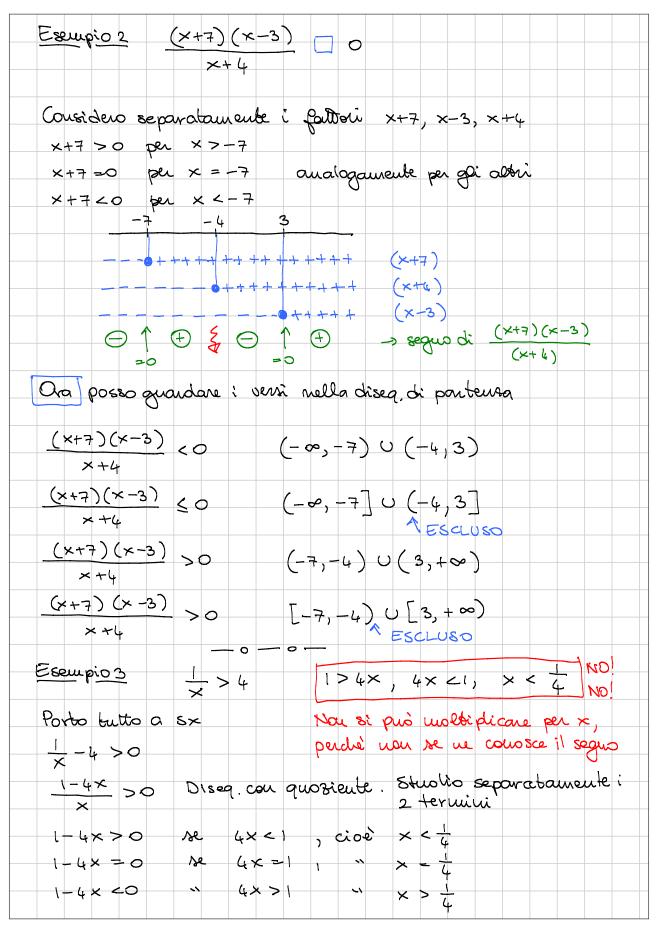
Esempio	4	×3-	4 X	+ >	< +	6	=	0								
											1.		18 00	do	6	
Se c'è	Cura n	adia	400	1	\sim	W	<u></u>	al	lov	α '	ΡĨ		9.0.			
					۲	N	\)	000	00 (`	<i>y</i> (n d	ئەرتە	de	1	
O - 12	. \ .	1 0							41		_					
Quiudi	i teu	talivi	ap	50	ne	80	w		エィ	-, ±	-2,	士 3	> ,	±6		
				_												
Esempio	2	3×3-	- 5 >	دک +	7>	< +	ა -	-0)							
_ \AA	طنينطه	٩														
7 W >> m				ento	abii	jî i	. ±	3		<u>∓</u> .	<u> </u>	,	۲,			
>> W	divide	. 3									<u> </u>					
Escupio	3	18×4-	1.5 %	3 4	16	×2 4	- 5>	<i>-</i>	.2 -							
			φΟ,				,									
y m di	uside	-2	-	,	,	۰. عا		1								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-	\eu	.tov	ao.			,		_		,			
2 2 C	الانعو	18						<u> </u>	3	<u>,</u> ±	3	, =	之			
									16		, 2					
								<u>+</u>	<u>a</u>	` נ	<u> </u>	3				
								4		-						
								_	18	•						
			-	-												
Esea	ocal.:		٠,	_داد	~ 1			11-)	11.8				ر,	٠ ۵	
														α	20	10
Trasioni	wa y	e raa	vci,	و	u	ou.	e	+	by	s COO4	-80	141				

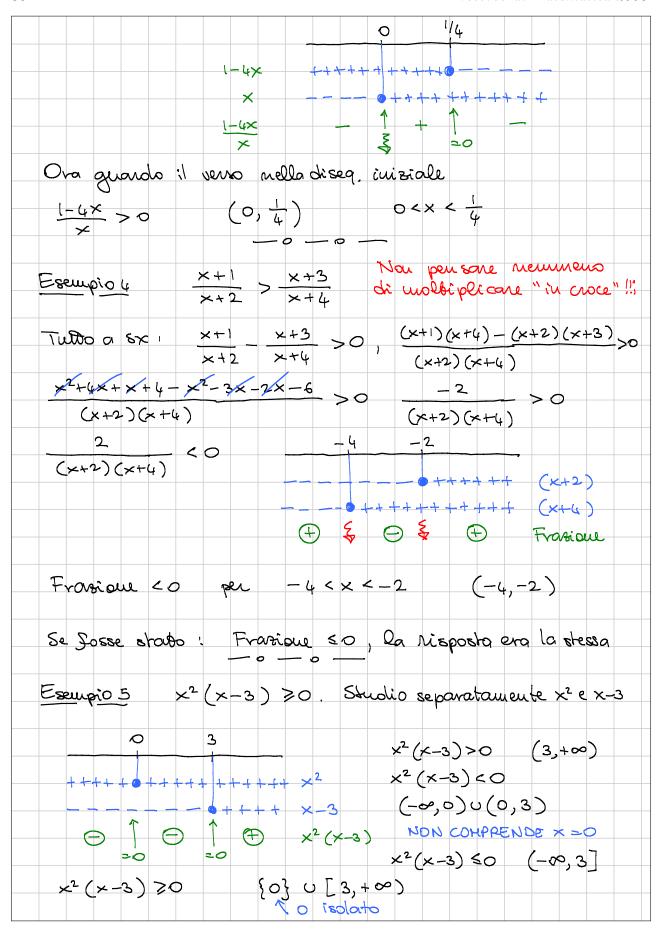

Ripasso EQUAZIONI POLINOMIALI	
Titolo nota	17/09/2008
1 I o I grado -> risolve facilmente	
(2) Biquadratica, bicubica, : si pour t = x2,	b= x3, b= x4
e diventa di I gravolo. Si nisolve in t e poi s	
(3) Attri casi in cui è di grado > II : si spera di tr	
radice rasionale m. Se si trava poi si divide	
e si sceude di grado	n
1 Come si trosa una radice rasionale? Provand	2 1 1 TAB 00
francour m in au	
om è un divisore del termine noto	
n è un divisore del coeff del termine di gra	ado max
Que ex Frasioni sono un numero finito.	
(5) Se vou c'è la radice rassionale, sous quai.	
© Trovare le soluzioni equivale a fattorizzan	
Se a, b, c sous radici di un polivourio, allor	oimanidad 11 a
ē divisibile per (x-a)(x-b)(x-c).	
Esempio 1 $x^6 + 5x^3 + 6 = 0$ Bicubica $t = x^3$	
t2+5t+6=0 (Sourua:-5, Pro	dollo: 6)
Radici cu $t = -2$, $t = -3$	
Pitoruo iu \times , $x^3 = -2$ $\Rightarrow x = -3\sqrt{2}$	2 sourioui
Pitoruo iu \times , $\times^3 = -2$ $\longrightarrow \times = -3\sqrt{2}$ $\times^3 = -3$ $\longrightarrow \times = -3\sqrt{3}$	
Ju termini di scomposizioni;	
$t^2 + 5t + 6 = (t+2)(t+3)$	
$x^{6} + 5x^{3} + 6 = (x^{3} + 2)(x^{3} + 3)$	
$x^{3}+2 = (x+^{3}\sqrt{2})(x^{2}-^{3}\sqrt{2}x+^{3}\sqrt{4})$	
	2 3 5
$\times^{3} + 3 = (\times + \sqrt[3]{3})(\times^{2} - \sqrt[3]{3} \times + \sqrt[3]{9})$ $A = \times$	B= 13

Esempio 2	(×4+1) (ײ+2×)=0	(=>)	× (×+	-2) (×	1+1) =	= O
-s 2 soluzi	oui x	2 \ 2						
Escupio 3	3×3-57	x ² + 7 ×	+3 =	0		$\frac{m}{\alpha}$		
=> Le possibil			ouali			3 ed		
II nou ram	o bene.	Prov	o ±3	, ±	81-4	5 ± 21	+3 =	0 NO
Provo 1 1/3	. ±	9 9	$\pm \frac{7}{3}$	+3	?			
cou il	(<u> </u>	7 + 7/3	+3 =	1-5+	21+27	- ≠°	
cou il	Θ,			2	-1-5	9	- =0	
= x ibuius s oimanilog					pdiwi	wo. Q	luiudi	li
3×3-5×				0				
$-3\times^3-\times^3$		37		-+3				
	2 _{+2×} 3×+3	•	Qui	udi :				
	-8×-3		3×3-	-5 ײ+7	1×+3 =	$\left(\times + \frac{1}{3}\right)$	-)3(7	² -2×+3)
10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	2001 c			1 0 80		(3×+1)(x2-	2×+3)
le soluzioni					2 ± 5	/ ₁ — \2	,	20
. Le radici				112 =	2		me	ssung us. reale
⇒ Ω' uuica	solus.	reale	છે પ્ર≡	$-\frac{1}{3}$				

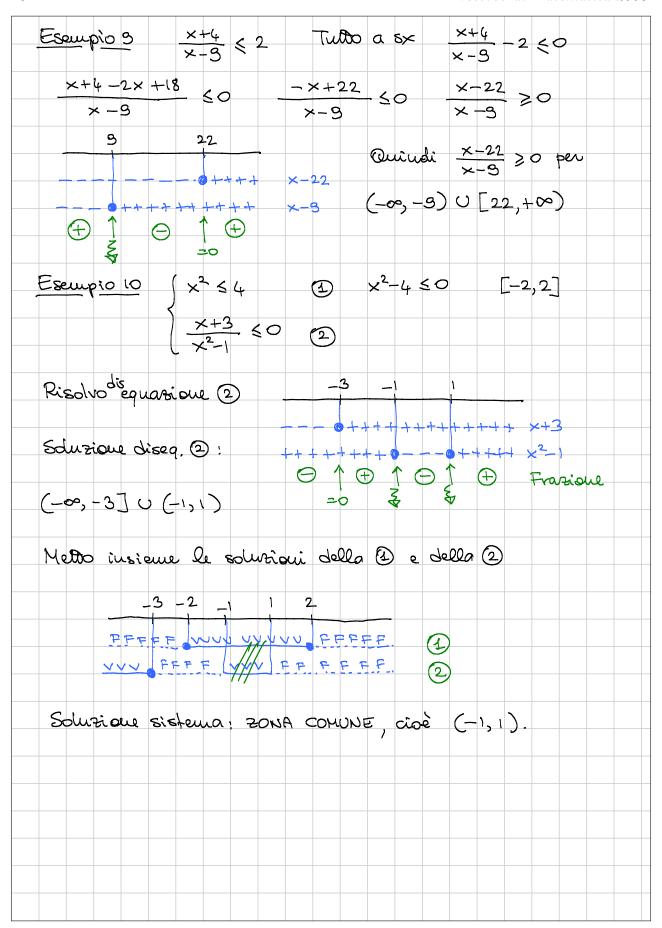
DISEQUAZIONI Oua disequatione si presenta nella forma f(x) >0 f(x) ≤0 f(x)>0 f(x)<0 Risduere la disequasione significa sostanzialmente studione il seguo della Jensione Jaz, cioè dividere i muneri x in · gli x per air f(x) >0 · ali x per aû f(x)=0 · " " f(x)<0 · gli x per an f(x) NON È DEPINITA. Esempio $f(x) = \frac{1}{x-1}$ f(x) > 0 per x > 1 f(x) = 0 MA1 f(x) < 0 per x < 1f(x) non à definito per x=1 Disequazioni di I grado 1 3× >6, × >2 (moldiplico dx e sx ger 3) 2 3× 3-6, ×3-2 (caux sopra) 3 -3 × > 6, × ≤ -2 (molbopico dx e sx per - \frac{1}{2}, ma INVERTO IL VERSO DELLA DISEQUAZ.) ACHTUNG! Per le equasioni possiamo moltopicare dx e sx per una stessa quantità purchè 70 Nelle diseq possiaux molbipliane IMPUNEMENTE per raba >0, e moltiplicare per robo <0 pur DI GIRARE il VERSO.


Sessione 03-1


Sessione 03-1


1	$x^2-4x+3 \geqslant 0$	Radici	(5=4, P=3	x = 1
	AV" 6~ 05	WAL ESTER	:U1" × ≤ 1 04	opme × 23
	+++++	3	Questo di seg	us rappresenta il
2	x²-4x+3 ≤0		3 [1,3]	
3	x²-4x+3 >0	×<\ c	ppme x > 3,	che si scrive ande
	(-0,1) (3,+0	(م	
4	x ² ≤ 4 ~	-> × ≤ ±2	ASSURDITÀ	PURA !!!!
	x ² -4 < 0			[-2,2]
5			×>3	
	x²-3× >0	Diseq 2	grado: rac	lici
	VALORI		3× =0 × x =0 e	
		υ [3,+	-∞)	
6	x ² + 4 3 0		×2+ 4 ≤	0
	Di sequazioni	di 2° grado.	Raolici x2	ry =0 nessuna
	Siano nel o			
	$x^{2}+4 >0$ $x^{2}+4 \leq 0$		R	

Sessione 03-1


Sessione 03-2

Sessione 03-2

Esempio 6	×4-3×2+4		Idea: Sattorizzare, quiudi
			risolvere come produtto
t=x2	t2-3t+4	Radici	t _{1,2} = 3 ± √3-16
		, , , , ,	2
		- -	in partichare mon a sous
		, , , , , , , , , , , , , , , , , , ,	e in t è sempre >0, quindi
	x e Sempre		
× '-5×-+	4 >0 serry	yll IR	
Escurio 7	x4 - 5x2 + 4		t=x2 t2-5t+4
			-> Fattorizzazione:
	t2-5t+4		
	x4-5x2+4	7 1	
			(x+2)(x-2)
Studio se	paratamente i	4 termini	
2		2	
		- 	[-]]
 		++ ×	
	+	++++ ×	4+2
+ 1		1 + ×	4-5×2+4 (cioè il prodotto)
4 - 2	0 0	0 ,7 , . r	
$x - 5x^{2} + 6$	4 ≤ 0 [-1		
x -3x +4	+		$[-1,1] \cup [2,+\infty)$
Esembios	$\times^4 - \times^2 - 2$	t = ×2	$t^2 - t - 2$ (s=1, P=-2)
	= 2, t=-1		
	$t^2 - t - 2 =$		
	×4-×2-2 =		x ² +\)
×4-×2-2<			_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
× -× -,7 <,		1++	++++++++++++++++++++++++++++++++++++++
$(-\sqrt{2}, \sqrt{2})$		(
			20 20

Sessione 03-2

ESPONENZIALI E LOGARITMI
Di = C Se cousco b e c, come trovo a?
Elevo tuto alla $\frac{1}{b}$ $(a^b) = (c) \implies a = c^b$
Se couosco a e c, come trovo b? Con il logarituro.
Per de finizione: b = loga c 1/ numero a per ottenere
Osservarioui
1. Sense c>0 e a>0 e a≠1
2. Date le condision di cui al purbo precedente su acc, esiste
sempre un muico numero b tale de ab=c
Escupi $2^{\times} = 8 \times = \log_2 8 = 3$
10 = 100 x = log10 100 = 2 log10 C = Log C
$\log_3 \frac{1}{3} = -1$ sto peusauolo a $3^{\times} = \frac{1}{3}$
$\log_{\frac{1}{2}} = -\frac{1}{2}$ Sho peusauolo a $4^{\times} = \frac{1}{2}$
$\frac{1}{2} = \left(\frac{1}{4}\right)^{\frac{1}{2}} = \left(\frac{1}{4}\right)^{\frac{1}{2}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$
$Qog_2 \frac{1}{4} = -2$ $2^* = \frac{1}{4}$ $x = -2$
$\log_{1/2} 4 = -2$ $\left(\frac{1}{2}\right)^{x} = 4$; $\frac{1}{2^{x}} = 4$; $2^{x} = \frac{1}{4}$

