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1 Introduction

In this Chapter we consider the nonlinear (so called cubic defocusing) wave equation
∂2t u = ∆u− u3
u|t=0 = u0
∂tu|t=0 = v0

on the three-dimensional torus
x ∈ T3 = R3/Z3.

We may rewirte it as a first order system:
∂tu = v
∂tv = ∆u− u3
u|t=0 = u0
v|t=0 = v0

or in vector form

∂t

(
u
v

)
=

(
0 1
∆ 0

)(
u
v

)
+

(
0
−u3

)
with the initial condition

(
u0
v0

)
.

1.1 Conserved quantity

The next proposition describes a relevant conserved quantity. We have used the nota-

tion −〈∆u, u〉 for the most common one
∥∥∥(−∆)1/2 u

∥∥∥2
L2
since we prefer to postpone the

description of the operator (−∆)1/2. Notice that −〈∆u, u〉 is a non-negative quantity.
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Proposition 1 Assume
(
u
v

)
is a smooth solution. Then

d

dt

(
−1

2
〈∆u, u〉+

1

2
‖v‖2L2 +

∫
T3

u4

4
dx

)
= 0.

Proof. It is suffi cient to notice that

−1

2

d

dt
〈∆u, u〉 = −〈∆u, v〉

1

2

d

dt
‖v‖2L2 =

〈
v,∆u− u3

〉
d

dt

∫
T3

u4

4
dx =

∫
T3
u3vdx =

〈
v, u3

〉
and then sum these identities.

1.2 The linear operator

Preliminarily, recall that the Laplacian operator on T3 may be described in Fourier variables
as

(̂−∆f) (k) := |k|2α f̂ (k) , k ∈ Z3.

Based on this, one can define the fractional powers

̂((−∆)α f) (k) := |k|2α f̂ (k)

where we may take k ∈ Z3 for α ≥ 0, but we have to exclude k = 0 for α < 0, hence
working on zero-mean functions. Moreover, as a particular case of the so called functional
calculus for operators, we may define the operators

sin
(

(−∆)1/2 t
)
, cos

(
(−∆)1/2 t

)
for every real t as

̂(
sin
(

(−∆)1/2 t
)
f
)

(k) : = sin (|k| t) f̂ (k)

̂(
cos
(

(−∆)1/2 t
)
f
)

(k) : = cos (|k| t) f̂ (k) .

For every s ∈ R, consider the product space

Hs = Hs ×Hs−1

the linear unbounded operator
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D (As) = Hs+1

As : D (As) ⊂ Hs → Hs

As =

(
0 1
∆ 0

)
and the family of linear operators

etAs : Hs → Hs

given by

etAs
(
u0
v0

)
=

 cos
(

(−∆)1/2 t
)
u0 + (−∆)−1/2 sin

(
(−∆)1/2 t

)
v0

− (−∆)1/2 sin
(

(−∆)1/2 t
)
u0 + cos

(
(−∆)1/2 t

)
v0

 .

Lemma 2 The operators etAs are bounded in Hs, are a group (e(t+τ)As = etAseτAs for
every real t, τ , e0As = Id) and are strongy continuous, with infinitesimal generator As :
D (As) ⊂ Hs → Hs, hence

d

dt
etAs

(
u0
v0

)
= Ase

tAs

(
u0
v0

)

for every
(
u0
v0

)
∈ Hs.

Proof. Full details are not diffi cult but we limit ourselves to check that etAs are bounded
in Hs and the differential equation holds. Boundedness holds because sin

(
(−∆)1/2 t

)
and

cos
(

(−∆)1/2 t
)
are bounded operators in each Hs (easy to check), commute with (−∆)α,

hence
(
u0
v0

)
∈ Hs implies

(
u0

(−∆)−1/2 v0

)
∈ Hs×Hs,

(
(−∆)1/2 u0

v0

)
∈ Hs−1×Hs−1.

To show that the differential equation holds, notice that

∂tv = ∆ cos
(

(−∆)1/2 t
)
u0 − (−∆)1/2 sin

(
(−∆)1/2 t

)
v0

= ∆ cos
(

(−∆)1/2 t
)
u0 − (−∆)1/2 (−∆)1/2 (−∆)−1/2 sin

(
(−∆)1/2 t

)
v0

= ∆
(

cos
(

(−∆)1/2 t
)
u0 + (−∆)−1/2 sin

(
(−∆)1/2 t

)
v0

)
= ∆u.

