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Chapter 1

Random Point Vortices

1.1 Introduction

These lectures are devoted to the following general questions: could Probability add some-
thing to the theory of differential equations, ordinary or partial? Could we prove stronger
theorems using probability?

Two directions have been identified in recent years: put randomness in the initial con-
ditions (deterministic equations with random initial conditions), add time-dependent ran-
domness - noise - to the equations (stochastic differential equations). We shall explore
both directions.

Concerning random initial conditions, we may distinguish between finite and infinite
dimensional problems. Both in finite and infinite dimensions, we may classify problems as
special examples or general theories. Let us say something more on each one of these four
possibilities:

e finite dimensions, special problems: we shall describe the theory of Lanford on no-
concentration of particles for interacting particle systems; and the theory of no-
collision of point vortices of Marchioro-Pulvirenti;

e finite dimensions, general problems: starting from Di Perna-Lions, ODEs with only
weakly differentiable coefficients (instead of Lipschitz ones) have been solved in some
probabilistic sense, with several approaches;

e infinite dimensions, general problems: the previous ideas of Di Perna-Lions theory
have been extended to infinite dimensional spaces;

e infinite dimensions, special problems: we shall describe elements of the theory of
dispersive equations (wave, Schrodinger, KDV and others) and 2D Euler equations,
with random initial conditions, where in both cases the effort is to solve the equations
for less regular initial data than those allowed by deterministic tools.

5



6 CHAPTER 1. RANDOM POINT VORTICES

Concerning noise perturbations of the equations, we shall also review several finite
and infinite dimensional examples. In finite dimensions, the typlical result is that very
poor drift - leading to several pathologies in the deterministic case - is "regularized" by
additive noise. In infinite dimensions there are similar abstract results as well as a few
"regularization by noise" result for specific PDE examples.

1.2 Open problems

Concerning open problems, we shall concentrate mostly on the infinite dimensional case.

A general important question is to fill the gap between Di Perna-Lions theory and exam-
ples (from Mathematical Physics, so to speak). Applications to PDE meet some essential
difficulties. However, maybe there is hope for certain dispersive equations. Application
to infinite systems of interacting particles, however, could be possible and should be ex-
plorated; this creates a link with the first part of the course, on interacting particles, like
Lanford result.

Concerning specific examples of PDEs, application of the ideas in fluid dynamics are
perhaps just at the beginning. Here, both the case of random initial conditions and regu-
larization by noise deserve further investigation.

1.3 Two dimensional fluids (short introduction)

The topics illustrated in this initial section are presented in a style between Mathematics
and Physics: no rigour is pretended, but a simple illustration of ideas and objects. As
a general reference, let us quote [43], see also [41]; but the literature on the subject is
enormous.

We shall concentrate on the so called inviscid incompressible constant density fluids,
described by the variables

u(t,z) = velocity

p(t,x) = pressure

(the constant value of the density is taken equal to 1), u : [0, T]|xD — R% p: [0, T]xD — R,
where D C R? is the domain occupied by the fluid. We assume they satisfy (the so called
Euler equations)

ou+u-Vu+Vp = 0

dive = 0
in a suitable sense. The first equations are Newton law along ideal particle trajectories:
the acceleration %u is balanced by the force —Vp. The second equation encodes incom-
pressibility.
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The vorticity w (t,x), w: [0,T] x D — R, defined as
w =0y —Oug =V -u
plays a central role. If (u,p) is a reasonable solution, one can check that
Oww +u-Vw = 0.

This is Euler equation in vorticity form, a nonlinear (because u and w are related) transport
equation. In the case of sufficiently regular solutions, w is transported along ideal particle

trajectories.
We mentioned ideal particle trajectories. We meant solutions of the equation
dzx (t)
=u(t,z(t
Wt x )

We may think of infinitesimal portions of fluid (still macroscopic, not at the molecular
level). The notation %u above stands for %u(t,:p (t)): one has (for sufficiently smooth
solutions)

d
Stz () =[O+ u-Vulgaq) = [=VPl )

%w (t,z () = [Ow +u- V] 44y =0
which explain some statements above.

Sometimes it is useful to keep in mind the differences with respect to 3D fluids. For
them, Euler equations in the variables u : [0,T] x D — R3, p: [0,7] x D — R are the same
as in the 2D case (here D C R3). But vorticity w : [0,7] x D — R3 is a vector field, it is
defined as

w = curlu

and it satisfies
Ow+1u-Vw=w-Vu.

The additional term w - Vu is the cause of many important (and difficult) facts; it is
called vortex stretching (vorticity is not only transported, but also stretched). The 2D
"projection" above simply means that the fluid u : [0, 7] x D — R? has a planar symmetry,
namely it has the form

u(t,z) = (w1 (¢, 1, 22) ,u2 (¢, 21, 22),0)

and therefore
w (tv .'L‘) = (07 0,&)3 (tv X1, $2)) .