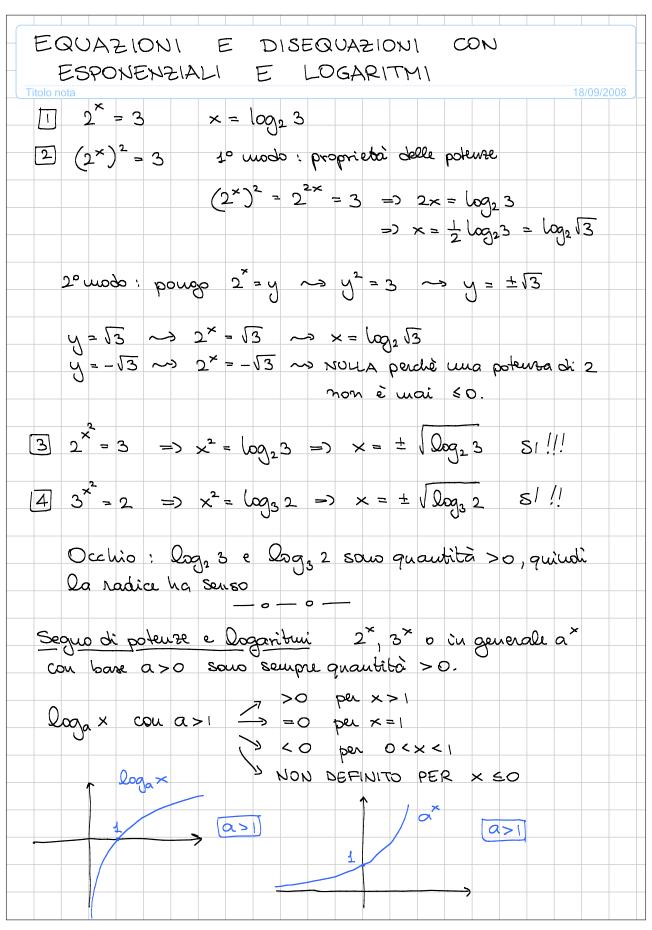
Proprietà del loga	rituo	
1 loga (x.y) =		5) loga (x±y)
$2 \log_a \left(\frac{x}{y}\right) = 1$		Mulla di furto 6 log x. logy
		Nulla di Gurlo
3 Roga × = y Q	oga ×	
[4] Forumla di cambi		rette di calcolare un log
	x = logb x	
Come si nicava il 1 roggio calcolare	cambio di base 2 = Doga X,	cioè nisolvere a ^z = x;
2. so fore solo: 3. preudo Osa, o	log in base b;	ugo log at = log, x
4. Applico Qa prop		
		. E 2005 X
5. Ricano 2 =	logsa	
Giustificazione so	-0-0- mula 1: Dogo	(x.y) = logax + logay
loga x = w => a"		" " " " "
logay = n => a^	= y woldiplica	rudo ottengo
a ^w .	a ~ 2 x · y	
aut	~ = x.y (=)	m+n = loga (x.y)

Sessione 04-1

Sessione 04-1

$$\begin{array}{c} \log_1 3 \quad 2 \log_7 7 \\ \log_7 7 \quad 3 \\ \end{array} = \log_2 \alpha \\ \begin{array}{c} 2 \\ 3 \\ \end{array} \log_2 3 = \log_2 \alpha \\ \end{array}; \quad \log_1 3^{\frac{3}{2}} = \log_2 \alpha \\ \end{array}$$

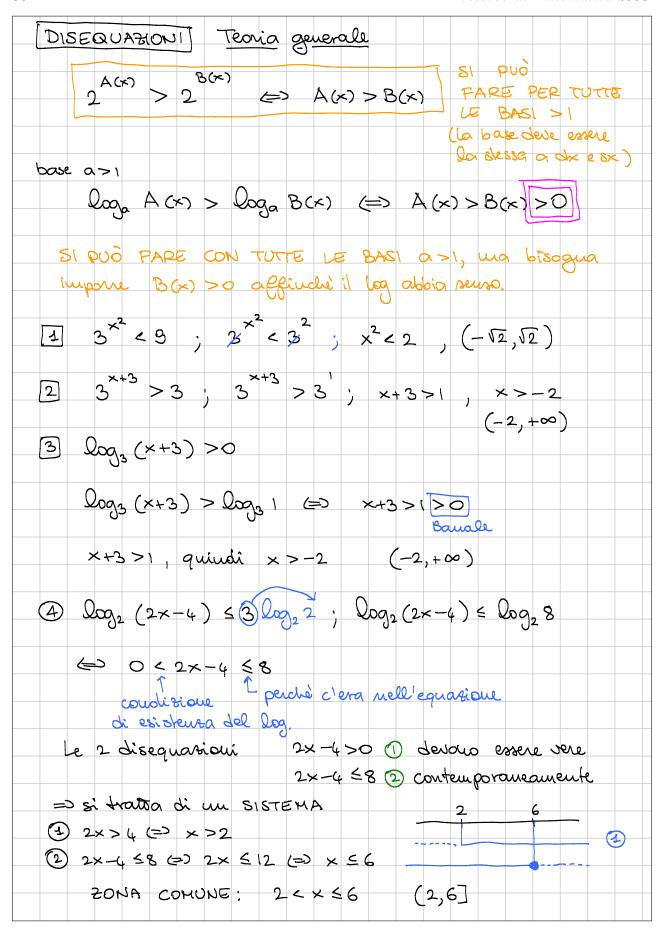
$$\begin{array}{c} 2 \\ 3 \\ \end{array} = 0 \\ 0 \\ 3^{\frac{3}{2}} = \log_2 \alpha \\ \end{array}; \quad \log_1 2 \\ \end{array}; \quad \log_2 2 \\ \end{array}$$

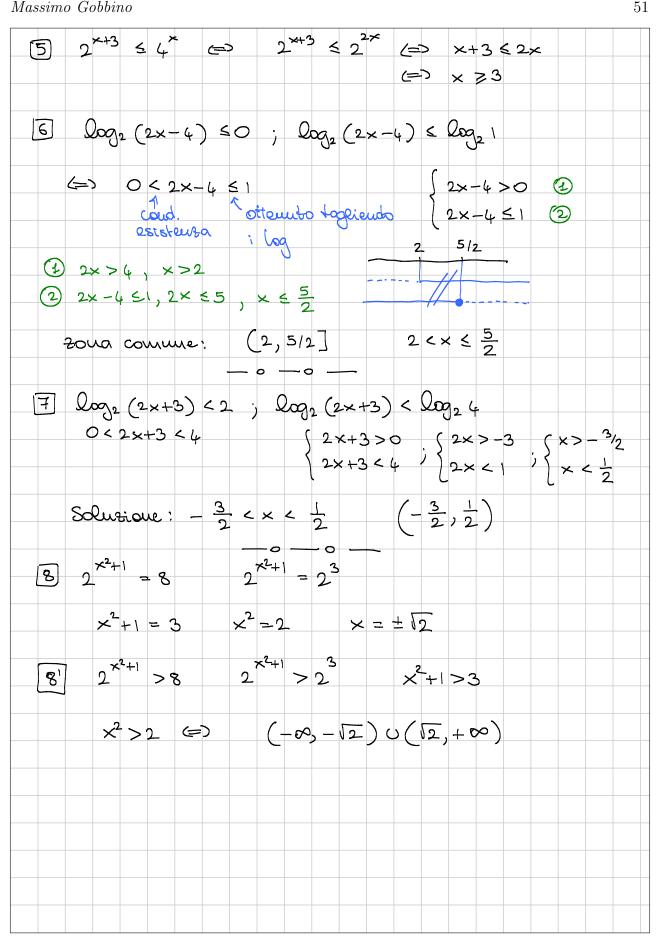

$$\begin{array}{c} 2 \\ 2 \\ \end{array} = 0 \\ 2 \\ 2 \\ \end{array} = 0 \\ 2 \\ \end{array}$$

$$\begin{array}{c} 2 \\ 2 \\ \end{array} = 0 \\ 2 \\ \end{array} = 0 \\ \end{array} = 0 \\ \begin{array}{c} 2 \\ 3 \\ \end{array} = 0 \\ \end{array}$$

$$\begin{array}{c} 2 \\ 3 \\ \end{array} = 0 \\ \end{array} = 0 \\ \end{array} = 0 \\ \end{array}$$

$$\begin{array}{c} 2 \\ 3 \\ \end{array} = 0 \\ \begin{array}{c} 2 \\ 3 \\ \end{array} = 0 \\ \end{aligned} =$$

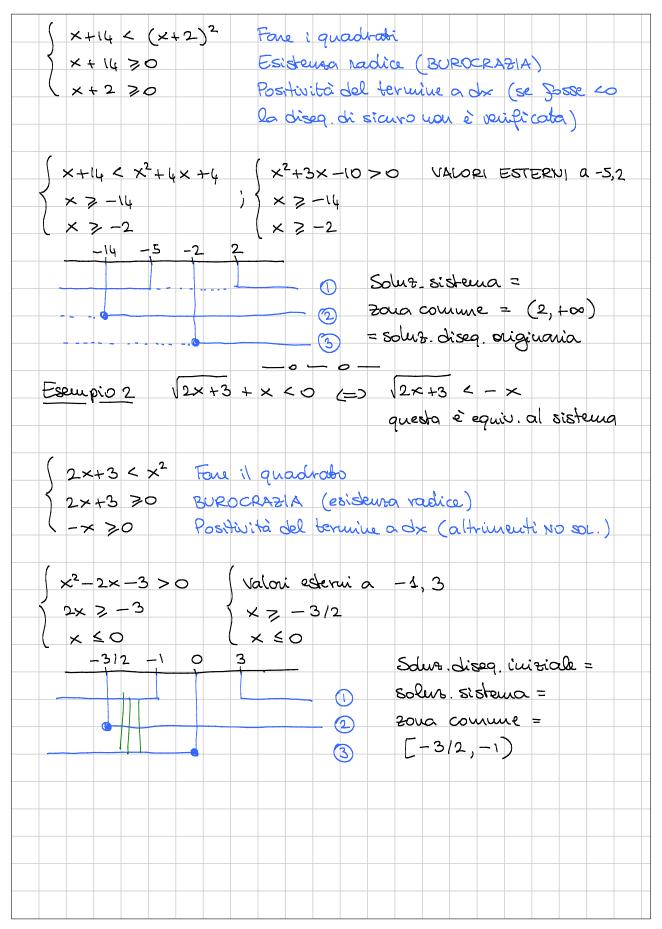

Sessione 04-1


Sessione 04-2

Sessione 04-2

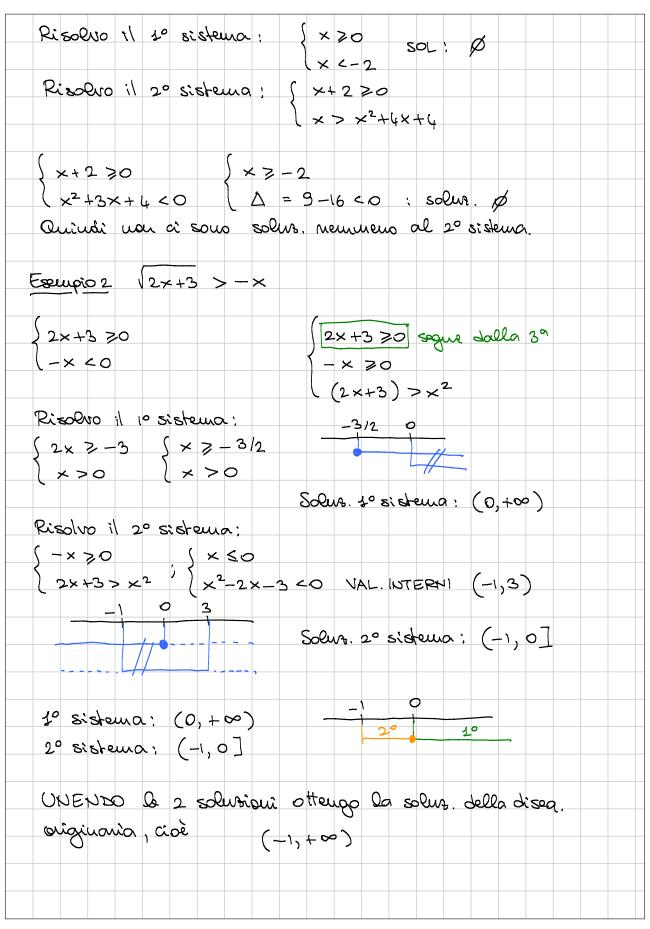
9 log, (x-1) = 5 In generale couviene portouri mella forma loga A(x) = loga B(x) (=> A(x) = B(x) Si può FARE, ma bisogna importe A(x)>0 (0 B(x)>0) (cioè bisagna fare la venifica alla June) $\log_2(x-1) = 5\log_2 2$; $\log_2(x-1) = \log_2 2^5$ $x-1=2^5=32$ => x=33 (non c'è de imporre unlla perché 10 log (x-1) + log (x+1) = 3 = 3 log 2 = log 8 log_ [(x-1)(x+1)] = log_ 8 (8>0 >) mila da imporre) (x-1)(x+1) = 8 $x^2 = 9$ $x = \pm 3$ Sostituendo x = -3 nell'eq iniziale si vede che non va bene; x=3 invece s1. 11 3 logs x + 2 logs x2 = 21; 3logs x + 4 logs x = 21 7 log3 x = 21 (=) log3 x = 3 = 3 log3 = log3 27 (=) X = 27 (12) $(\log_2(x+2))^2 + 3\log_2(x+2) = 4$. Pougo $y = \log_2(x+2)$ L'equasione diventa: y2+3y=4 (=> y2+3y-4=0 P=-4, S=-3 => solutioni y=-4, y=1. Torus inx 4=1 ~> Dog2 (x+2)=1= Dog22 => x+2=2 => x=0 $y=-4 \sim \log_2(x+2) = -4 = -4 \log_2 2 = \log_2 \frac{1}{11} = 0 \times +2 = \frac{1}{16} - ...$

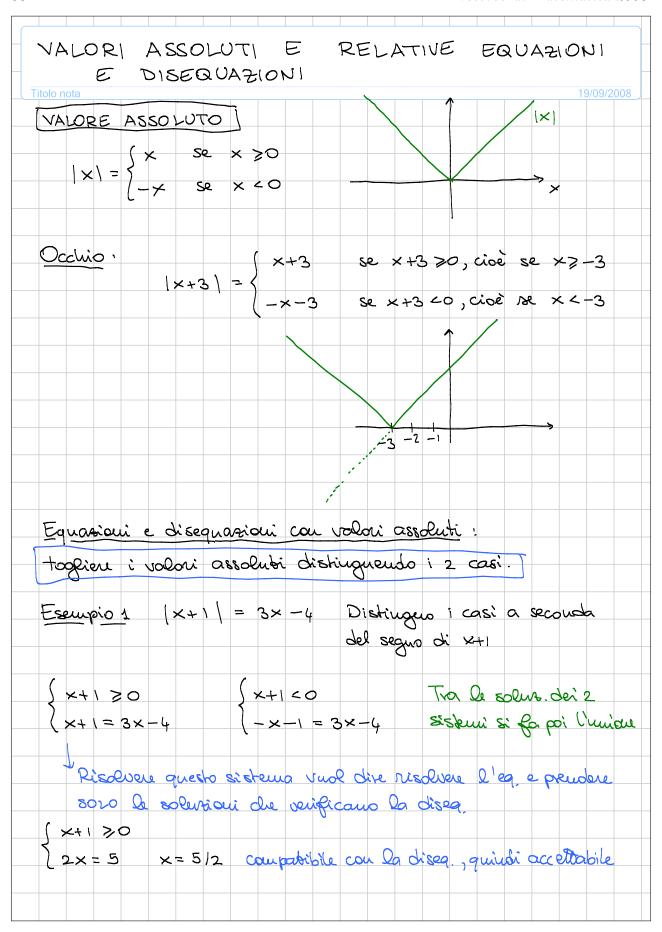
Sessione 04-2

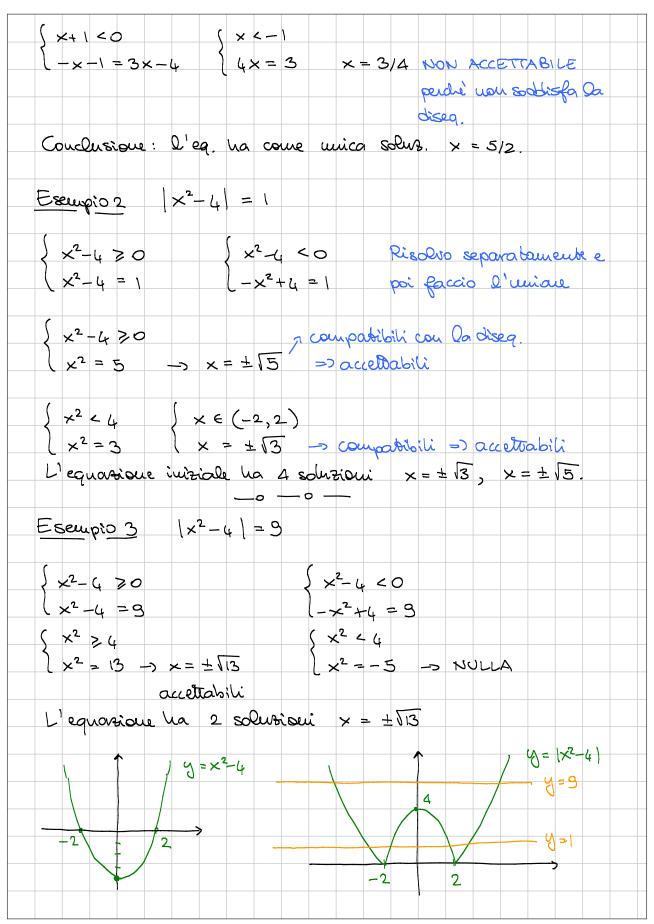

EQUAZ		E DI ADICI	SEQU	1001SA	CON	-
Raolici	di andi	ce dispar	ù 35	5, 6,)	19/09/2008
INDICE R	ISPARI					
	À(x) =					1
Idea : 2	numeni	souo u	gusli 6	val i c=	o cubi s	owo li
3 A	(x) >	B(x)		Å (×) >	$[B(x)]^3$	21
Idea : il						
Detro albri	un nume					9
Escupio 1	3√×+3	= 2	(⇒) ×		(=) X+1	
Escupio 2	3 ×3-8	= ×+	+1 =>			
	(=) xx-	8 = *2	5+3×2+	3×+1 (=	→ 3 ײ+3	
Escupio 3	5 x2	-7 >	2 Pos	so fore	le 5º po	feure
×2-7 Valori est	> 25 (=					
) x (x2-1) ≥0
					con proc	