We have used natural formulae for derivatives of sin and cos which easily follow from the
Fourier representation.
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1.3 Mild formula and local solution in H1

Having the semigroup associated to the linear homogeneous part, we may rewrite the
nonlinear wave equation in the form (also called Duhamel formula)(

u (t)
v (t)

)
= etA

(
u0
v0

)
+

∫ t

0
e(t−s)A

(
0

−u3 (s)

)
ds.

For obvious reasons we do not write the subscript s anymore; the space Hs will be clear
each time. In this section we work in H1.

Proposition 3 Given
(
u0
v0

)
∈ H1, there exists T > 0 and a unique solution

(
u
v

)
in

C
(
[0, T ] ;H1

)
.

Proof. For every T > 0, onsider the map ΓT : C
(
[0, T ] ;H1

)
→ C

(
[0, T ] ;H1

)
defined as(

ΓT

(
u
v

))
(t) = etA

(
u0
v0

)
+

∫ t

0
e(t−s)A

(
0

−u3 (s)

)
ds.

Let us check that this map is well defined between these spaces. The function etA
(
u0
v0

)
belongs to C

(
[0, T ] ;H1

)
. Since u ∈ C

(
[0, T ] ;H1

)
and Sobolev embedding theorem states

that
H1 ⊂ L6

(recall thatW s,p ⊂ Lq for 1q = 1
p−

s
3), we have u ∈ C

(
[0, T ] ;L6

)
, hence u3 ∈ C

(
[0, T ] ;L2

)
.

Therefore (
0

−u3 (·)

)
∈ C

(
[0, T ] ;H1

)
and thus the integral in the definition of ΓT is also in C

(
[0, T ] ;H1

)
. Precisely, we have∥∥∥∥( 0

u3

)∥∥∥∥
C([0,T ];H1)

=
∥∥u3∥∥

C([0,T ];L2)
= ‖u‖3C([0,T ];L6) ≤ C ‖u‖

3
C([0,T ];H1)

≤ C

∥∥∥∥( u
v

)∥∥∥∥3
C([0,T ];H1)

.

Similar arguments lead to the estimates∥∥∥∥ΓT

(
u
v

)∥∥∥∥
C([0,T ];H1)

≤ CT

∥∥∥∥( u0
v0

)∥∥∥∥
H1

+ TCT

∥∥∥∥( 0
u3

)∥∥∥∥
C([0,T ];H1)

≤ CT

∥∥∥∥( u0
v0

)∥∥∥∥
H1

+ TCT

∥∥∥∥( u
v

)∥∥∥∥3
C([0,T ];H1)
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∥∥∥∥ΓT

(
u
v

)
− ΓT

(
u′

v′

)∥∥∥∥
C([0,T ];H1)

≤ TCT
∥∥∥∥( 0

u3

)
−
(

0

(u′)3

)∥∥∥∥
C([0,T ];H1)

≤ TC ′T
∥∥∥∥( u

v

)
−
(
u′

v′

)∥∥∥∥
C([0,T ];H1)

(
‖u‖2C([0,T ];H1) +

∥∥u′∥∥2
C([0,T ];H1)

)
where the dependence on T in the constants CT , C ′T come from the estimate of supt∈[0,T ]

∥∥etA∥∥L(H1,H1)
and where we have used the inequality∥∥∥u3 − (u′)3∥∥∥2

L2
=

∫
T3

(
u3 (x)−

(
u′
)3

(x)
)2
dx

=

∫
T3

(
u− u′

)2 (
u2 + u′u+

(
u′
)2)2

dx

≤
(∫

T3

(
u− u′

)6
dx

)1/3(∫
T3

(
u2 + u′u+

(
u′
)2)3

dx

)2/3
≤ C

∥∥u− u′∥∥2
H1

(
‖u‖4H1 +

∥∥u′∥∥4
H1

)
.

Taken T0 > 0 and considering values T ∈ [0, T0], one has to restrict the action of ΓT

to a suitable ball of radius larger than CT0

∥∥∥∥( u0
v0

)∥∥∥∥
H1
, where it is a contraction, both

properties achievable by choosing T small enough; details of such argument are given in
the proof of Proposition 6, which is more complete since more relevant for our purposes.

