Corso di Ing. Elettronica&Telecomu. Analisi 1(1) Compito , 27-1-2019

Risposta giusta=2 punti. Risposta sbagliata=-1 punto. Punteggio necessario $\geq 9/16$ Tenersi la parte di questo foglio sotto la riga (testo del quiz e risposte date). Questa parte del foglio va consegnata compilata sul retro in modo univocamente comprensibile.

	Tagliare su questa riga e consegnare la parte qui sopra
17	1 -Chiamiamo $a_n \in \mathbb{R}$ la quantità di denaro presente al mese n sul conto corrente del signor
<i>Y</i> .	
suo	Si determini $\lim_{n\to\infty} a_n$ sapendo che ogni mese il signor X deposita sul suo conto 2000 ma ccessivamente perde $\frac{1}{10}$ del totale depositato a causa di investimenti miracolosi in bitcoin che
	va consigliati sui social networks.
	$A-\Box 0$
	B- □ Il limite non esiste.
	C- □ 18000
	D- □ nessuna di queste
	2 - In quale insieme di punti la funzione $f(x) = x^3 $ non è derivabile?
	$A-\square \{0\}$
	$B-\square\emptyset$
	$C- \square \{-1\}$
	D- □ nessuna di queste
	3 - Si considerino le seguenti serie i) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$, ii) $\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\frac{1}{\sqrt{n}}}$; quale delle seguenti è
æ	ra?
	A- \Box i) converge, ii) non converge
	B- \Box i) non converge, ii) non converge
	C- \Box i) converge, ii) converge
	D- \Box i) non converge, ii)converge
	4 - Si calcoli $\lim_{x \to 0} \frac{\sin(x)}{x^2}$
	A- □ 1
	B- □ 0
	$C-\Box$ $+\infty$
	D- \square il limite non esiste

 $COMPITO\ I-Nome\ : \qquad \qquad ; Cognome: \qquad ; Cognome: \qquad ; Cognome: \qquad ; Tipo\ di\ esame\ : \qquad \boxed{A1}\ Ma\ il\ nome\ lo\ hai\ scritto?}$ $Risp: \boxed{\qquad \qquad \qquad \qquad \qquad } \boxed{\qquad \qquad \qquad } \boxed{\qquad } \boxed{\qquad \qquad } \boxed{\qquad } \boxed{\qquad$

Tagliare su questa riga e consegnare la parte qui sopra dopo avervi trascritto le risposte

- 5- Si consideri il seguente problema di Cauchy: $\begin{cases} y'=y^2t^2 \\ y(0)=1 \end{cases}$, sia y(t) la soluzione, y(1)=t
- A- \Box $e^{\frac{1}{3}}$
- B- □ -1
- C- \Box $\frac{3}{2}$
- D- \square nessuna di queste
- 6- Si calcoli il seguente integrale $\int_1^2 xe^x dx$
- A- \Box $4e^{-1}$
- B- \Box e^2
- C- \Box 2e
- D- \square nessuna di queste
- 7 Si determini il valore minimo (qualora esista) della seguente funzione f(x) definita sui reali positivi $\mathbb{R}^+ = \{x \geq 0\}$

$$f(x) = \int_0^x (\cos t)^2 dt$$

- $A-\Box$ non esiste
- В- □ 0
- C- □ 2
- $D-\Box$ nessuna di queste
- 8-Si consideri il problema di Cauchy: $\begin{cases} y' = y+1 \\ y(0) = 1 \end{cases}, \text{ quanto vale } y'(0)?$
- A- \Box 6e
- B- □ 2
- C- \Box $e + \frac{1}{6}e^7$
- D- \square nessuna di queste.