Sessione 05-1

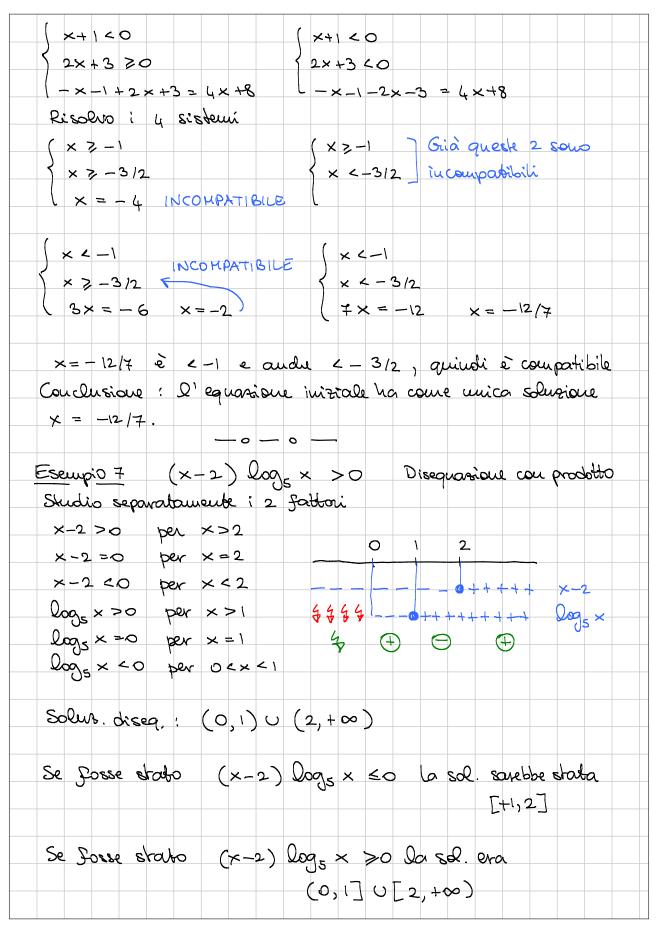
RADICI D	I INDICE !	PARI			
	- 0 ()			Nou si pur	5
VA (x	$) = D(\times)$	es Au	c) = [p(x)	fore	
Esempio	J× = -2	questa uo	n ha solur	ioni. Se faccio	>
	il quadrabo	otherop	x = 4 sdu	Rôche FINTA!	
	Se sostituisa	co melleq	originaria	others 2=-2	
	fare il quac	Success Or Star	doe to oill	. or segus!	
Iu pratica.	: fare il qua	uolvabo si p	uò, ma oc	corre poi verific	are
	otteunte.	•			
Eng. No.	J~1) = 9	<i>a</i> 0 a0			
Esempio 1	x = 801 Sc	elevo al	$\sqrt{81} = 9$	Ok!	
Escupio 2	Jx+1 = - C	3. Elevoo	l quadrate	×+1 = 81	
	x=80 . So	ostituisco	181 = -	3 MO!	
Esempio 3	$4\sqrt{x-8} = 3$. Elevo al	la quarta:	x-8=34=81	
	×=891 8	costituisco	: 4/8/ = 3	3 or!	
tsempio 4	\ \ \ + \ \ = (evo al quo	advoto:	
		x+2) <²+4×+4	× ² +3×-	-10 = 0	
5=-3, P=	-10 Sdu		'		
	x=-5 !			ETTABILE	
	x = 2 ;				
= 1 \ eq.	ha ma sol	a som groff	×= 2		
Nota bene	: la soluzion	u accettab	ile è quella	à che reude ≥.	0
	i/ termine	a destra.			


Esempio 5 Vx+6	$= - \times$ $\times^2 = \times^2$	=\estructure 01	quastro	1840 :
S=1, P=-6 : Solu				
Verifico x = 3;	√S = -3	Non	ACCETTA	BILE
×=-2:				
Vuica soluzione:	×=-2			
DISEQUAZIONI COR	RADICI	(di iud	ice pani	
Bisogna distinguere	2 casi			
VA(x) < B(<)	VACX	> B (x	
Primo caso: JA(x) < B(x	.)		
$A(x) < [B(x)]^2$				adrato conserva
3 0 1 - 1				ui positivi e
3 B (x) >0	lo il	werke tra	numeri	uegabis
(X(x) >0	So. A	(x) ē 60	Qa nadi	ce nou ha
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		new sens		
Riassumendo;				
		(x) < [B (x-] fone	i quadrati
$VA(x) \in B(x)$		(x) >0		(x) to man è ver
	(A	(x) ≥0	esish	eura della T
Tu quasia und	1.0 4.500.	10030110 5,	dea e Dans	
In questo modo u sistema di 3 dise		whom si	410 22-24C	
3.3, 3.0, 5, 5				
Esempio 1 Vx+	14 < x+	2 si +	vasforu	a ruel
		sister		


Sessione 05-1

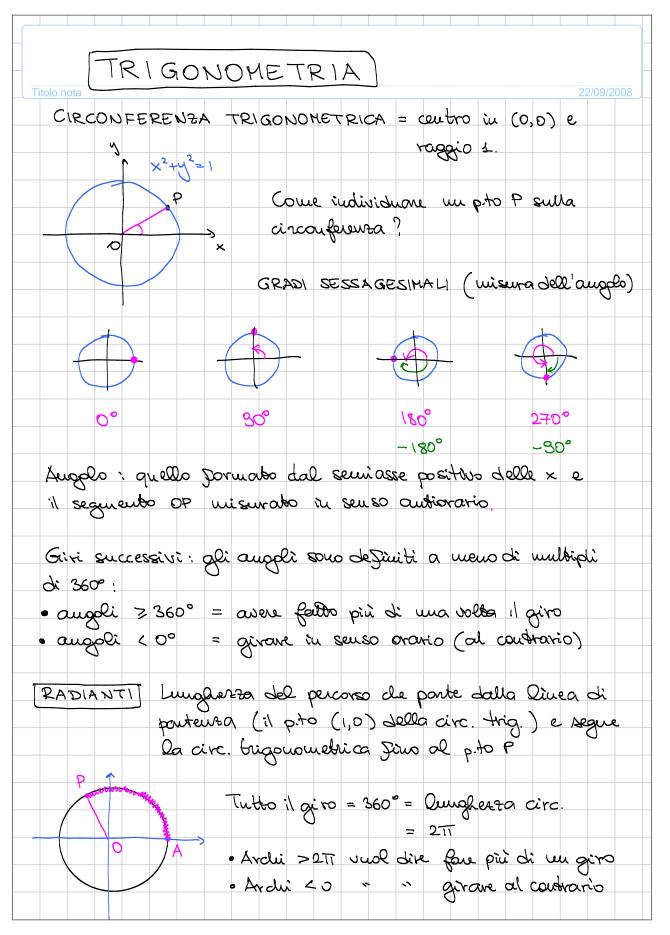

[Caso 2] \A(x	- > B	(×)			
La condisione A Se B(x) <0, si (purché la rad	curament	e la disu			ata
{ A(x)≥0 B(x)<0	mente sol	ella.	statema so diseq originale ale bube a	varia,	
Se A(x) 30 e 'albre solusioni.	B(x) 20	posso fa	re: quadr	ati e trov	Jant
\[\begin{aligned} A(x) \geq 0 \\ \begin{aligned} B(x) \geq 0 \\ A(x) > \begin{aligned} B(x) \]^2 \end{aligned}	dellad	hiseq ouig	uesto stoteu cuaria a la 1º dis		
In conclusione Sequivalente all'			A(x) > B	(X) &	
\\ A(x) > 0 \\ B(x) < 0		{ B(* A (*) > [B(x:)]2	
Operabiramente:	o risolu.	10 1/20	sistema (8 us. del 2º	e pavataune	
Escupio 1 1×	> ×+2		Si può .	tra san rang	

Sessione 05-1


Sessione 05-2

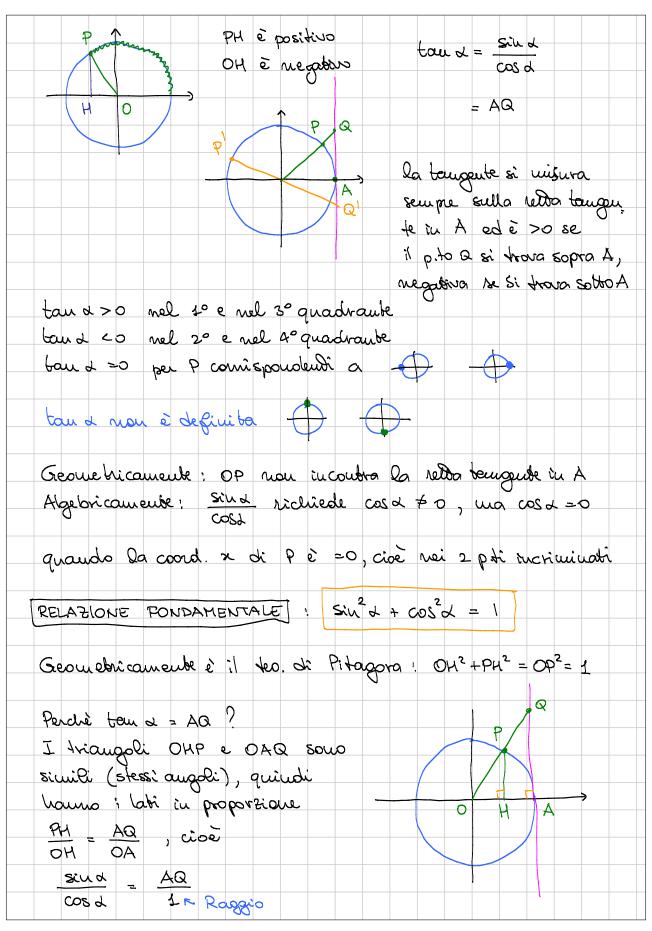
Sessione 05-2

Escupio 4 2>	<-5\+ × <0	Distingua	2 cas:	per eliminare
		il valore as		
(2×-5 ≥0				
{ 2×-5 ≥0 2×-5+×<0	\ \ - 2×+5 + >	< <0 0	Paccio	Q' UNIONE
10 \ 2×-5 >0	(2× 7,5	(× 7 5/	2	/2
20 { 2×-5 ≥ 0 3×-5 < 0) 3× < 5) (x < 5		
Nessura zona	comme => >	20 2017540	7)	
2×-5 <0	. \ x < 5/2	- 72		
2° { 2×-5 <0 -×+5 <0) (x>5			
Nessura zoua	comme => No	SOL,		
La diseq inizial				
Esempio 5 2	×-3/> ×+10			
	,			
{ 2×-3 ≥0	{ 2×-3 <	0		
(2x-3 > x+10	$\left(-2\times+3\right)$	> ×+10		
			Solue 1	0
\$0 \ \ \ \ \ > 13	(× > 13 =	> ×>13	sistema	
2° { 2× < 3 -3× > 7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	> × < - 7	13 Solu	B. 20
(-3×>+	(× < - +/3			
Solva diseq iniz	tiale = UNION	E solus. dei	2 5/5/4	uni
		7/3) U (
		, 5) 5		
Esempio 6 /x	+1]+ \2×+3]=	4×+8 Di	asquite	4 casi a
, —			congo g	
				7
(x+1 >0	(×+1>0			
2x+3 >0	2×+3<	0		
(x+1+2x+3 = 4x		×-3=4×+	-8	

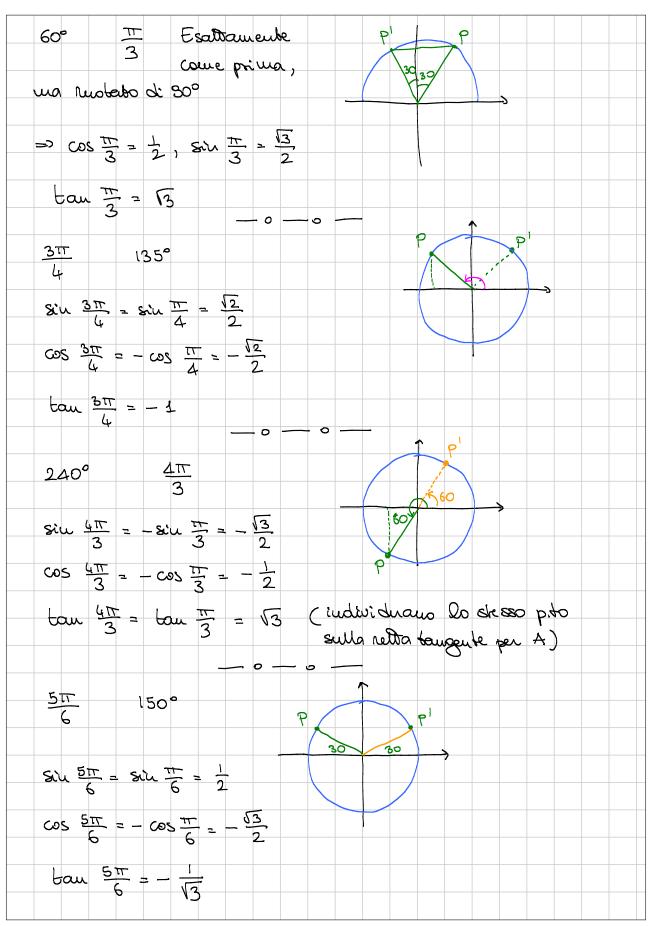

Sessione 05-2

Escupio 8	4 - 5.2*	+ 4 ≤0 ; [2×] ² -5.2×+4 ≤0
	a t	t+4 ≤0 radia: t=1, t=4 1 ≤ t ≤ 4 . Torus in x:
{ 2 * > 1	2 [×] ≥ 2° 2 [×] ≤ 2 ²	$\begin{cases} \times 20 \\ \times 20 \\ \times \leq 2 \end{cases} = 0 \leq \times \leq 2 \qquad [0,2]$
Esempio 9 (3×+3-1)(x	(+3) (O) Diseq. con produtto
x+3 >0 per x+3 =0 per x+3 <0 per	x=-3	
3×+3-1>0 6		(=) 3 > 3 (=) x+3 > 0 (=) x > -3
3*+3 -1 <0 ((=) x <-3
		La solue, dolla diseq. 3^{x+3} 3^{x+3} 3^{x+3} 3^{x+3}
	√×+3 > 4	CONSEGUENZA DE L'ALTRA
Soluzione;	× >13	(13, + \infty)
Esempio 11	V×+3 >-	- 4 sempre vonification punchè la radice abbis senso, quindi
Esempio 12	×+3 < 5	$\times +3 \ge 0 = 0 \times 2 -3$ $\begin{cases} \times +3 \ge 0 & \text{BUROCRAZIA} \end{cases}$
×>-3 , × <		(X+3 < 25 QUADRAT)

Sessione 05-2


Esempio 13	\x < x	-2	Disti	ayer	2 008	si per	o Dimi
			vare	ie 1.	. \		5
{ x-2 > 0 { \sqrt{x} < x-2}	(>						
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\	<-2 < 0 \x < - x	-2	ment	ہ و ک	accio	Q'emone
					0		
così è la si		0 00 0 (3-)					
12 W8 & 80 80	and pac	eata at	<i>J</i> ,				
Altong , 2 12, 50 1	o. 14a	V 70	D.	100-55	20214		
Alternativa + r	apica	× /0		POCE	CA OIA		
			_				
1x-2/ >0 seu Quiudi (pud	pre (si	i aunuto		×= 2)	A4	
Quiudi (pud	10 x x 30) posso (stane i	qua	drouti	otten	obus
	. 3						
× < \x-2	$- \setminus_{r} = (\times \cdot$	$-2)^{2} = 3$	د ² - لو ×	<+4			
Ju conclusione	no ottem	ubo il siste	ema				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ × 7	20		× 70	•		
X < x2-4x+4) x2-	5×+4>0		ralori	cet.	a 1	, 4
							, , , , , , , , , , , , , , , , , , ,
0 1	4						
		/,					
	<i>\</i>						
501.	- 0 -	(
Sol. diseq ivis.							
	= parte	comme		0,1)	U (4,	+00))