1.4 Global solution in H1, comments on extension to s 6= 1
We have seen above that

d

dt

(
1

2

∥∥∥(−∆)1/2 u
∥∥∥2
L2

+
1

2
‖v‖2L2 +

∫
T3

u4

4
dx

)
= 0

for smooth solutions. With due care, one can show that the identity (consequence of the
previous fact for smooth solutions)∥∥∥(−∆)1/2 u (t)

∥∥∥2
L2

+‖v (t)‖2L2 +2

∫
T3

u (t)4

4
dx =

∥∥∥(−∆)1/2 u0

∥∥∥2
L2

+‖v0‖2L2 +2

∫
T3

u40
4
dx (1)

holds for solutions
(
u
v

)
of class C

(
[0, T ] ;H1

)
(see the remark below). This implies:

Theorem 4 For every
(
u0
v0

)
∈ H1, there exists a unique solution

(
u
v

)
in C

(
[0, T ] ;H1

)
for every T > 0.
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The result extends to every space Hs, with s > 1. The proof of local existence and
uniqueness is the same; we address to [1] for propagation of higher regularity globally in
time.

Remark 5 Using contraction type arguments one can show that if
(
un0
vn0

)
converges to(

u0
v0

)
in H1, the corresponding solutions converge in C

(
[0, T ] ;H1

)
. If

(
un0
vn0

)
belong

to Hs for larger s > 1, solutions corresponding to
(
un0
vn0

)
are more regular and for them

classical calculus applies to prove the energy identity (1). Then the same identity for the

solution, only of class C
(
[0, T ] ;H1

)
, corresponding to

(
u0
v0

)
, is obtained in the limit as

n→∞. In principle this argument works only locally, but may be extended globally thanks
to the estimate itself, with usual arguments of maximality that we do not report.

The problem is now to study the equation in Hs for s < 1. Recall Sobolev embedding:

H1 ⊂ L6.

If we pretend to evaluate the nonlinearity u3 in L2, we need s = 1 (L2 = Hs−1 for s = 1).
Evaluating u3 in Hs−1 with s < 1 amount to look for an estimate of the form∣∣∣∣∫

T3
u3φdx

∣∣∣∣ ≤ C ‖φ‖H1−s

knowing only u ∈ Hs. No matter how regular φ could be, we need u ∈ L3 to have a well
defined integral

∫
T3 u

3φdx. Then, by Sobolev embedding H
1
2 ⊂ L3, we need

s ≥ 1

2
.

This is not a proof that the theory can be extended to s ≥ 1
2 . It is just a strong indication

that without s ≥ 1
2 there is no hope, by the approach above (unless a new idea is developed,

as described below).
It turns out that the thresold s ≥ 1

2 is a correct one: using the non-trivial tool of
Strichartz estimates, one can prove local existence and uniqueness (and sometimes global
solutions) for all s ≥ 1

2 . A part from the nontrivial tool of Strichartz estimates that we
shall not describe, the new idea is the same used to apply a probabilistic proof for all s > 0,
hence we start explaining this idea.
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2 Decomposition of solution

2.1 Introduction

The idea is particularly interesting today since it has something in common with the
recent theories of Regularity Structures and Paracontrolled Distributions. One looks for a
decomposition of the solution(

u (t)
v (t)

)
=

(
u (t)
v (t)

)
+

(
ũ (t)
ṽ (t)

)

(or more terms in more diffi cult problems) where
(
u (t)
v (t)

)
contains the most singular

part of the solution, most singular from a certain viewpont, and
(
ũ (t)
ṽ (t)

)
is more regular

and solves less diffi cult equation. In the cases when Probability enters the game, usually

Probability is used to give a meaning to
(
u (t)
v (t)

)
; the regular part

(
ũ (t)
ṽ (t)

)
is found by

deterministic arguments.
In the framework of SPDEs this idea is very old, used in very first papers in the

following wasy:
(
u (t)
v (t)

)
is the noise (in the simplest form of the method) or the solution

of the linear problem driven by noise, an Ornstein-Uhlenbeck process. Defining
(
u (t)
v (t)

)
requires stochastic analysis. Then

(
ũ (t)
ṽ (t)

)
solves a deterministic PDE depending on a

random parameter, usually a PDE similar in structure to the original one, so that classical
tools apply. This idea was not considered so important at that time because usually there
were other strategies, more probabilistic, to solve the same problems; it was used mainly
either to solve for the first time a new problem, or to solve it pathwise, useful for instance
in the investigations of random dynamical systems. Only with the papers of Da Prato
and Debussche and of Blomker and Romito this idea became a cornerstone to solve very
diffi cult problems. And later on was extended enormously in the framework of Regularity
Structures and Paracontrolled Distributions.

