
1 Preliminaries on deterministic ODEs

Consider the Cauchy problem in Rd{
·
x (t) = f (t, x (t))
x (0) = x0 ∈ Rd

or its integral version

x (t) = x0 +

∫ t

0
f (s, x (s)) ds.

Solutions are always supposed to be continuous, since they have to verify the integral
identity; they are differentiable in a way dependent on the properties of f . The following
results are well known.

Theorem 1 If f : [0, T ]× Rd → Rd satisfies

|f (t, x)− f (t, y)| ≤ C |x− y|
|f (t, x)| ≤ C (1 + |x|)

then we have existence and uniqueness of solutions on [0, T ].

Theorem 2 If f is only continuous and bounded, then we have at least existence of solu-
tions on [0, T ].

In dimension one, a key role is played by the following simple criterium.

Theorem 3 If d = 1 and f > 0 in a neighbor U of x0 (given for instance by f (x0) > 0
and f continuous) then we have local uniqueness.

Proof. Let x (t) be a solution (continuous). On some interval [0, τ ] we have x (t) ∈ U
hence f (x (t)) > 0, hence

·
x (t)

f (x (t))
= 1

∫ x(t)

x0

ds

f (s)
= t

x (t) = H−1 (t)

where H (x) =
∫ x
x0

ds
f(s) is locally invertible.

Therefore to construct examples of non-uniqueness in d = 1 we need f (x0) = 0 (or f
changing sign in any neighbour of x0).
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Example 4 Assume
f (x) = 1{x>0} − 1{x<0}.

Then, from x0 = 0 we have infinitely many solutions: x (t) = 0, x (t) = t, x (t) = −t, and
any other that is equal to 0 for some time, then branches similarly to the previous ones.

Example 5 Assume
f (x) = 1{x>0} − 1{x≤0}.

Then, from x0 = 0 we do not have solutions.

Example 6
f (x) = 1{x>0}∩Qc − 1{x<0}∩Qc .

Suppose x0 ∈ Q. Then x (t) = x0 is a solution. But also x (t) = x0+t is a solution, because
f (x (t)) = f (x0 + t) = 1 a.s., hence

x0 +

∫ t

0
f (x (s)) ds = x0 + t = x (t) .

We may combine pieces of constant solution and linearly increasing ones as we like, filling-
in densely the half-space y ≥ x0.

Example 7 There exist continuous functions (indeed γ-Hölder continuous, with γ ≤ γ0 <
1) that are not Lipschitz on any interval and, at the same time, have uncountably many
zeros; for instance the path of a Brownian motion x 7→ Bx (ω). The function f (x) =
|Bx (ω)| may be used to construct an example like the previous one.

2 Perturbations (not necessarily white noise)

Let us add a piecewise constant random perturbation of the form (h > 0, α (h) > 0)

gh (t) = α (h) ·Xk on [kh, (k + 1)h[, k ∈ N

where Xk = ±1 with equal probability (choose them independent, to have a natural intu-
ition in view of white noise). Consider the equation{

·
x (t) = f (x (t)) +

·
gh (t)

x (0) = x0

or better

x (t) = x0 +

∫ t

0
f (x (s)) ds+ gh (t) .
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On each interval [kh, (k + 1)h[ we solve an equation with the new drift

f̃ (x) = f (x) + α (h) ·Xk.

If f is bounded and we choose α (h) > ‖f‖∞, we have
∣∣∣f̃ (x)

∣∣∣ > 0 for all x, hence on

[kh, (k + 1)h[ we have uniqueness. Thus the addition of the highly fluctuation term gh (t)
restores uniqueness.

Conjecture 8 Uniqueness is maintained in the limit as h→ 0, α (h)→∞.

Problem 9 We shall see that this is true, in dimension 1. In dimension d > 1, we shall
see that it i still true, uniqueness, for the limit problem h → 0, α (h) → ∞ (the case of
whte noise). But it is open to prove it for approximations of white noise like the previous
one. In dimension d = 1 it is open to prove it for general approximations.