Sessione 06-1


Couse	weg.	e e	9	ya	dî	ربے) V	ad	iau	uti									
	SRA	ſŒί	. 1	RA	A/C	アンノ	7 \	e e	36	50°	۱ ۵	277							
o°	<u>ب</u>	,	0					45	0	رے	F 4			15	o°	\leftarrow	,	57	
30°	وسے	>	F/2							ھے	,			5/	\n ⁶			371	
1800	ب	>	Tī											02		_		١١ ر	
360°										↩					-	1		->	
270°	۲	- ɔ	311	-				120	0	دے	5	<u>F</u> 3				1			
10°																			
		GR,	ΑDI	٠,	R+	40	=	- 6	360		2	17							
														R	AD :	= -	271.	।ଫିଂ ୭°	= T
																	96	0	
Dove	કરે '	tro	7a	į(b'+	0 (10					
					<u>_</u>								360 360						
					_												(8)	o °	
		+						O.P.	701			211	00	2 .	π		3, -		
							0 -		0		2	uu	bo,	w	eno	9	6	೨	
Sefici	ぞっ	ue	di	SQ	u,	Cos													
		1)								1.		ella				~		
				P									sou		avc	00	l . [ع	
 		\prec		П. Н. /		> ×													
		0		[]/				1 7 2	_	/ -									
		9						P	2	(ca	à .		PH N A						

Sessione 06-1

Sessione 06-1

Augoli e and	û udeveli				
0° ← 0 30° ← π			siu0=0,		def.
180° €0 T	T had.		, siu T = 0,		0
2700 - 3	Tr rad	Cos 311 =	0, siu 317 :	1, tau 1	1,0,
360° ←> 27		COS(211) =	, sin (211) =0	, tan (271) =	-0
45° => T	<u> </u>		A Q		
ON=PN= l Pitagora :	2 ² + Q ² = 1	0	1		1/2
		_	$Q = \bigoplus_{i=1}^{n} \sqrt{\frac{1}{2}}$	⇒ V= √2	2
30° (-> T	,		Δι. _{(γ} – <u>1</u>		
il traugolo			2 60 30 H		
equilatero, que e di conseguen	iudi PPI =1	0	1 60		
Quiudi siu?			Per calcolore	il cas usc	
Pitappra!	OH2 = OP3		$1 - \frac{1}{4} = \frac{3}{4}$	=> OH = V	,
$\cos \frac{\pi}{6} = \frac{13}{2}$				= 1	3
	2 1 200 2 200 2 200	2	<u>1</u>		
	0	2			

Sessione 06-1

		ARCHI	ASSOCIA	77				
٧	π-		Domando					
	1/2	-4	degli and				ego wo	
	2		Peusane o	zQ di	segus	!!!!		
	<u>3π</u> 2	: ± 4						
11-0		P	P	PI	corris	,poude	a TI-	٠ حر
		40	3	P	<u> </u>		aol o	<u> </u>
) = 5ù L) = - (
			0 0 _	tai —	1 (II-c) = -	tand	
T+4)			P		_) = - = (. - = (4		
		3	4			L) = 6		
		P						
1 2 - 4		1	- 0 0 -		200	si sca	u bizas	
2		2	P					
		0	H		PIK	= Sùu Pl	1	
				siu (11 2 - 2) = (0)		
tau ((<u>f</u> _	$d = \frac{1}{\tan x}$	<u>_</u>		UK	O ¹	1	

Sessione 06-1

-2	COS (-4							
	sin (-2)) = - 9	siud					
	can (-a	-) 1 -	tand					
1 + 2	$\cos\left(\frac{\pi}{2}\right)$	+4)=	- Siu .	_				
[2]					tan	(z +d) = - (and
	sin (7/2	+4) =	C08 9	\				
0			1		27			
Per esercizi	o manare	· (cour	sizegus)	2 +	d		
2π ± d	-> esatha	mente c	ome	ナ ム				
21 17 + 0	$\sim >$ Ti	7+4						

Sessione 06-1

FORMULE TRIGONOMETRICHE FORMULA FONDAMENTALE: COS2 & + Siu2 & = 1 ARCHI ASSOCIATI Siu/cos/tau Ti±d, Ti±d, 201±d, 201±d FORMULE ADDIZIONE Siu/cos/tau x±B FORMULE DUPLICAZIONE - - 20 PRO 00 TTO - 2 SOMMA Siud SiuB = -- +--SOMMA-PROBOTTO Sind+ sin B = ---FORMULE DI ADDIZIONE COS (2+B) = COS2 COSB - Sin 2 sin B COS (d-B) = COS d COS B + SIND SINB RICORDARE su (4+B) = sud cosp + cosd sin p Sin (d-B) = sind cosp - cosd sin B Gli andi associati sono particoloni esempi di Formule di addizione $\cos(\pi-d) = \cos(\pi)\cos d + \sin(\pi) \sin d$ = - cos 4 Sin (11+4) = Sin (11) cos x + cos (11) sind = - sin x DUPLICAZIONE Siu (2x) = 2 siu x cosx (a= p=x nella Sin (4+B)) $\cos(2x) = \cos^2 x - \sin^2 x = (1 - \sin^2 x) - \sin^2 x$ = 1-28142x $= \cos^2 x - \sin^2 x = \cos^2 x - (1 - \cos^2 x)$ $= 2\cos^2 x - 1$

$$\begin{array}{c} \sin \left(2x\right) = 2 \sin x \cos x \\ \cos \left(2x\right) = \cos^{2}x - \sin^{2}x \\ = \left[-2 \sin^{2}x \right] \\ = \left[-2 \sin^{2}x \right] \\ = 2 \cos^{2}x - 1 \\ \end{array}$$

$$\begin{array}{c} = \left[-2 \sin^{2}x \right] \\ = 2 \cos^{2}x - 1 \\ \end{array}$$

$$\begin{array}{c} = \left[-2 \sin^{2}x \right] \\ = \left[-2 \cos^{2}x - 1 \right] \\ = \left[-2 \cos^{2}x \right] \\ = \left[-2 \sin^{2}x \right] \\ = \left[-2 \cos^{2}x \right] \\ = \left[-2 \sin^{2}x \right] \\ = \left[-2 \cos^{2}x \right] \\ = \left[-2 \cos^{2}$$

FORMULE SONMA
$$\rightarrow$$
 PRODUTTO]

$$\cos x + \cos y = 2 \cos \left(\frac{x + y}{2}\right) \cdot \cos \left(\frac{x + y}{2}\right)$$

$$\cos x + \cos y = \frac{1}{2} \left[\cos \left(x + y\right) + \cos \left(x + y\right)\right]$$

$$\cos x + \cos y = \frac{1}{2} \left[\cos \left(x + y\right) + \cos \left(x + y\right)\right]$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \cos x \cos y$$

$$\cos x + \cos y = 2 \sin x \cos x \cos y$$

$$\cos x + \cos y = 2 \sin x \cos x \cos y$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \sin x \cos x \cos x$$

$$\cos x + \cos y = 2 \cos x \cos x \cos x$$

$$\cos x + \cos y = 2 \cos x \cos x \cos x$$

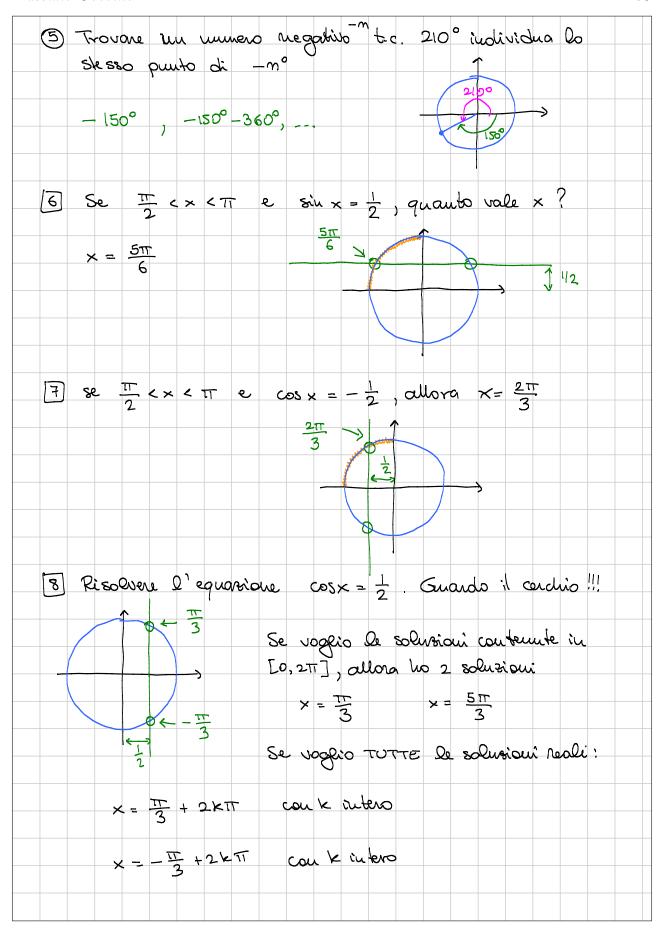
$$\cos x + \cos y = 2 \cos x \cos x \cos x$$

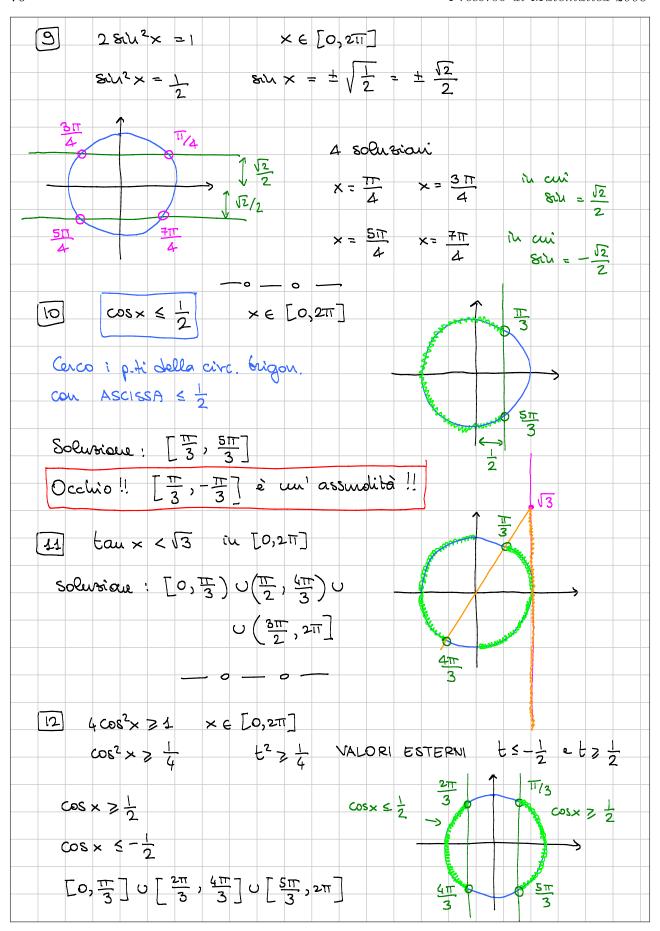
$$\cos x + \cos y = 2 \cos x \cos x \cos x$$

$$\cos x + \cos y = 2 \cos x \cos x \cos x$$

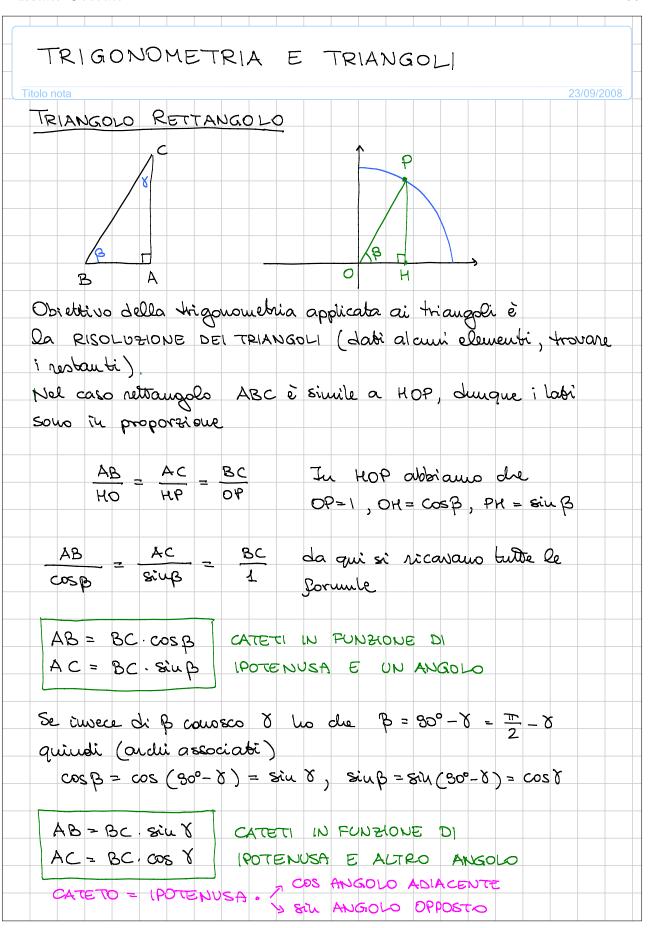
$$\cos x + \cos y = 2 \cos x \cos x \cos x$$