2.2 Decomposition for the wave equation

In the case of the nonlinear wave equation, both in the deterministic and probabilistic

approach,
(
u (t)
v (t)

)
is the solution of the homogeneous linear problem with the initial

conditions: (
u (t)
v (t)

)
= etA

(
u0
v0

)
.
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Then (
ũ (t)
ṽ (t)

)
:=

(
u (t)
v (t)

)
−
(
u (t)
v (t)

)
solves (

ũ (t)
ṽ (t)

)
=

∫ t

0
e(t−s)A

(
0

− [ũ (s) + u (s)]3

)
ds. (2)

Where is the window for a gain, using such a simple idea? That the property required on
u (s) to deal effi ciently with the term [ũ (s) + u (s)]3 are different from properties of the
form u ∈ C ([0, T ] ;Hs).

2.3 Condition on u to apply contraction principle

Proposition 6 Assume that, for some T0 > 0,∫ T0

0
‖u (s)‖3L6 ds <∞.

Then equation (2) has a unique local solution in C
(
[0, T ] ;H1

)
, for some T ∈ (0, T0].

As a consequence, the wave equation has a unique local solution in

L3
(
0, T ;L6

)
⊕ C

(
[0, T ] ;H1

)
or in any other space

[
Y ∩ L3

(
0, T ;L6

)]
⊕ C

(
[0, T ] ;H1

)
such that u ∈ Y .

Proof. Step 1. Set θT0 (u) :=
∫ T0
0 ‖u (s)‖3L6 ds < ∞ and work for some T ∈ (0, T0]. We

introduce the map

Γ̃T

(
ũ
ṽ

)
(t) =

∫ t

0
e(t−s)A

(
0

− [ũ (s) + u (s)]3

)
ds.

Let us argue as in the proof of Proposition 3. If
(
ũ
ṽ

)
∈ C

(
[0, T ] ;H1

)
, by Sobolev

embedding theorem H1 ⊂ L6 we have ũ ∈ C
(
[0, T ] ;L6

)
, hence ũ3 ∈ C

(
[0, T ] ;L2

)
. Then

Γ̃T

(
ũ
ṽ

)
∈ C

(
[0, T ] ;H1

)
. We use several times the inequality∣∣∣(a+ b)3

∣∣∣ ≤ C (|a|3 + |b|3
)
.

Moreover, ∥∥∥∥Γ̃T

(
ũ
ṽ

)∥∥∥∥
C([0,T ];H1)

≤ CT0

∫ T

0

∥∥∥∥( 0

− [ũ (s) + u (s)]3

)∥∥∥∥
H1
ds

≤ TCT0

∥∥∥∥( u
v

)∥∥∥∥3
C([0,T ];H1)

+ θT0 (u)
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∥∥∥∥Γ̃T

(
ũ
ṽ

)
− Γ̃T

(
ũ′

ṽ′

)∥∥∥∥
C([0,T ];H1)

≤ CT0

∫ T

0

∥∥∥∥( 0

[ũ (s) + u (s)]3 − [ũ′ (s) + u (s)]3

)∥∥∥∥
H1
ds

= CT0

∫ T

0

∥∥∥[ũ (s) + u (s)]3 −
[
ũ′ (s) + u (s)

]3∥∥∥
L2
ds

≤ C ′T0

∥∥∥∥( ũ
ṽ

)
−
(
ũ′

ṽ′

)∥∥∥∥
C([0,T ];H1)

(
T ‖u‖2C([0,T ];H1) + T

∥∥u′∥∥2
C([0,T ];H1)

+ T 1/3θT0 (u)
)

where we have used the inequality∥∥∥[ũ+ u]3 −
[
ũ′ + u

]3∥∥∥2
L2

=

∫
T3

(
[ũ+ u]3 −

[
ũ′ + u

]3)2
dx

=

∫
T3

(
ũ− ũ′

)2 (
[ũ+ u]2 + [ũ+ u]

[
ũ′ + u

]
+
[
ũ′ + u

]2)2
dx

≤
(∫

T3

(
ũ− ũ′

)6
dx

)1/3(∫
T3

(
[ũ+ u]2 + [ũ+ u]