Maybe it is useful to compare with another proble when a different situation occurs:
stabilization by noise. Consider the diagonal matrix (the final resuls is more general)

A =

 λ1 0
...

0 λd


with λ1 ≥ ... ≥ λd. To fix the ideas, assume λ1 > 0, λ1 + ... + λd < 0. The linear system
in Rd

·
x (t) = Ax (t)

is unstable. The Lyapunov exponent

λ = lim
t→∞

1

t
log |x (t)|

is positive and equal to λ1, for most initial conditions. Let us perturb the equation as

·
x (t) = Ax (t) + σ

N∑
k=1

Bkx (t)
·
gkh (t) .

Assume BT
k = −Bk, rotations, so that intuitively we do not directly affect the eigenvalues.

Call λσ the corresponding top Lyapunov exponent. One can prove that there exist N ,
B1, ..., BN , such that

lim
σ→∞

λσ =
TrA

d
.

Thus the addition of the randon perturbations stabilizes the system. The result has been
proved both for whte noise perturbations, by L. Arnold, H. Crauel and V. Wisthutz, and
by periodic highly fluctuating perturbations by V. Arnold.
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3 Brownian motion; Gaussian fields

Definition 10 On a probability space (Ω,F , P ) we say that a stochastic process (Bt)t≥0 is
a Brownian motion if

i) B0 = 0
ii) for every t ≥ s ≥ 0, Bt −Bs is N (0, t− s)
iii) for every tn ≥ tn−1 ≥ ... ≥ t1 ≥ 0, the increments Btn − Btn−1, ... , Bt1 − B0 are

independent.
We usually will include also the condition:
iv) the trajectories t 7→ Bt (ω) are continuous, for a.e. ω ∈ Ω.

A Brownian motion in Rd is just a vector valued stochastic process Bt =
(
B
(1)
t , ....B

(d)
t

)
where the components are independent real valued Brownian motions.

Remark 11 The GFF in dimension 1 without periodic boundary condition is a BM, with
properties (i)-(iii). In order to have also (iv), ne can use Kolmogorov regularity criterium.

Theorem 12 In D ⊂ Rd bounded, a random field {Xx}x∈D satisfying for some constants
p, α, C > 0

E [|Xx −Xy|p] ≤ C |x− y|d+α

for all x, y ∈ D, has a continuous modification (there exists a random field
{
X̃x

}
x∈D

susch

that X̃x = Xx a.s., for every x ∈ D; and x 7→ Xx (ω) is continuous for a.e. ω ∈ Ω).

In the case of a Brownian motion satisfying (a priori) only properties (i)-(iii) we have

E [|Bt −Bs|p] = E
[∣∣∣∣Bt −Bs√

t− s

∣∣∣∣p] (t− s)p/2 = Cp (t− s)p/2

where Cp = E [|Z|p] with Z being N (0, 1) (the r.v. Bt−Bs√
t−s is N (0, 1)). Hence for p > 2 we

may apply Kolmogorov regularity criterium and get the existence of a Brownian motion
satisfying also property (iv).

This argument is quite general for Gaussian random fields. Let {Xx}x∈D be a Gaussian
random field, namely a family of r.v.’s such that for all n ∈ N and all x1, ..., xn the vector
(Xx1 , ..., Xxn) is Gaussian. Assume it centered. Define

q (x, y) = E [XxXy]

(the so called covariance function). In a sense, we have specified L2 type properties only.
But Gaussianity improves them:

Theorem 13 If q is bounded, then a.s. the paths x 7→ Xx (ω) are of class ∩p≥1Lp (D).
If q is Hölder continuous, then there exists a continuos modification.
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Proof. We only sketch the proof of the first claim; the second one is left as an exercise.
We have

E
[∫

D
|Xx|p dx

]
=

∫
D
E [|Xx|p] dx =

∫
D
E

[∣∣∣∣∣ Xx√
q (x, x)

∣∣∣∣∣
p]
q (x, x)p/2 dx = Cp

∫
D
q (x, x)p/2 dx

where Cp = E [|Z|p] as above.