Namely, vorticity is always perpendicular to the plane of motion. Therefore it is sufficient
to consider the scalar quantity ws (¢, z1,22), given by wg = dou; — drue. It is the quantity
we called w above, in the 2D case.
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Kinetic energy

1
/ lu(t,z)|* do
2Jp

is (with appropriate boundary conditions) an invariant quantity (for sufficiently smooth
solutions), both in 2D and 3D. Let us check it formally in the case D = R?, d = 2,3:

1d
/ |u(t,3:)\2d:v:/u-@tudm:—/u-(u-Vu)dx—/u-Vpd:EzO
2dt Jp D D D
because
/u-Vpd:U:—/pdivudm:O
D D
1
/u-(u'Vu)d:U:/u-V|u2—d:U:—/\u|2divudx:0.
D 2Jp D
Enstrophy

[ ot o

is an invariant quantity (with appropriate boundary conditions and for sufficiently smooth
solutions) in 2D:

d/ |w(t,:r)|2dx:2/w8twd:z::—2/ w(u-VoJ)d:L':—/ u-Vde:B:/deivud:B:Q
dt Jp D D D D

In 3D this is not true, since the additional term

/Dw(w-Vu)dx

is not zero (in general) and quite relevant for the dynamics; in principle it is even possible
that it leads to blow-up of w (it is an open problem). In 2D, the previous computation can
be repeated for any power [ pw(t, x)" dz, which are thus all invariants. As we mentioned
above, also the pointwise value w (¢, 2 (t)) itself is invariant, along particle trajectories,
when suitably defined.

For the sequel, we need to invert the relation w = V+ - w. Call fluid potential a scalar
field ¢ : [0,T] x D — R such that

Ap=w

and take
U= VLQO.

We have (under suitable regularity) divu = 0 and

Vi ou=Vt . Vip =020+ ?p=w.
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Obviously it is necessary to be embdedded into a set-up (regularity and boundary condi-

tions) where all these operations exist. If so, we have, with compact notations,
w=VtA~lw.

This is called Biot-Savart law. If there is a function K (x,y) such that, for every y € D,
x — K (x,y) solves
A.’L‘K ('7 y) = 5?]

in the sense of distributions (over compact manifolds without boundary as in the case of
the torus, the correct problem is Az K (-, y) = 6y — ﬁ, see below), we set

u(t,x) = /R2 VK (z,y)w (t,y) dy.

For instance, in full space D = R?, under suitable regularity, we choose

1
o) = o [ loglo—ylw(t.y)dy
™ JRr2
1 T —y =
U(t,l‘) - 5 ( )2 w(t>y) dy.
27 Jr2 |w =y
The kernel n
1 x
K = ——

emerges, that we shall meet several times below.

1.4 Point vortices, introduction

Again, we start with an heuristic introduction; see for instance [43], Chapter 4. With some
degree of idealization, one can consider the previous 2D description in the case when

N
w (ta LL‘) = Zgzézl(t)
=1

namely when the vorticity is concentrated in a finite number of points. Based on the
Biot-Savart law, the associated velocity is

N
u(t,x) = ZfiK (x,2; (t)) .
i=1

The motion of vortex ¢ should be described by the equation dm{;%’t(t) = u (t,x; (t)). However,

the function K (z,y) is singular for z = y, hence u (¢, ) is well defined only at points
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x different from z (t), ..., xn (t). The "correct" choice is then to avoid self-interaction,
namely to consider the following dynamics:

T S K (i (1) 2y (1)

J#i

There are at least two (similar) justifications for this choice (namely for neglecting self-
interaction). One is a non-trivial theorem of [42] stating, in plain words, that smooth vortex
patches concentrated around points have a dynamics close to the one of point vortices; the
proof requires more ingredients than those we can use at this stage of the development of
the theory. A second justification (slightly weaker) consists in investigating the motion of
a fluid particle close to one point vortex, say vortex n. 1:

dm(;l"”(ﬂ = u(t, = (tz0)) Zfl @ (tlzo) , i (1))

where the trajectory z (t|zo) has initial condition x( very close to z; (0) and the points z; (¢),
i =1,..., N, solve the previous point vortex system. One can show that x (t|xg) remains
very close to x1 (t), over finite time horizon, under the condition of no vortex collision. We
1 (z—y)* )

develop the argument in the case D = R? to fix the ideas (so that K (z,y) = 5 lz—y[*

See also Section 6.5 for a simlar but considerably more difficult result.

Proposition 1 Let [0,T] be an interval of existence and uniqueness of solution without
collision, for the vortexr dynamics. Then:

i)  (t|zo), solution of M = u (t,x (t|xo)) with initial condition xg, exists uniquely
and it is different from the posztzons of vortices, on [0,T);

i1) there are constants ey, C > 0 (depending on T, on the minimal distance between
vortices, on N and on |§| = max |;|) such that for all xg € B (x1(0),€0) \{z1(0)} and all
t € [0,T] one has

2 (tlzo) — @1 (D] < C lag — a1 (0)] (1.1)

Proof. Let rg > 0 be the minimal distance between vortices on [0, 7"]. Choose a preliminary
value of 0 < eg < % and assume 0 < |z¢ — 21 (0)| < €o; consider any interval [0, 7] C [0, 7]
! where 0 < |z (t|zo) — z1 (t)] < 2. From

;lt( (tlzo) — 21 ( Zé’z @ (tlo) @i (1)) — K (21 (), wi (1)) + & K (2 (to) , 21 (2))

we deduce
1d .
T @ (tlzo) — 21 ()7 =D& [K ( (tzo) , 2 (1) — K (w1 (), 2 ()] - (2 (tlwo) — a1 (£))
i=2

'There is at least one with 7 > 0 by continuity of trajectories
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(since % - (z (tlxzg) — x1 (t)) = 0) and thus, for a suitable L > 0,

< N[ Lz (t|zo) — 1 ().