[
ũ′ + u

]
+
[
ũ′ + u

]2)3
dx

)2/3
≤ C

∥∥ũ− ũ′∥∥2
H1

(
‖ũ‖4H1 +

∥∥ũ′∥∥4
H1 + ‖u‖4L6

)
hence∫ T

0

∥∥∥[ũ (s) + u (s)]3 −
[
ũ′ (s) + u (s)

]3∥∥∥
L2
ds

≤ C ′
∫ T

0

∥∥ũ (s)− ũ′ (s)
∥∥
H1

(
‖ũ (s)‖2H1 +

∥∥ũ′ (s)∥∥2
H1 + ‖u (s)‖2L6

)
ds

≤ C ′
∥∥∥∥( ũ

ṽ

)
−
(
ũ′

ṽ′

)∥∥∥∥
C([0,T ];H1)

(
T
(
‖ũ‖2C([0,T ];H1) +

∥∥ũ′∥∥2
C([0,T ];H1)

)
+

∫ T

0
‖u (s)‖2L6 ds

)
.

Step 2. Chosen R0 > θT0 (u), let BT,R0 be the closed ball in C
(
[0, T ] ;H1

)
of center

zero and radius R0. Choose T such that

TCT0R
3
0 + θT0 (u) ≤ R0.

Then, if
(
ũ
ṽ

)
∈ BT,R0 we have∥∥∥∥Γ̃T

(
ũ
ṽ

)∥∥∥∥
C([0,T ];H1)

≤ TCT0R30 + θT0 (u) ≤ R0

namely Γ̃T

(
ũ
ṽ

)
∈ is in BT,R0 . The ball BT,R0 is a complete metric space invariant under

Γ̃T . In it, we have∥∥∥∥Γ̃T

(
ũ
ṽ

)
− Γ̃T

(
ũ′

ṽ′

)∥∥∥∥
C([0,T ];H1)

≤ C ′T0
(

2TR20 + T 1/3θT0 (u)
)∥∥∥∥( ũ

ṽ

)
−
(
ũ′

ṽ′

)∥∥∥∥
C([0,T ];H1)

.
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If we reduce T , in case it is necessary, in order to satisfy also the inequality

C ′T0

(
2TR20 + T 1/3θT0 (u)

)
≤ 1

2

then Γ̃T is a contraction in BT,R0 . Local existence and uniqueness follows, on the local
time interval [0, T ].

Next proposition claims that an a priori bound on
(
ũ
ṽ

)
implies global solution.

Proposition 7 Under the same assumptions, assume there is a constant C0 > 0 such that

any solution
(
ũ
ṽ

)
defined on some interval [0, T ′] ⊂ [0, T ] satisfies

sup
t∈[0,T ′]

∥∥∥∥( ũ
ṽ

)∥∥∥∥
H1
≤ C0.

Then the solution is global in time (we may take T ′ = T ).

Proof. Consider the modified problem

Γ̃t0,T

(
ũ
ṽ

)
(t) = e(t−t0)A

(
ũt0
ṽt0

)
+

∫ t

t0

e(t−s)A
(

0

− [ũ (s) + u (s)]3

)
ds.

It corresponds to the same equation but considered on the time interval [t0, t0 + T ] with

initial condition at time t0 given by
(
ũt0
ṽt0

)
. Called cT0 a constant bounding

∥∥etA∥∥L(H1,H1)
on [0, T0], if

(
ũt0
ṽt0

)
in the previous indentity is the value at time t0 of a solution, taking

into account the new assumption we have∥∥∥∥e(t−t0)A( ũt0
ṽt0

)∥∥∥∥
H1
≤ cT0C0.

The first main estimate of the previous proof modifies as∥∥∥∥Γ̃T

(
ũ
ṽ

)∥∥∥∥
C([0,T ];H1)

≤ cT0C0 + TCT0R
3
0 + θT0 (u) .

Hence choose
R0 > cT0C0 + θT0 (u)

and T such that
cT0C0 + TCT0R

3
0 + θT0 (u) ≤ R0
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and the contraction property of the previous proof (not affected by the new term e(t−t0)A
(
ũt0
ṽt0

)
)

hold.
Made these choices, Γ̃t0,T has a fixed point in C

(
[t0, (t0 + T ) ∧ T0] ;H1

)
. The choice of

T is independent of t0 and
(
ũt0
ṽt0

)
, hence the equation for

(
ũ
ṽ

)
can be solved first on

[0, T ], then on [T, 2T ∧ T0], and so on until [0, T0] is covered.