Remark 14 This Gaussian improvement of regularity s the key ingredient in the theorems
of solvability for a.e. initial conditions for certain dispersive equations, like the nonlinear
wave equation ∂2ttu = ∆u− u3 in dimension 3 (Burq-Tzvetkov). Solvability for such equa-
tions is based on Strickartz estimates, which are Lpt (Lqx) estimates on the linear part of the
equation. In a purely deterministic context, the proof of Strickartz estimates is diffi cult.
In a Gaussian framework, the Lpt (Lqx) regularity gain is given by Gaussianity; it is much
easier and gives new results.

Remark 15 Going back to the theory of Abstract Wiener Spaces we could recognize that
GFF, hence BM, lives in Hs = W s,2 for all s < 1

2 , a space which however does not embed
into continuous functions. The Gaussian improvent gives on W s,p for all s < 1

2 and p ≥ 2,
which is embedded in the space of continuous functions.

4 Definitions of uniqueness for ODEs perturbed by white
noise

Let us finally arrive to ODEs perturbed by white noise
·
Bt{ ·

Xt = f (t,Xt) +
·
Bt

Xo = x0

or, in the more proper integral form

Xt = x0 +

∫ t

0
f (s,Xs) ds+Bt

perturbed by the BM Bt.

Remark 16 This is the limit problem as h→ 0 of the the problem above, with α (h) = 1√
h
.

Donsker theorem states that gh converges in law to BM.

Let ω ∈ Ω be such that t 7→ Bt (ω) is continuous. Consider the deterministic equation

Xt (ω) = x0 +

∫ t

0
f (s,Xs (ω)) ds+Bt (ω) .

We call C (x0, ω) the set of all functions Xt (ω) of class C
(
[0, T ] ;Rd

)
that satisfy this

identity.
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Definition 17 We say that path-by-path uniqueness holds when C (x0, ω) is a singleton,
for a.e. ω ∈ Ω.

Theorem 18 If f satisfies the Lipschitz-type assumptions of Theorem 1 above, that C (x0, ω)
is not empty and a singleton, for a.e. ω ∈ Ω (hence path-by-path uniqueness holds).

Theorem 19 If f is continuous bounded, then C (x0, ω) is not empty, for a.e. ω ∈ Ω.

We say that (Xt)t∈[0,T ] is adapted to (Bt)t≥0 if Xt is measurable with respect to the

σ-algebra generated by all Bs for s ≤ t. We say that two processes X(i)
t , i = 1, 2 are

indistinguishable if P
(
X
(1)
· = X

(2)
·
)

= 1.

Definition 20 We say that pathwise uniqueness holds when the following is true. Given a
probability space (Ω,F , P ) with a Brownian motion Bt, if X

(i)
t , i = 1, 2 are two stochastic

processes on (Ω,F , P ) adapted to Bt, with X
(i)
· (ω) ∈ C (x0, ω) a.s., for both i = 1, 2, then

X
(i)
t are indistinguishable.

Remark 21 The previous definition is not entirely canonical; one should introduce filtra-
tions (Ft)t≥0, define BM with respect to a filtration and procesess (Xt)t∈[0,T ] adapted to a
filtration; then pathwise uniqueness should be defined as indistinguishability between solu-
tions adapted to a filtration coherent with the noise. We omit this level of generality and
concentrate on the previous restricted definition.

Remark 22 The concept of pathwise uniqueness is more restrictive that path-by-path unique-
ness, since it requires more structure of the objects. It corresponds, in a sense, to uniqueness
of Lagrangian flows, opposite to uniqueness for a.e. initial conditions that corresponds to
path-by-path uniqueness.

Finally, there a third definition of uniqueness, so called "in law", that we do not discuss
for the time being.
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