Corso di laurea in Ingegneria Gestionale/ Chimica Esame di ALGEBRA LINEARE - anno accademico 2012/2013

Prova scritta del 23/7/2013 TEMPO A DISPOSIZIONE: 120 minuti

TEMPO A DISPOSIZIONE: 120 minuti
(Cognome) (Nome) (Numero di matricola)
CORSO DI LAUREA: INGEGNERIA
PRIMA PARTE
calcoli e spiegazioni non sono richiesti
Sia $z = 2 + 2i$. Allora $z^4 =$
Sia $z=-3$. Scrivere z nella rappresentazione trigonometrica $z=\varrho\cdot e^{i\vartheta}$: $z=$
Dato W il seguenti sottospazio di \mathbb{R}^3 :
$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_1 - 2x_2 - 2x_3 = 0 \right\} \text{ determinare una base di } W:$
$\det \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 2 & 0 \end{pmatrix} = \boxed{ \ \ } \bullet A = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \implies A \ \text{\`e} \ \text{diagonalizzabile} \boxed{\text{vero} \text{falso}}$
$v = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ è autovettore per l'applicazione lineare l_A associata alla matrice $A = \begin{pmatrix} 1 & t \\ 4 & 8 \end{pmatrix}$ se $t = \begin{bmatrix} 1 & t \\ 4 & 8 \end{bmatrix}$
Data $A = \begin{pmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ si consideri l'autovalore $\lambda_0 = 0$. Allora: $m.a.(0) = $; $m.g.(0) = $
$A = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \implies A^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

SECONDA PARTE

I risultati devono essere giustificati attraverso calcoli e spiegazioni

Esercizio 1. [punteggio: 0-6]

Si determinino le soluzioni complesse del seguente sistema:

$$\begin{cases} z^2 = \overline{z}^2 \\ |e^{iz}| = e \end{cases}$$

Esercizio 2. [punteggio: 0-6]

Sia $\mathcal{L}_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'applicazione lineare associata alla matrice

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 2 & 2 & 4 \\ 1 & 1 & 2 \end{array}\right)$$

- i) Determinare , $\dim(Ker(\mathcal{L}_A))$ e $\dim(Im(\mathcal{L}_A))$.
- ii) Determinare i valori di $t \in \mathbb{R}$ per cui esiste almeno una soluzione del sistema

$$A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ t \\ 1 \end{pmatrix}$$

(iii) Determinare tutte le soluzioni del sistema

$$A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Esercizio 3. [punteggio: 0-3]

Determinare un'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che

$$Im(f) = \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rangle \; ; \quad Im(f) \subset Ker(f)$$

Si determini una matrice $A \in \mathbb{R}^{3\times3}$ tale che $f = \mathcal{L}_A$.

Esercizio 4. [punteggio: 0-6]

Si consideri la matrice A

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 1
\end{pmatrix}$$

- (i) Si determinino gli autovalori di A specificandone la molteplicità algebrica e geometrica.
- (ii) Determinare gli autovettori di A.
- (iii) Dire se A è triangolarizzabile e/o diagonalizzabile.