2.4 A result based on deterministic Strichartz estimates

We state without proof the following deep result.

Theorem 8 Let (p, q) be such that

2 < p ≤ ∞
1

p
+

1

q
=

1

2
.

Then
‖u‖Lp(0,1;Lq) ≤ C

(
‖u0‖

H
2
p

+ ‖v0‖
H
2
p−1

)
.

For p = 3, q = 6 we get

‖u‖L3(0,1;L6) ≤ C
(
‖u0‖

H
2
3

+ ‖v0‖
H
2
3−1

)
and therefore, based on Proposition 6 we have:

Corollary 9 For every
(
u0
v0

)
∈ H 2

3 , there exists has a unique local solution of the wave

equation in the space[
C
(

[0, T ] ;H
2
3

)
∩ L3

(
0, T ;L6

)]
⊕ C

(
[0, T ] ;H1

)
.

With more refined arguments, always based on Strichartz tye estimates, one has local
solutions for initial conditions in all Hs with 1

2 ≤ s < 1.

3 Probabilistic results

3.1 Probabilistic Strichartz estimates

Recall that
u (t) = cos

(
(−∆)1/2 t

)
u0 + (−∆)−1/2 sin

(
(−∆)1/2 t

)
v0.
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Assume now that (u0, v0) is a Gaussian vector in Hs. Then u (t) is Gaussian; certainly it
is a Gaussian r.v. with values in C ([0, T ] ;Hs). Can we say more? Yes, following the quite
general idea that Gaussianity improves L2 regularity.

The Gaussian random field u (t, x), a priori has paths only of class C
(
[0, T ] ;L2

)
(also

C ([0, T ] ;Hs)). Let us prove, under suitable assumptions, that it has a continuous version.

Theorem 10 Given s > 0, assume that (u0, v0) is a mean zero centered Gaussian vector
in Hs with the following properties:

i) the r.v.’s
{
û0 (k) , v̂0 (k) , k ∈ Z3, k 6= 0

}
are independent

ii)
∑

k |k|
2s E

[
|û0 (k)|2

]
<∞,

∑
k |k|

2s+2 E
[
|v̂0 (k)|2

]
<∞.

Then u has a continuous version.

Proof. Let us estimate only the term

u1 (t) := cos
(

(−∆)1/2 t
)
u0 =

∑
k

e2πik·x cos (|k| t) û0 (k) .

The estimates for the other term are the same.
Step 1 (space regularity). We have

E
[
|u1 (t, x)− u1 (t, y)|2

]
= E

∣∣∣∣∣∑
k

(
e2πik·x − e2πik·y

)
cos (|k| t) û0 (k)

∣∣∣∣∣
2


=
∑
k,h

(
e2πik·x − e2πik·y

)
(e2πih·x − e2πih·y) cos (|k| t) cos (|h| t)E

[
û0 (k) û0 (h)

]
=

∑
k

∣∣∣e2πik·x − e2πik·y∣∣∣2 cos (|k| t)2 E
[
|û0 (k)|2

]
≤

∑
k

∣∣∣e2πik·x − e2πik·y∣∣∣2 E [|û0 (k)|2
]
.

Now, since ∣∣∣e2πik·x − e2πik·y∣∣∣ ≤ C |k| |x− y|∣∣∣e2πik·x − e2πik·y∣∣∣ ≤ C

we get∣∣∣e2πik·x − e2πik·y∣∣∣ =
∣∣∣e2πik·x − e2πik·y∣∣∣2s ∣∣∣e2πik·x − e2πik·y∣∣∣1−2s ≤ C |k|2s |x− y|2s .

12



Hence

E
[
|u1 (t, x)− u1 (t, y)|2

]
≤ C |x− y|2s

∑
k

|k|2s E
[
|û0 (k)|2

]
≤ C |x− y|2s .