$$\cos x + \cos y = 2 \cos x \cos x \cos x$$

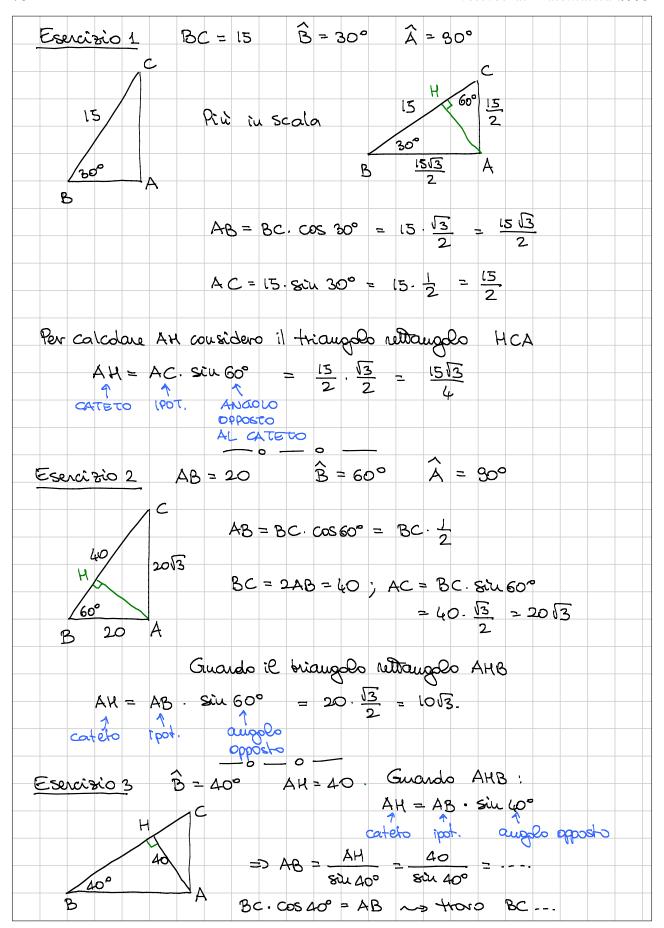

$$\cos x + \cos y + \cos x \cos x \cos x \cos x$$

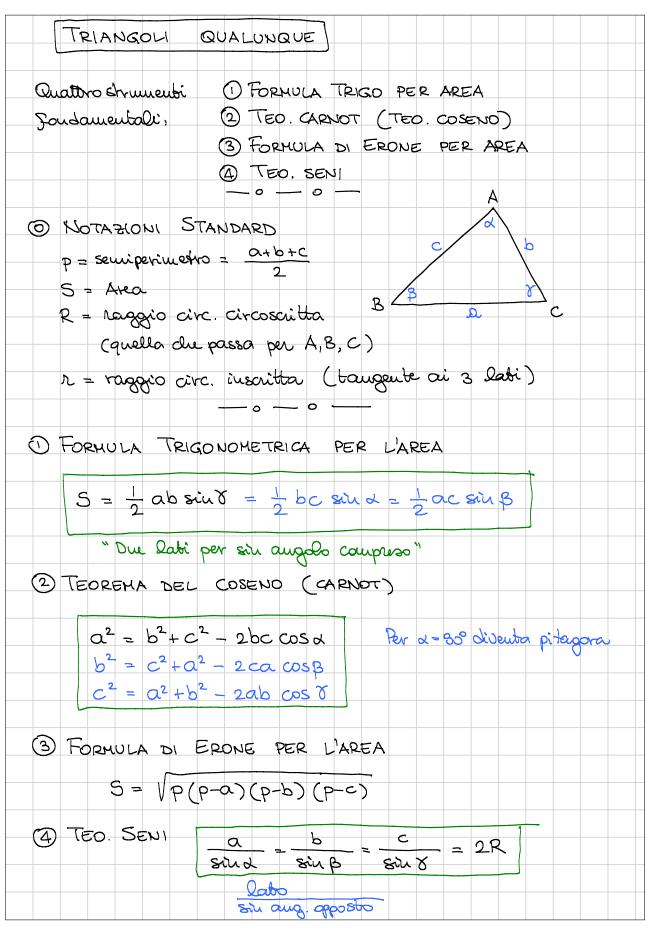

$$\cos x + \cos x$$

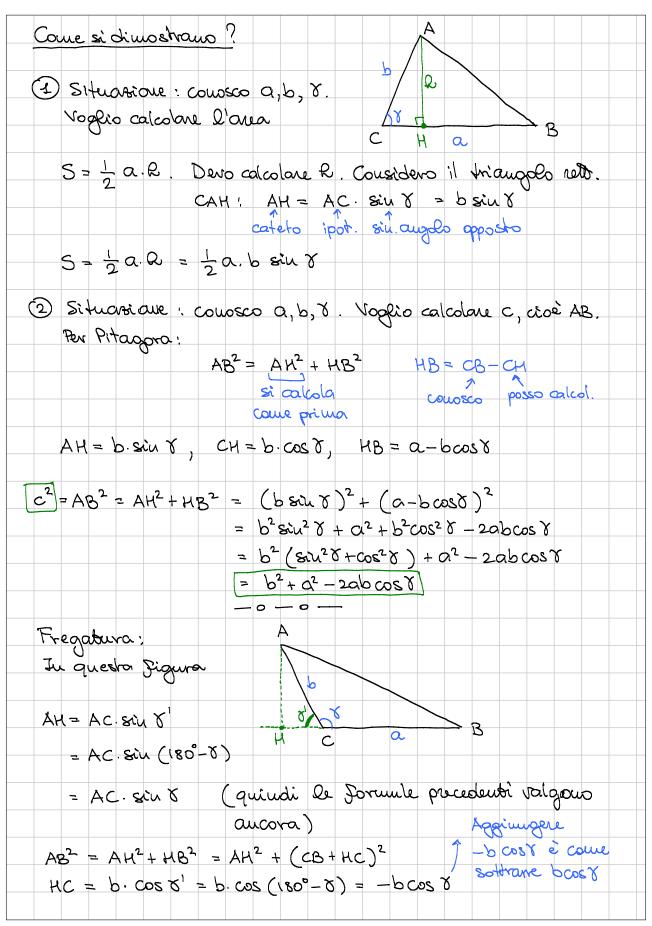
Eserciti []
$$\sin 30^{\circ} = \sin (-30^{\circ}) = -\frac{1}{2}$$
 $\cos 330^{\circ} = \cos (30^{\circ}) = \frac{1}{2}$
 $330^{\circ} \text{ in problembi}$
 $360^{\circ} - 30^{\circ} \text{ and } 2\pi - \frac{\pi}{6}$


[2] $15^{\circ} \text{ and } \frac{\pi}{12}$
 $\cos (15^{\circ}) = \cos (45^{\circ} - 30^{\circ})$
 $= \cos (45^{\circ}) \cos (50^{\circ}) + \sin (45^{\circ}) \sin (30^{\circ})$
 $= \cos (45^{\circ}) \cos (50^{\circ}) + \sin (45^{\circ}) \sin (30^{\circ})$
 $= \frac{12}{2} \cdot \frac{15}{2} + \frac{12}{2} \cdot \frac{1}{2} = \frac{16 + 12}{4}$

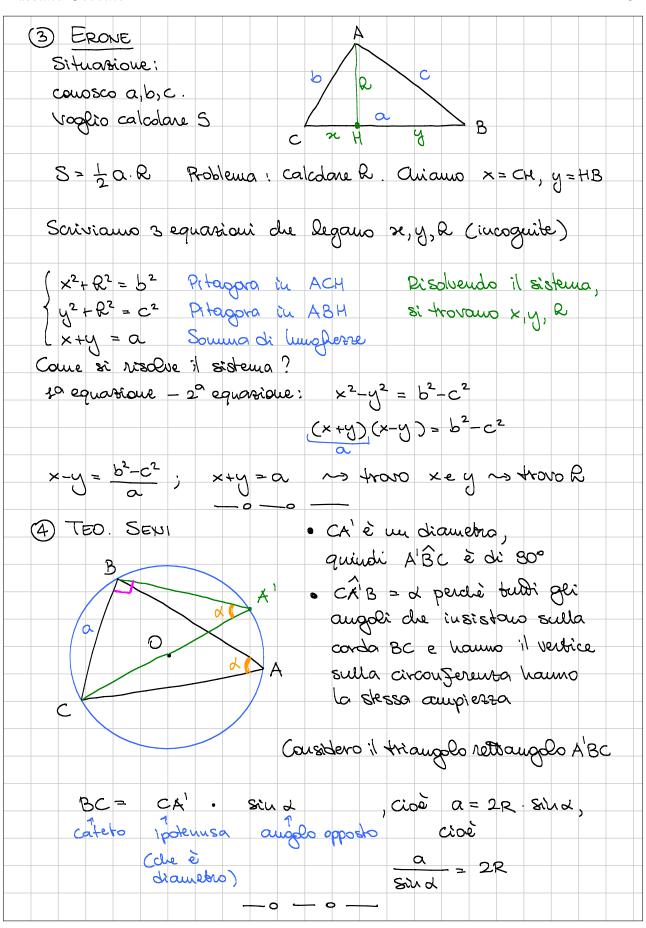
Sin $(15^{\circ}) = \sin (60^{\circ} - 45^{\circ}) = \sin 60^{\circ} \cos (36^{\circ} - \cos 60^{\circ} \sin 45^{\circ})$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1}{2} \cdot \frac{12}{2} = \frac{16 - 12}{4}$
 $= \frac{13}{2} \cdot \frac{12}{2} - \frac{1$