Step 2 (time regularity). Similarly,

E
[
|u1 (t, y)− u1 (s, y)|2

]
= E

∣∣∣∣∣∑
k

e2πik·y (cos (|k| t)− cos (|k| s)) û0 (k)

∣∣∣∣∣
2


=
∑
k,h

e2πik·ye2πih·y (cos (|k| t)− cos (|k| s)) (cos (|h| t)− cos (|h| s))E
[
û0 (k) û0 (h)

]
=

∑
k

∣∣∣e2πik·y∣∣∣2 (cos (|k| t)− cos (|k| s))2 E
[
|û0 (k)|2

]
≤

∑
k

(cos (|k| t)− cos (|k| s))2 E
[
|û0 (k)|2

]
.

As above,
(cos (|k| t)− cos (|k| s))2 ≤ C |k|2s |t− s|2s

hence we get

E
[
|u1 (t, y)− u1 (s, y)|2

]
≤ C |t− s|2s .

Step 3 (space-time regularity). Finally,

E
[
|u1 (t, x)− u1 (s, y)|2

]
≤ 2E

[
|u1 (t, x)− u1 (t, y)|2

]
+ 2E

[
|u1 (t, y)− u1 (s, y)|2

]
≤ C |x− y|2s + C |t− s|2s .

Using Gaussianity, we get

E
[
|u1 (t, x)− u1 (s, y)|2p

]
≤ Cp |x− y|2sp + Cp |t− s|2sp

for every p ≥ 1. Hence may apply Kolmogorov criterium with respect to the space-time
variables together and find the final result.

Remark 11 Apparently it seems there is a contradiction in the statement: how could it
be that (u0, v0) is only of class Hs and u is continuous up to time t = 0? The reason is
simply that (u0, v0) itself is much more than Hs, with probability one, being Gaussian. It
is not necessarily more in terms of Hilbertian Sobolev spaces, but it is much more when
measured with other topologies, like the uniform one.
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Remark 12 This is a side deterministic remark. Being s > 0, in H0 the linear semigroup
is a little bit Hölder continuous (this improvement is deterministic, not due to Gaussianity).
Indeed, from an interpolation inequality between Sobolev spaces that, on the torus, can be
proved by Fourier series in an elementary way (we have used it in the proof of compactness
for the 2D Euler equations), we have∥∥etAz − esAz∥∥H0 ≤ ∥∥etAz − esAz∥∥1−sHs ∥∥etAz − esAz∥∥sHs−1

≤ CT
∥∥etAz − esAz∥∥sHs−1 .

From the mean value theorem∥∥etAz − esAz∥∥sHs−1 ≤ sup
ξ∈[0,T ]

∥∥∥AeξAz∥∥∥s
Hs−1

|t− s|s

and, being A bounded from Hs to Hs−1,∥∥∥AeξAz∥∥∥
Hs−1

=
∥∥∥eξAAz∥∥∥

Hs−1
≤
∥∥∥eξA∥∥∥

L(Hs−1,Hs−1)
‖Az‖Hs−1

≤ CT ‖z‖Hs .

Collecting these inequalities, we get∥∥etAz − esAz∥∥H0 ≤ CT ‖z‖Hs |t− s|s .
Therefore

‖u1 (t)− u1 (s)‖L2 ≤ CT ‖(u0, v0)‖Hs |t− s|
s .

3.2 Local result

Theorem 13 Given s > 0, let µ0 be a centered Gaussian measure on Hs such that the
assumptions of Theorem 10 hold, for a r.v. (u0, v0) with law µ0. Then, for µ0-a.e. initial
condition in Hs, the cubic defocusing nonlinear wave equation has a local solution of class

C
(
[0, T ]× T3

)
⊕ C

(
[0, T ] ;H1

)
.

Proof. From Theorem 10 we know that for µ0-a.e. initial condition in Hs, one has u
continuous in space time, hence the assumption of Proposition 6 is fulfilled and we have a
local solution in C

(
[0, T ]× T3

)
⊕ C

(
[0, T ] ;H1

)
.

3.3 Global in time result

We want to apply Proposition 7; to this purpose the only problem is proving an a pri-

ori estimate for
(
ũ
ṽ

)
, because the regularity properties of u that allows one to apply

Proposition 7 hold on every time interval, for µ0-a.e. initial condition in Hs.
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In order to find an a priori estimate for
(
ũ
ṽ

)
, we use again the energy

E
(
ũ
ṽ

)
:=

(
1

2

∥∥∥(−∆)1/2 ũ
∥∥∥2
L2

+
1

2
‖ṽ‖2L2 +

∫
T3

ũ4

4
dx

)

which now does not satisfy simply d
dtE
(
ũ
ṽ

)
= 0. Let us compute the time derivative

formally:

d

dt
E
(
ũ
ṽ

)
= −〈∆ũ, ṽ〉+

〈
ṽ,∆ũ− (ũ+ u)3

〉
+
〈
ṽ, ũ3

〉
= −

〈
ṽ, (ũ+ u)3

〉
+
〈
ṽ, ũ3

〉
= −

〈
ṽ, 3ũ2u+ 3ũu2 + u3

〉
≤ 3 ‖u‖∞ ‖ṽ‖L2

∥∥ũ2∥∥
L2

+ 3 ‖u‖2∞ ‖ṽ‖L2 ‖ũ‖L2 + ‖u‖3∞ ‖ṽ‖L2
≤ C∗ ‖ṽ‖2L2 + ‖ũ‖4L4 + ‖ũ‖2L2 + 1

≤ C∗ ‖ṽ‖2L2 + 2 ‖ũ‖4L4 + 2

≤ 8C∗E
(
ũ
ṽ

)
+ 2

where C∗ depends on ‖u‖∞. Hence, from Gronwall lemma, for t ∈ [0, T0],

E
(
ũ (t)
ṽ (t)

)
≤ E

(
ũ (0)
ṽ (0)

)
e8C

∗T0 + 2e8C
∗T0 .

Proving rigorously this inequality requires some work as explained in Remark 5; we omit

the details. The bound on E
(
ũ (t)
ṽ (t)

)
obviously implies a similar bound on

∥∥∥∥( ũ
ṽ

)∥∥∥∥
H1
.

The final result is:

Theorem 14 Given s > 0, let µ0 be a centered Gaussian measure on Hs such that the
assumptions of Theorem 10 hold, for a r.v. (u0, v0) with law µ0. Then, for µ0-a.e. initial
condition in Hs, the cubic defocusing nonlinear wave equation has a global solution of class

C
(
[0, T0]× T3

)
⊕ C

(
[0, T0] ;H1

)
for every T0 > 0.

3.4 Remarks on the regularity of Gaussian measures

A doubt, already arosen in Remark 11, is that we are imposing additional regularity on
initial conditions, by means of the probabilistic selection under µ0, and thus we are not
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really solving the problem in Hs with small s. The doubt has a positive and a negative
answer.

On one side, Step 1 of the proof of Theorem 10 is a computation performed at every
time t, hence also at time t = 0, indicating that µ0-a.s. the initial conditions we are dealing
with are continuous. Hence they truly have a significant additional regularity compared to
Hs, in the case of small s.

On the other side, let us investigate more closely the mean zero centered Gaussian
vectors (u0, v0) in Hs0 treated in Theorem 10. Let us restrict, for notational simplicity, the
attention to u0, mean zero centered Gaussian vector in Hs0 ; we have denoted the regularity
exponent by s0 to stress below the change when we modify it. The random vector u0 has
the form

u0 =
∑
k

û0 (k) e2πik·x

with ∑
k

|k|2s0 E
[
|û0 (k)|2

]
<∞.

Set

Zk :=
û0 (k)√

E
[
|û0 (k)|2

] .
They are independent standard Gaussian complex valued r.v.’s. Setting

σk :=

√
E
[
|û0 (k)|2

]
we have

u0 =
∑
k

σkZke
2πik·x.

Recall, to compare, that
∑

k Zke
2πik·x is white noise. Here we assume∑

k

|k|2s0 σ2k <∞.

Take s1 > s0. There exists a sequence {σk}, satisfying the previous property, such that∑
k

|k|2s1 σ2k =∞.

This implies that the law of u0 gives measure zero to Hs1 .
Summarizing, given s1 > s0 > 0, we may construct a Gaussian measure µ0 satisfying

the assumption of Theorem 10 with s = s0 such that µ0 (Hs1) = 0, namely no element
selected by µ0 has regularity Hs1 . From the viewpoint of the scale {Hs}s≥0 there is a
genuine improvement of the deterministic results.
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Remark 15 Other measures can be used on initial conditions, for instance centered in
points different from zero and even non Gaussian; see [1]. The principles of this approach
are quite general. A surprising fact compared to the other examples in these notes is that
no invariance (time or space) is needed. This seems to be related to the possibility of the
decomposition outlined in Section 2.1, which does not look possible for Euler equations or
particle systems.
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