Sessione 06-2

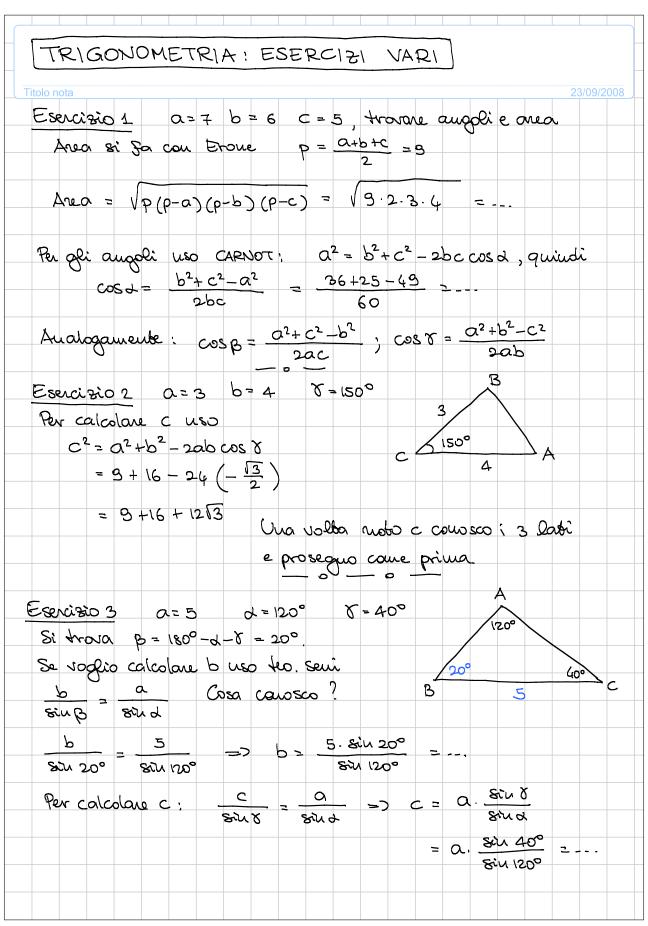


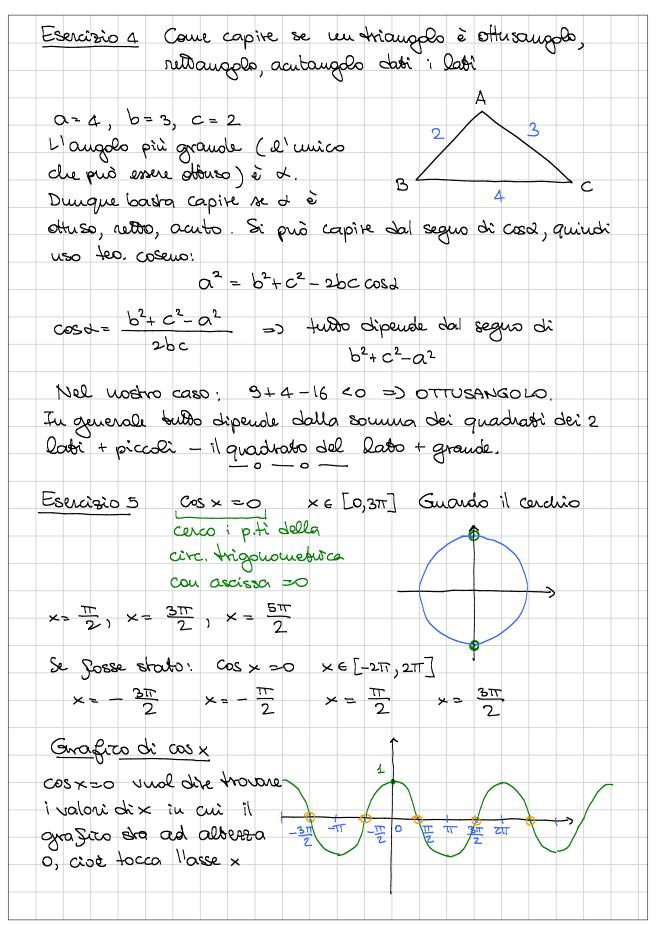
Sessione 07-1



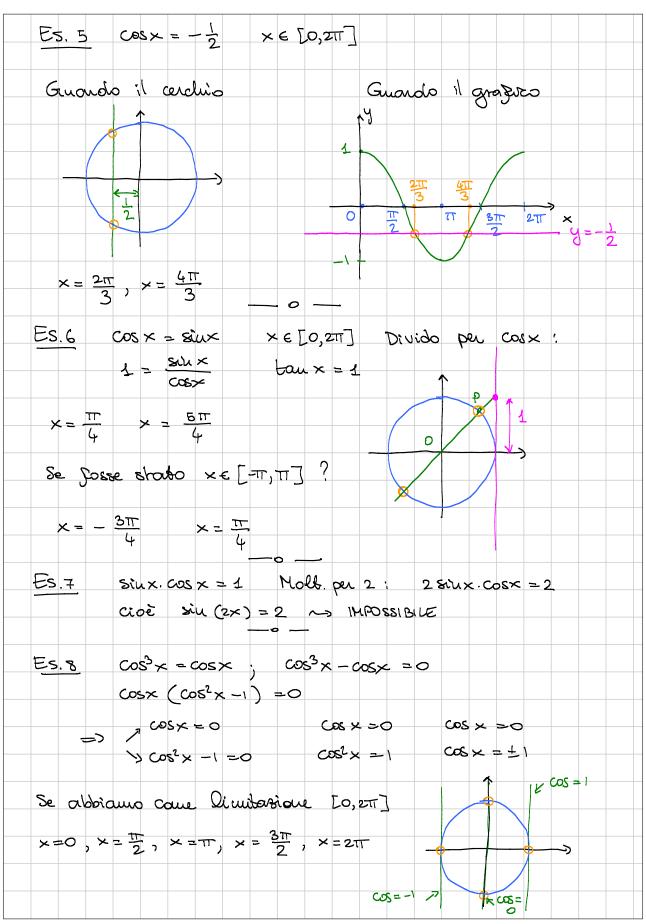
Sessione 07-1



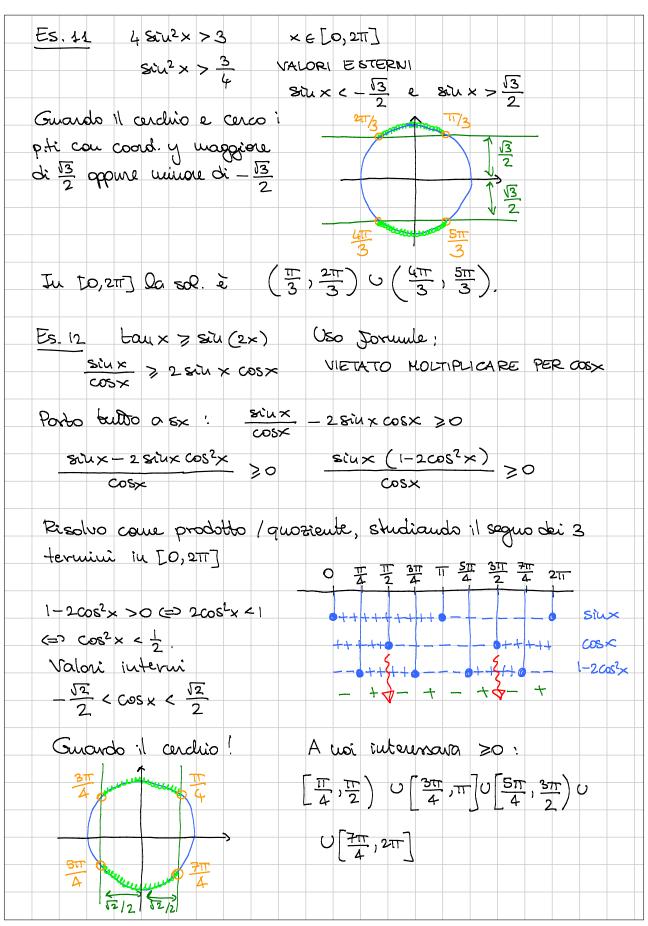

Sessione 07-1

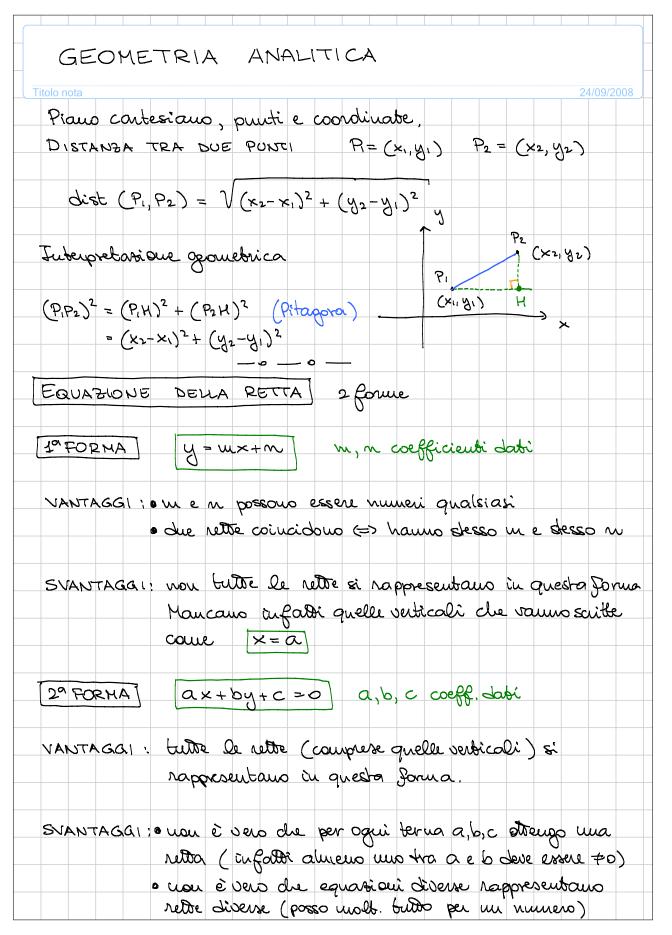


Sessione 07-1



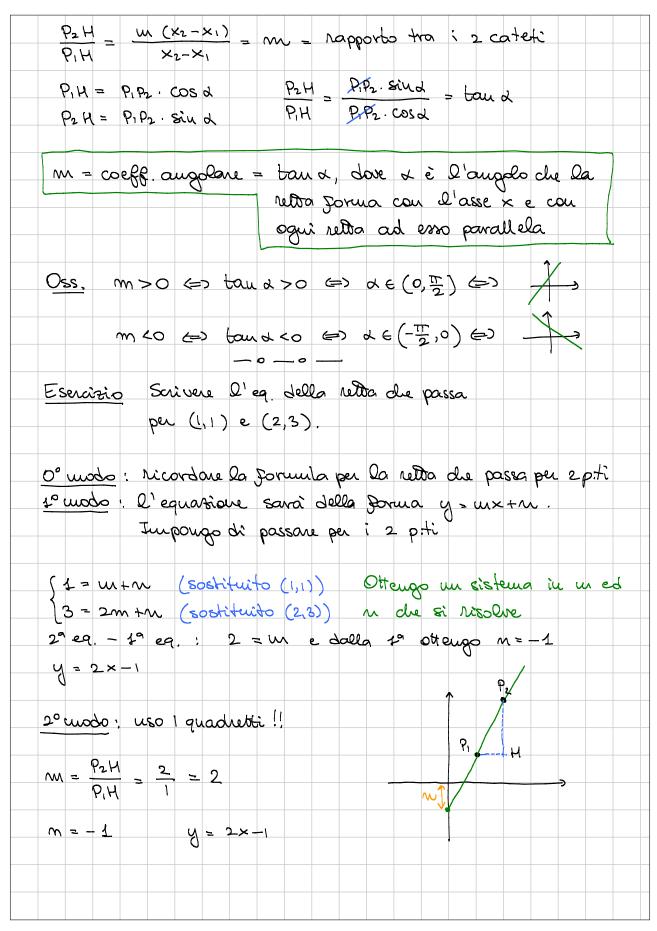
Sessione 07-1




Sessione 07-2

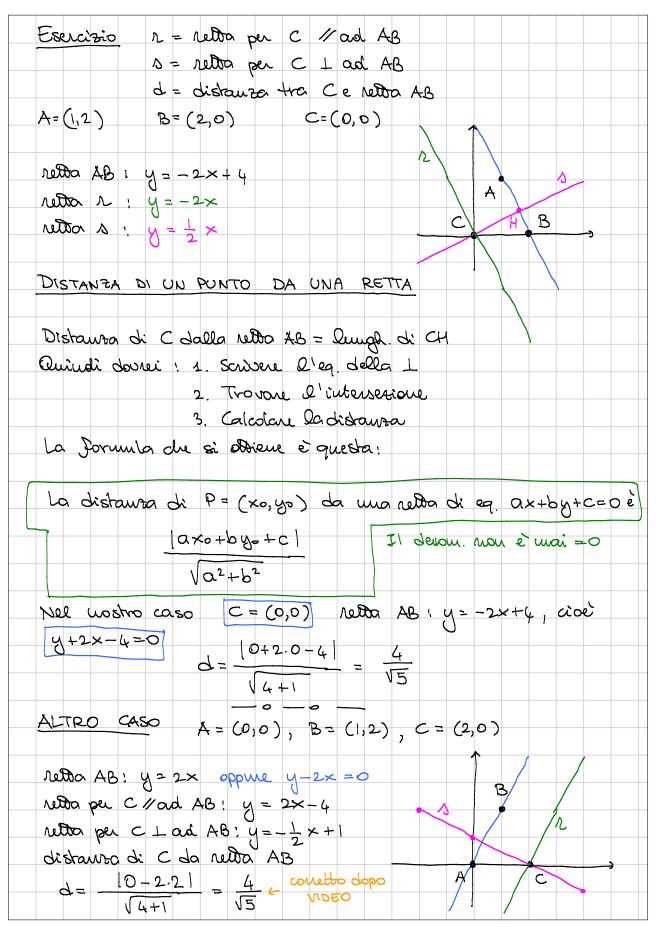
Sessione 07-2

Sessione 07-2



Sessione 08-1

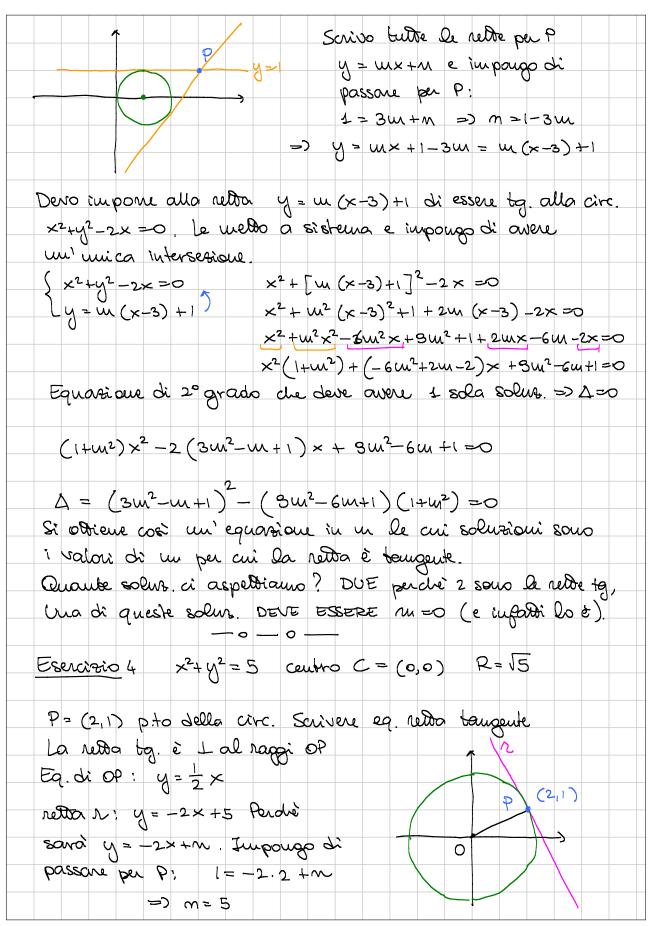
085		Ju	. J.	χw	.o.	OX	+ b	sy t	- ح	-0	du	æ	equ	OV.	م۱.	uppr	esei	ubcu	w	Qa
		8k	58C	ما	Wo	٠ ٠	رد	88	w	Q1	ш	a	huul	.tip	la c	Jell) al	bro		
PAS	SA	GG	0	DΑ	, U	AU	F	DRH	1A	ALL	1 AL	TR	Α_							
	Ŋ.	<u> </u>	w ×	+0	\		~			_			-m	=-	0					
	×	= 0	λ				~	∽ >					9							
	QХ	+6	ر 40	rC	-C)	~	~ <u>></u>					× -				ica	NO 1	9)	
		,											رے							
							•	_					w			wa	Nic	aur		
	X	7	- 0		د د	otto e	nde	ס ט	wo	1 (<i>'</i> 0	erbi	cal						
€ C		7.	0-		_	ο 4			c -				A.	~ 6						
Oss			_				_	\sim				V	i de con	u t	,					
		7		0,0	,,,,	E (<u> </u>	_	0 -	_									
Sic	えんし	FIC	Ατο	• (240)HE-	TRIC	20	DI	M	۸ E	D	n		1	y :	. W	٠ بر	-w	
																\ -				
\sim	- \	rala	ne i	di (19	uau	ala	M	ettx	x c	.=0					J '				
					()					40										
	7	TI V	iO 6	a	جعد	y											n	ļ		
SDING	ΑTĄ	1 00	then	1.90		O									/	_	V			\rightarrow
			•			asc	iai	ab	ìu	novi	ata	· w	()							×
70	۵۵	di	.le	aq	giw	nde	u	ad	y	ш	a			/			1			
										Qa		Da								
ũ	al	060	par	rall	ela	un e	ule	a	Se.	ge:	ssa						-			
																	P2	<i>(</i>)	(2, ح	2)
_						w,×		_									\bigvee			
			•		_×2,	w;	×2+	m`)					(×,	, 4,					
			2->													ζ <u>α</u> >ι		Н		
P ₂	H	<u>-</u> 4	2-6	_						×1 +1	w)		_	/	7 4	1				->
				=	W	(×	2->	×ι)									}			

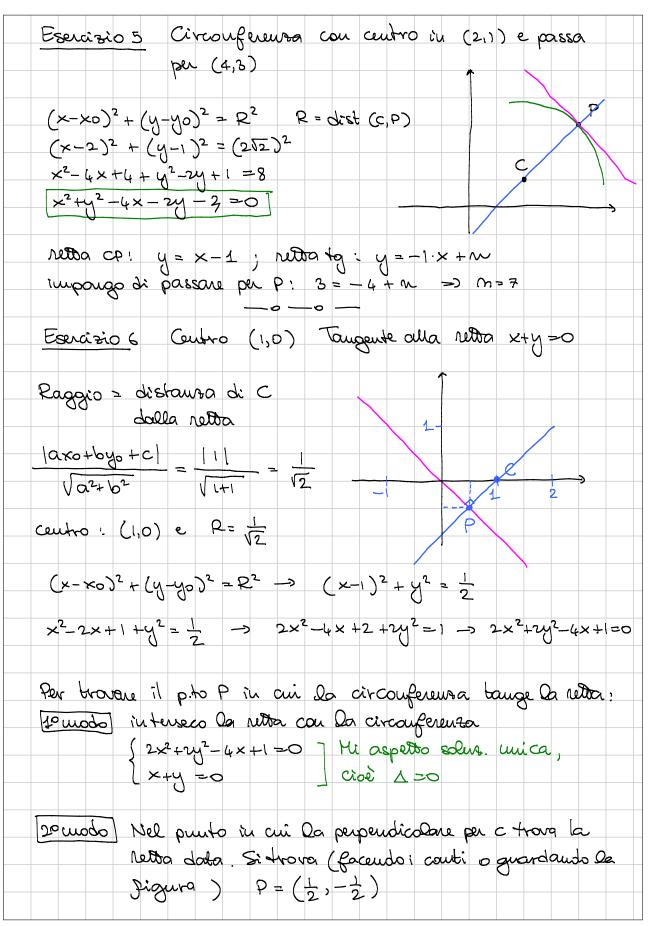

Sessione 08-1

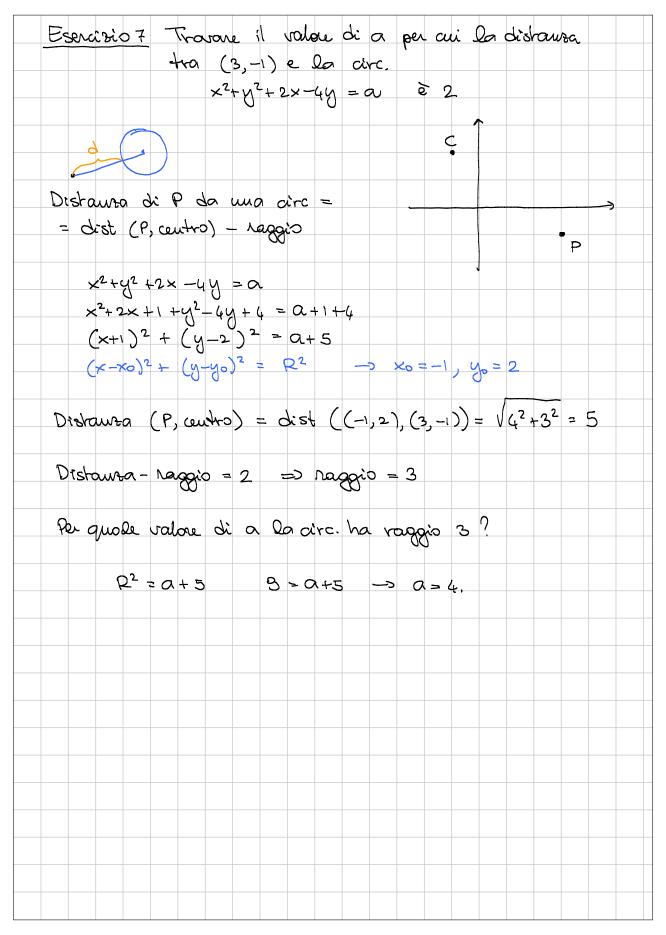

Sessione 08-1

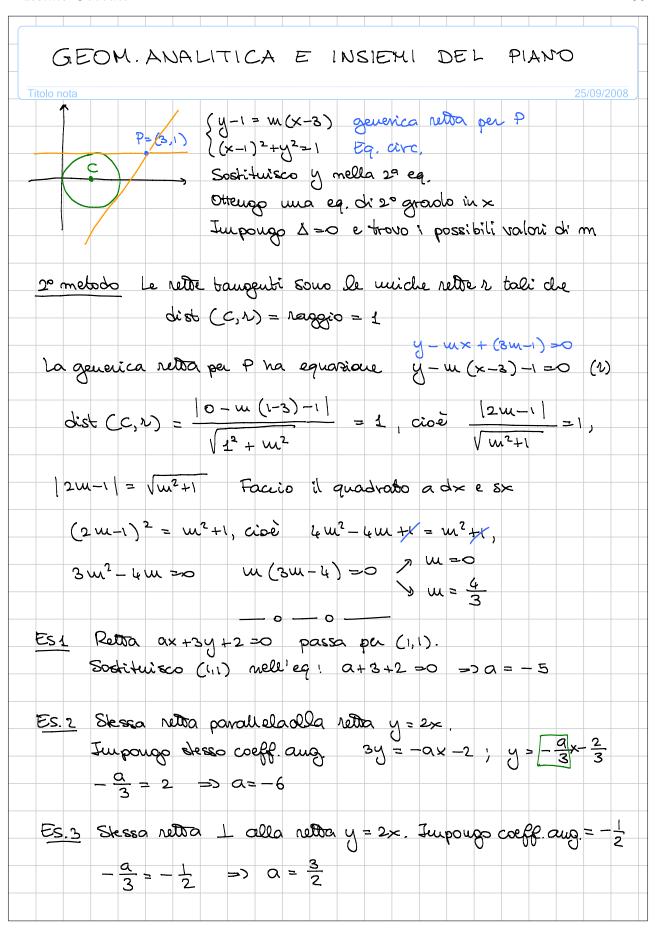
91

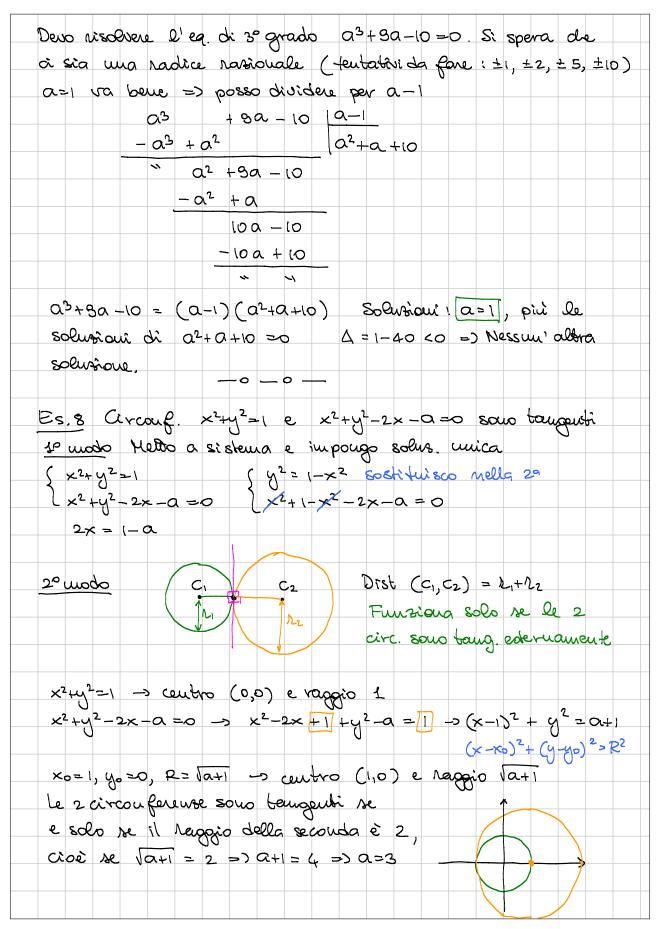
RETTE PARALLECE (=> stesso m (vale per lette uou verbicali) RETTE PERPENDICOLARI: Due rette y= w,x+m, e y= w2x+N2 sous perpendicolari ~=>" $m_2 = -\frac{1}{m_1}$ In termini di angoli sia d, l'angolo corrisp. alla prima e de quello corrispondente alla seconda rette perpendicolari (=> d2 = d1 + II ma allora m2 = tan d2 = tan (= +d1) associati = 1 = 1 m, Esercizio (Sorivere eq. retta passante per (-1,1) e (2,0) Coeff. aug. negativo $m = -\frac{1}{3}$ N $M = \frac{2}{3}$ \Rightarrow $M = -\frac{1}{3} \times + \frac{2}{3}$ 2 Scrivere l'eq della retta parallela ad a passaute per (0,5). Sara del tipo y= ux+n y=- 3×+n skesso do N Junpougo di passare per (0,5): $5 = -\frac{1}{3} \cdot 0 + n = n = 5$ 3 Sorivere l'eq. della retta perpendicolare ad r e passante per (2,3). Savai y = ux + n con $m = 3 \Rightarrow y = 3x + n$ Trupongo di passare per (2,3): $3 = 3.2 + n \Rightarrow n = -3$ Quiudi la relba è y = 3x-3

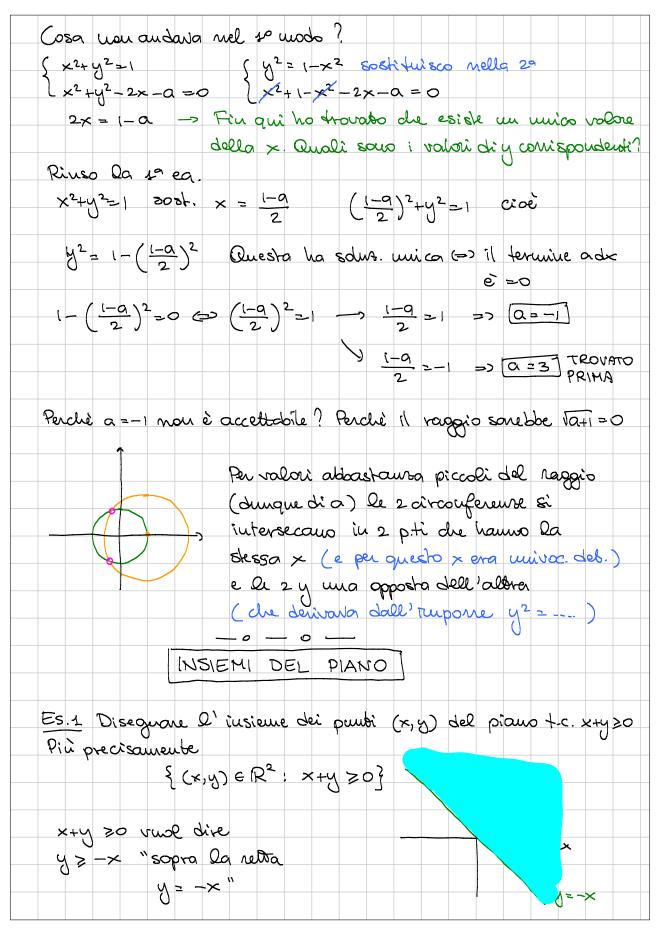

Sessione 08-1

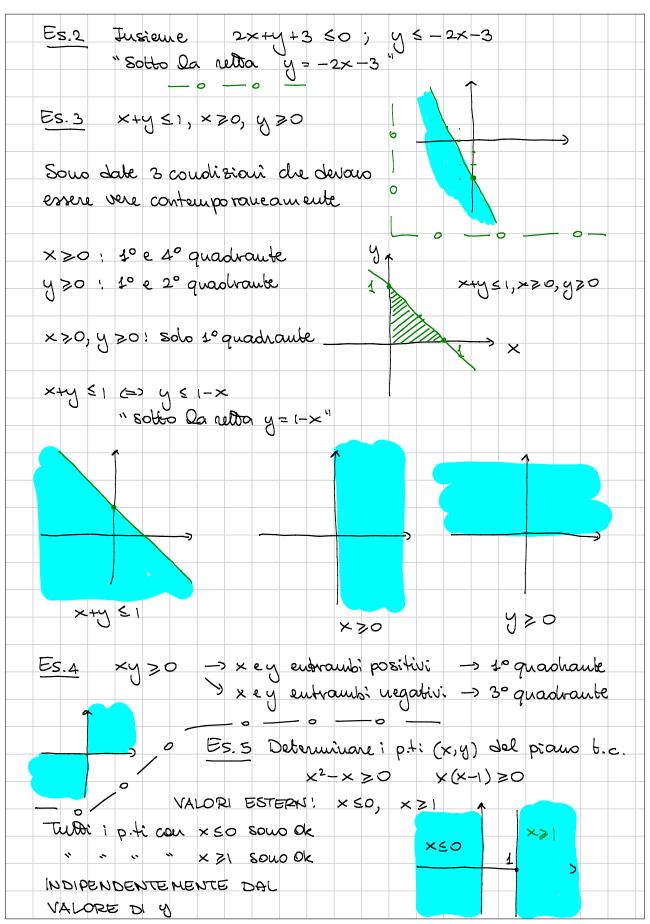

EQUAZIONE DELLA CIRCONFERENZA	
Dati: centro P= (xo, yo), Raggio R>	0
Circonferenza con centro Peraggio R = in	isieme dei pti (x,y)
del piano la ani distanta da P è = R.	
$\sqrt{(x-x_0)^2 + (y-y_0)^2} = R$ Fa	ceudo il quadrato:
$V(x-x_0)^2 + (y-y_0)^2 = R$ Fa. Distanta di (x,y) da Raggio	•
(x0, 40)	
$(x-x0)^2 + (y-y0)^2 = R^2$	
$x^{2}-2xox+xo^{2}+y^{2}-2yoy+yo^{2}=R^{2}$	
$\times^2 + y^2 - 2x_0 \times - 2u_0 y + x_0^2 + y_0^2 - R^2$	=0
$x^{2}+y^{2}-2x_{0}x-2y_{0}y+x_{0}^{2}+y_{0}^{2}-R^{2}$	
$x^{2}+y^{2}+ax+by+c=0$	
Oss 1 Possous esserci dei coeff. davanti a	20,12 11,000
	~ eg > cupor source
è che il coeff. sia lo stesso	
0-2 2 3/2 202 202 3/4/2 3/3/2	
Oss 2 Nou compare MAI il termine xy,	
1. Dati a, b, c, la Jorumla rappresenta sempre	
2. Dabi a, b, c, come rècostruire le coordinate	del centro e il rassio:
	3 -2
$a = -2x_0$ $b = -2y_0$ $c = x_0^2$	+yo2 - R2
	2 . 2
$x_0 = -\frac{\alpha}{2}$ $y_0 = -\frac{b}{2}$ $R^2 = -C + \frac{1}{2}$	
=-C+	$\frac{a^2}{4} + \frac{b^2}{4}$
La couditione affinché sia una circonfe	reusa è de
$-c+\frac{a^{2}}{4}+\frac{b^{2}}{4}>0$	
4 4	

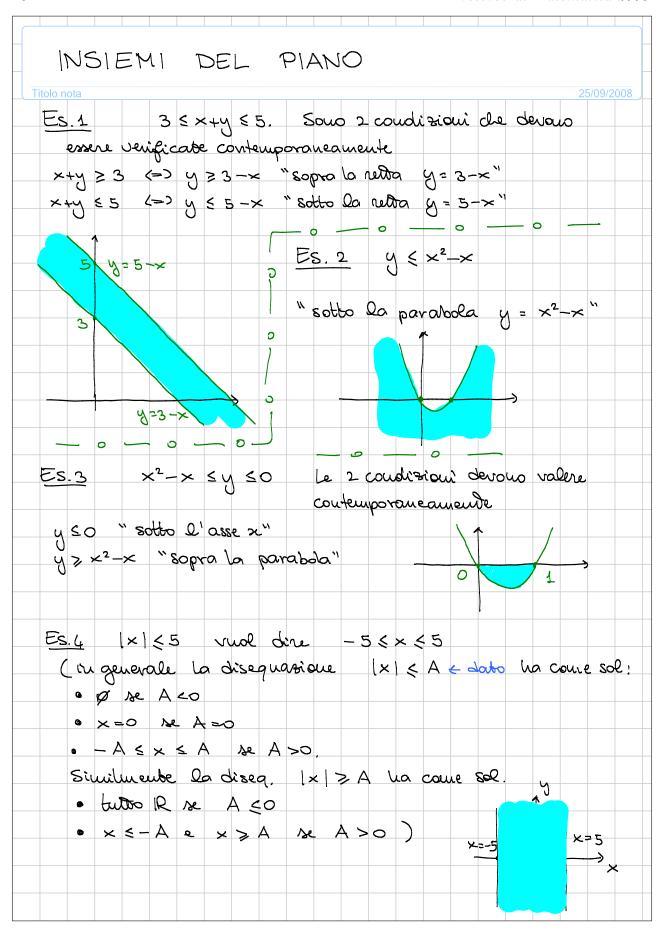

Sessione 08-2

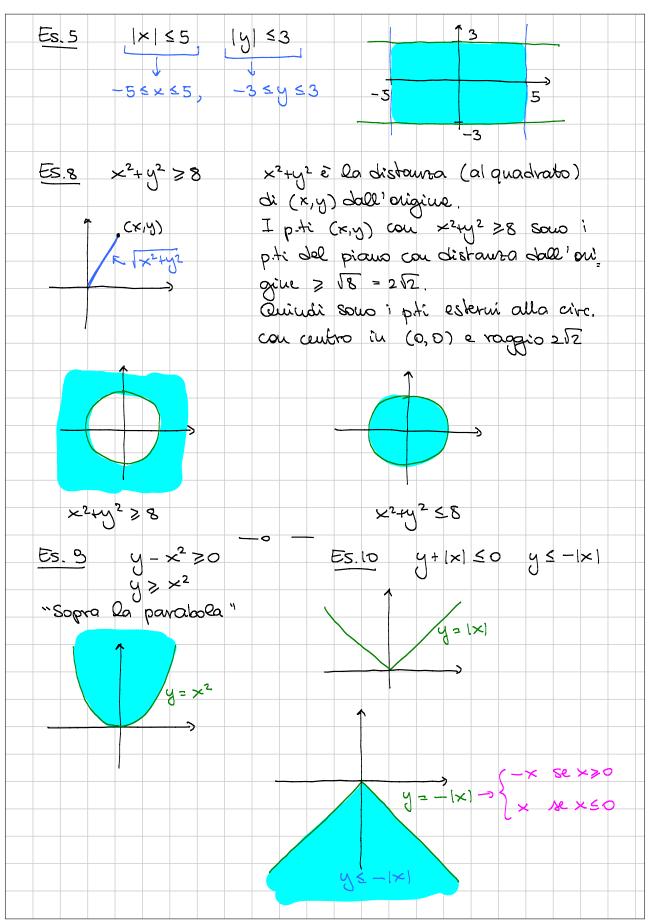

×c			_		_~	70) –	- 'LX	+(Ŋ	= C)		a =	-2	t) = (+	C =	0
	, = -	_ <u>a</u>	; = -	1		Ų	Jo =	. —	<u>6</u> 2	= ~	2.		Q2 :	2 —	c +	<u>ar</u>	+ <u>b</u>	2		
		15	_													4				
Qu					Qa	ci	۱۳C ،	pa	isa	•				,						
per	لا ٢	. O(نهن	.ue								_		7			/			
200	wa	d	× 2	2+1	/2 <u> </u>	2×	+4 2	y =	-0											
										7	l+(5	ł					\mathcal{I}			
												_ = _,	< C=	رہ ے ۔	ل کو)o =	-2	, R	= 13	5
Ese	يمن	zio	2.		×2.	+42°	- — (6×	_ :	7 =	-0									
											-7									
×			م م_ ۔	- 3	,		70 ·	<u> </u>	<u>)</u>	= <	,	R	2 -	(C+	مع (4	+ <u>}</u>	,2		
			<i>L</i>										7	· 7	+ 3	<u>.</u> ५	-0	=	L6	
1-0				-																
[25]	wo	90)	Χ,	-HJ	6	× -	+==	÷0	<u>ن</u>	(×	–6> –3`	2	5 + + 4 ?	7 == 7 ==	-7 16	= .	5		
								-0		-0	(×-	* (0 *	2 +	(y.	yo;	2 =	R	2,		
Ese	مد	३५०	3		ײ4	- {\ - \	:	2×	-0			P =	(3	-,1)	. [ete			ر عا	relde
_					per	ρ̈	tau	nger	sdu	all	a	Civ	-๛น	fer	w.	a.				
	Ű'				(×-1) ²	+ Y	<u>_</u>	2 <u>-</u> ·\	,									
					(X-Y	60) ²	+ (9-8	2)s	=R	2.	×c	=1	y.	20	, P	>1		
Cì	80	γœι	صلا	2	rel	te	bai	ige	íku	, di	α	ıù	um	2 E	₹ (°	eole	٠٠,	bac	000	·lu'o"

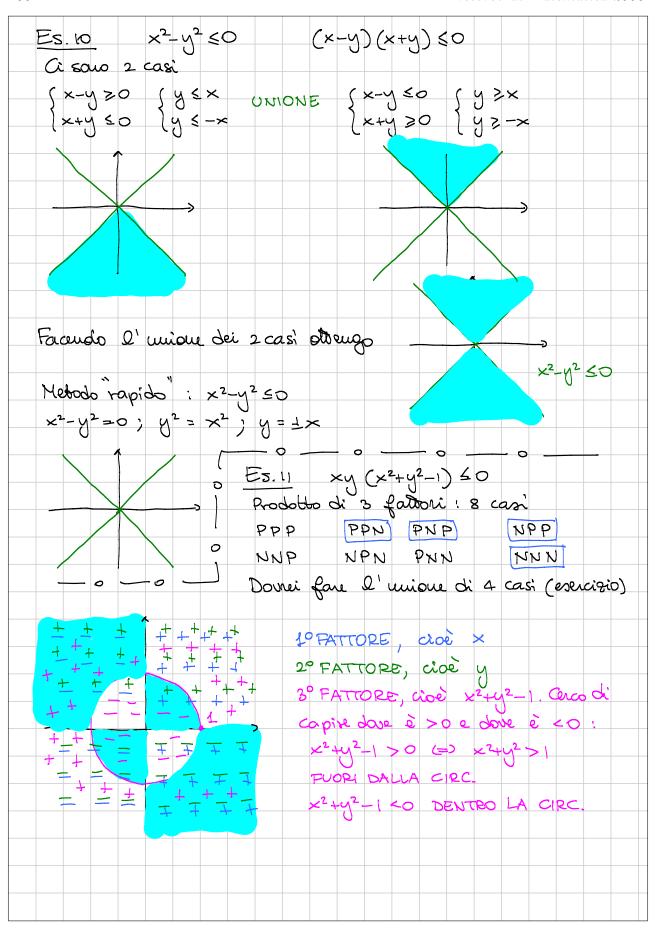


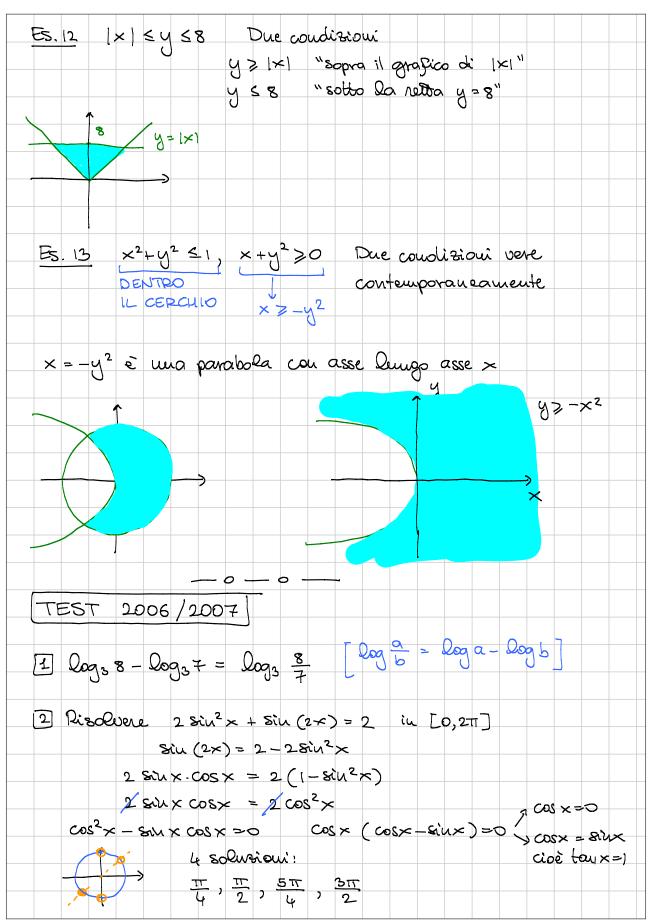

Sessione 08-2

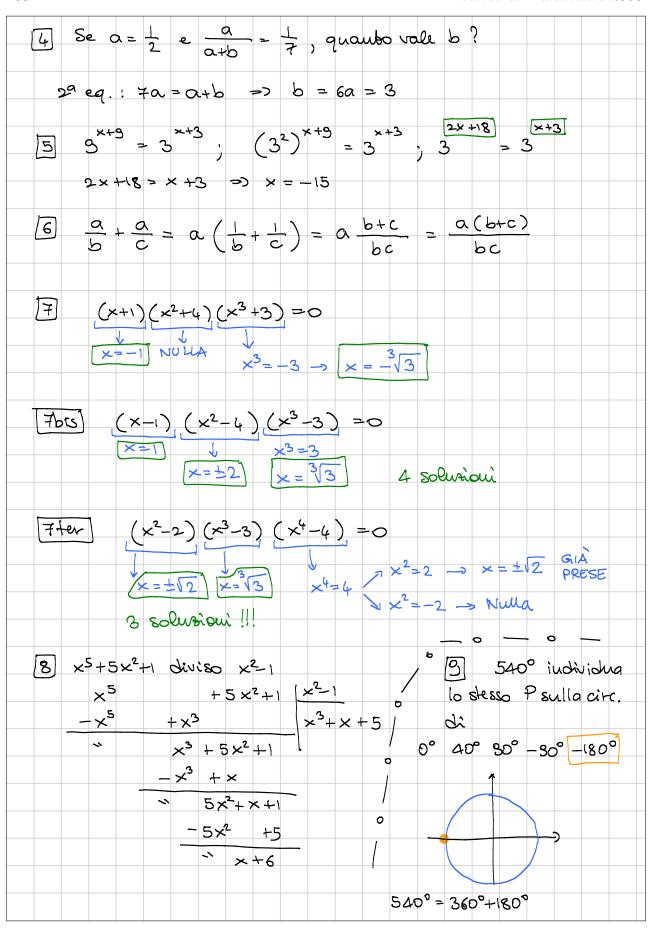


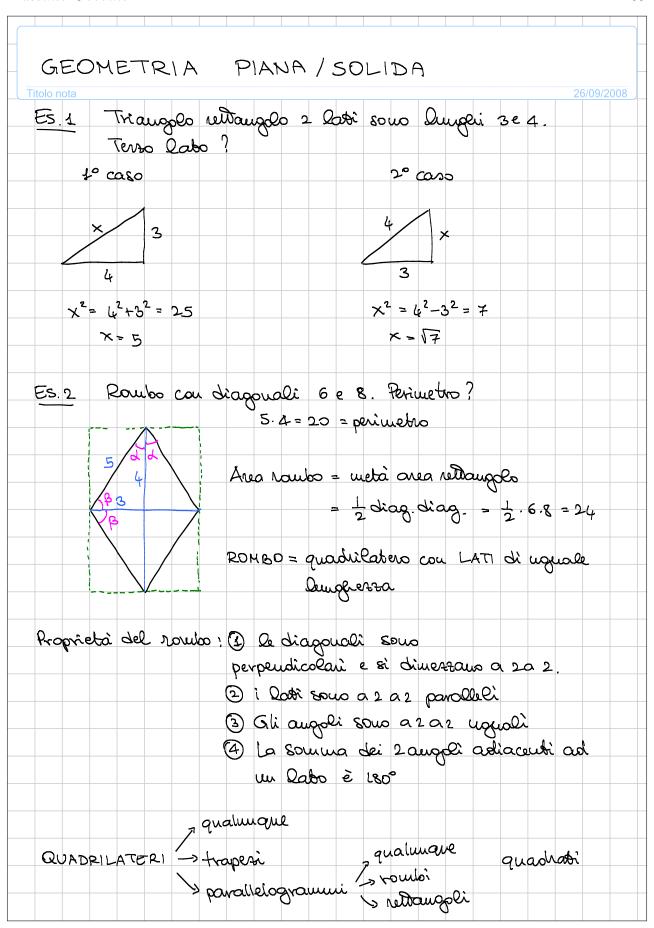


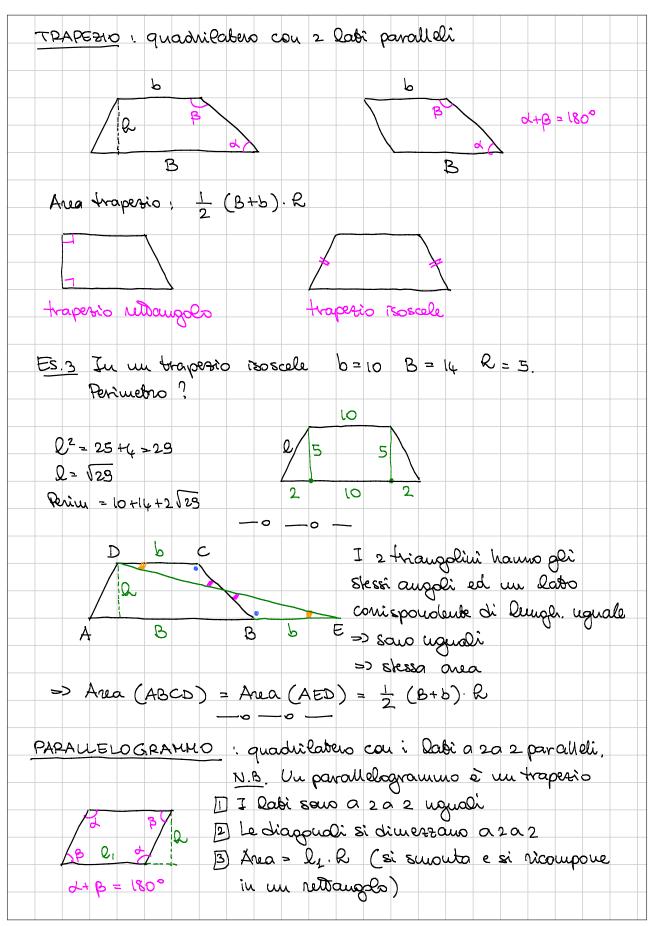

Sessione 09-1

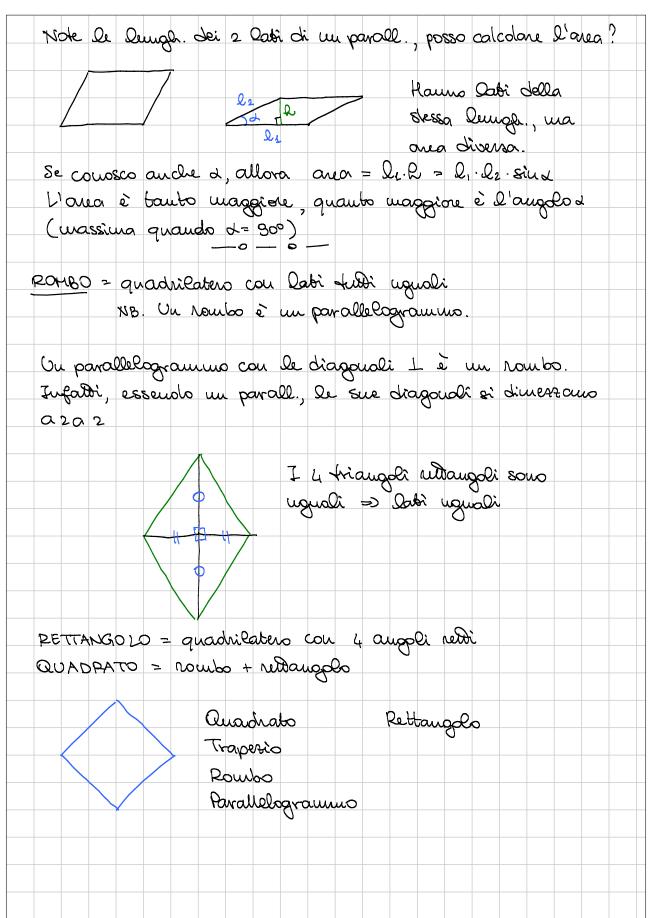

Sessione 09-1

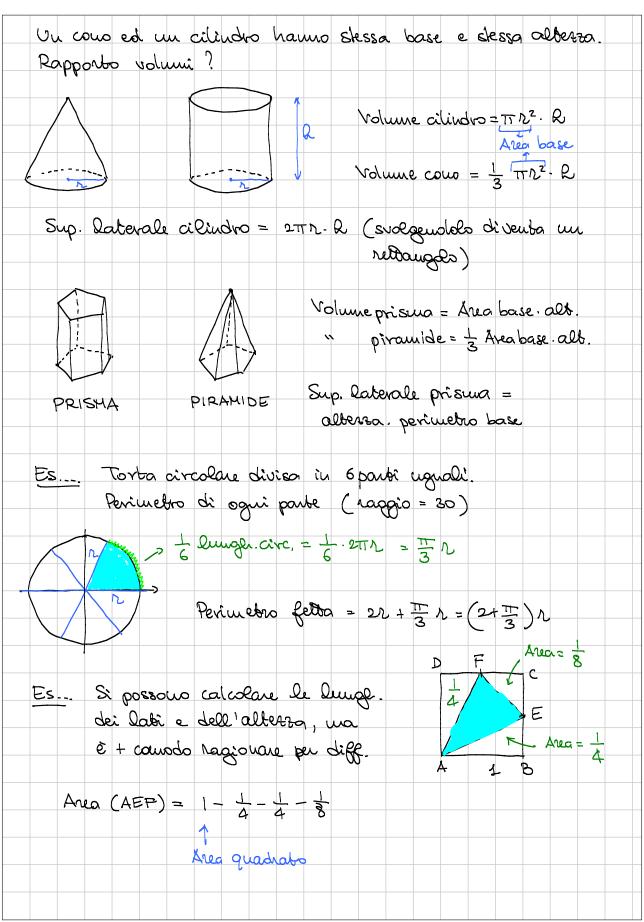

Sessione 09-2


Sessione 09-2

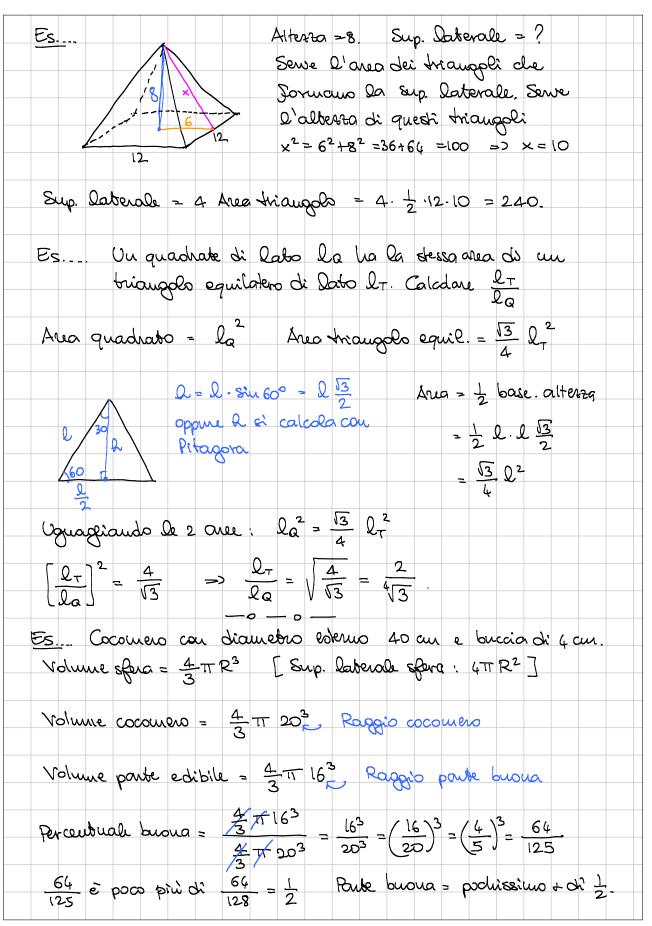

Sessione 09-2

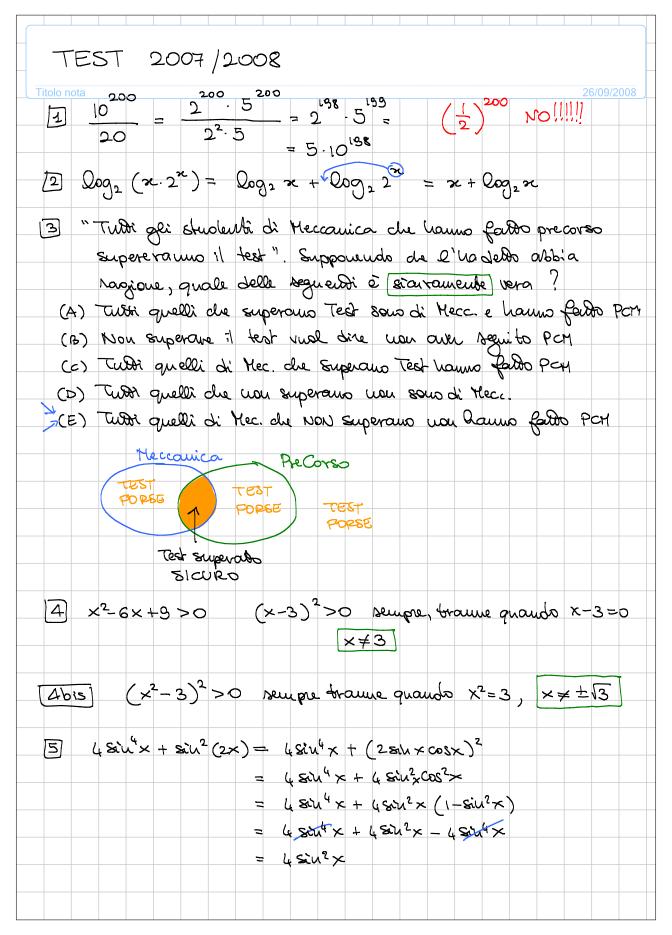

Sessione 09-2


Sessione 09-2

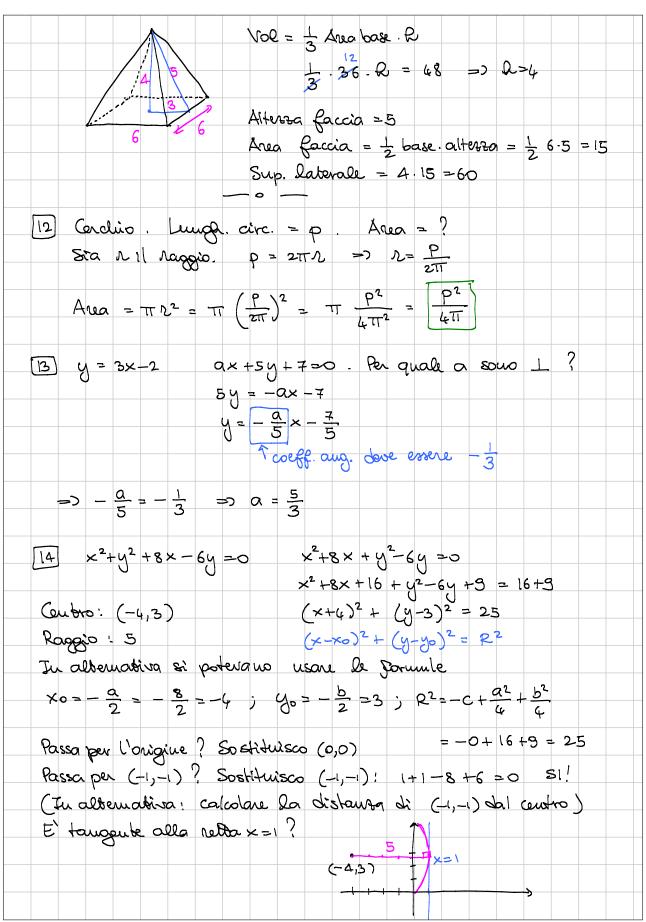


Sessione 10-1

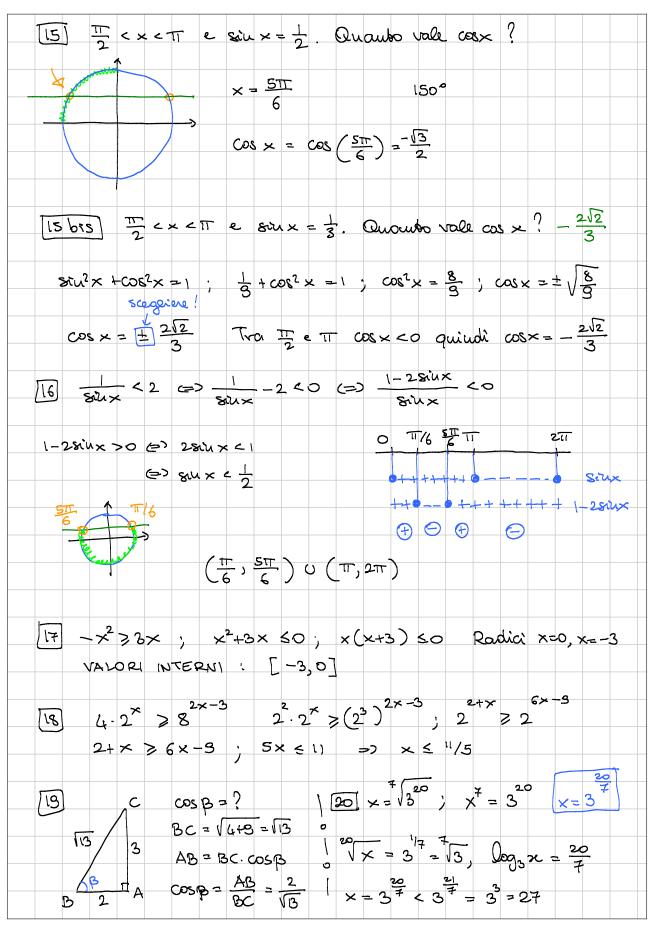



Sessione 10-1

Sessione 10-1



Sessione 10-2


(6)
$$\frac{x^6-1}{x^2-1} - \frac{x^4-1}{x^4-1} = (x^6+x^2+1) - (x^6+x) = x^2$$
 $\frac{x^6-1}{x^2-1} = (x^4+1)(x^4-1); \quad x^6-1 = (x^2-1)(x^6+x^2+1)$
 $\frac{A^2-8^2}{4^2-8^2} = (A+6)(A-8); \quad A^2-8^2 = (A+6)(A^2+A8+8^2)$

(7) $\frac{A^2-8^2}{4^2-8^2} = (A+6)(A-8); \quad A^2-8^2 = (A+6)(A^2+A8+8^2)$

(8) Divider $\frac{1}{x^4} + \frac{1}{x^4} = 1$ Determinate $\frac{1}{x^4} + \frac{1}{x^4} = 1$ Determinate

Sessione 10-2

Sessione 10-2