Such L exists because the function z +— K (x) is Lipschitz continuous with constant L for
|z| > 7; therefore

K (2 (o) , @i (1)) — K (21 (), @i (1))
= [K (z(tlzo) — =i (1) — K (z1 () — i (1))]
L|(z (tlwo) — i (8)) — (21 (8) — i (1))]
|

<
< Lz (tlxo) — x1 (t)

(we use the fact that |z (t|zo) — x; (t)| and |21 () — x; (¢)| are greater than 7).
Hence

|2 (t|zo) — 21 (8)] < |zo — 21 (0)] eNEET < geNIEIET

If we choose now €g < 3 so that it satisfies also ¢g < e NEILT /4 we have |z (t|xg) — z1 (t)] <
3 forall t € [0, 7].
Moreover, on [0, 7],

1d
— 5 logz (tlzo) — w1 (D)

= - 2251 a (o), @i (1) — K (21 (1), @i (1)) - (2 (t|wo) — z1 (¢))

| (t|m0 — 1 (
< N[|L.

Hence
—log |z (t|zo) — 21 (t)| < —log|zo — 21 (0)| + TN €| L

|z (tzo) — 21 ()] = exp (log |zo — 21 (0)| = TN [¢| L).

By an easy argument by contradiction, one can take 7 = T, for this choice of ¢y. Thus
we have also proved 0 < |z (t|zo) — z1 (t)] < |zo — x1 (0)] NEET for all t € [0, T], always
for this choice of ¢y. Summarizing, we have found ¢y > 0 such that for |z¢g — 21 (0)] < €y we
have z (t|xo) globally defined, always different from the positions of point vortices (including
x1 (1)), and (1.1) holds. This proves part (ii). Part (i) is already proved for initial positions
sufficiently close to those of the point vortices; a fortiori, it is true for the other initial
positions, by an easy argument that we leave to the reader. m



12 CHAPTER 1. RANDOM POINT VORTICES

1.5 Invariants, Hamiltonian and Lyapunov functions

The presentation of this section is widely taken from [45]. Consider the case of N vortices

in full space, hence K (z,y) = 217r (‘z z;)|2 :
drit) _ 1§ (@ilh) 2 ()"
t ok m (t) -z (1)

Let [0,T] be an interval of existence and uniqueness of solution without collision. Call

N
r=3 ¢
1=1

c(t)

the global circulation (which is obviously invariant). The quantity (= is called center of
vorticity or inertia)

N
= Z §iwi (1)
i=1

is Invariant:

e w5 )
Z 553 o)~ (007
wfj

because each pair (4,7) with 7 # j contributes with two terms, opposite one each other.
Also the quantity (called moment of inertia)

N
=& lm 0
=1

is invariant:

dr(t) _ 1 ey 0 = ()
at Z,J;.,Ngzgj 0 |lzi (t) — (t)’2
i#]j

and now, for each pair (7, j) with ¢ # j, notice that the sum of the two corresponding terms
vanishes

(i (1) —; (1) (wz (t) — (if))L
| |
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Define

N

T(a:l,...,a:N) = Zfifj\xi—xj|2
3,7=1

T(t) = T(@1(t),...on ().

Also T (t) is invariant, because
T(t) =2 (FI (t) — ]c(t)\2> .
Define A as the set in R with at least two equal points. For a coordinate z; € R? of

the point = = (z1,...,xN) € R2N write ¢; and p; for its first and second coordinates.
The function H : R2V\A — R

i:j:L---,N
i#j
satisfies
gi qdi,g ) - apiH(ml (t)7'-'737N (t))
i pdt() = =0 H (z1 (1), ... 2N (1))

This is the structure of an Hamiltonian system. Lebesgue measure is invariant (in a suitable
sense; we shall come back to this issue). Also,

H(t)=H(x1(t),....,zN (1))
is invariant:
dH (t)

=0.
dt

The quantity

L(zy,....,zy) = — Z log |z; — x;]
ij=1,...,N
i#]

may be useful as a Lyapunov function in the attempt to prove no collision:

Exercise 2 Given an initial condition (z1 (0),...,zn (0)) € A, if we can prove that there
exists C' > 0 such that

for all local solutions, then the solution is global, and unique.



14 CHAPTER 1. RANDOM POINT VORTICES

Lemma 3 If all ¢, > 0, the function

L(z1,....zn) =T (x1,....,xn) — H (21,...,2N)

has similar properties: given an initial condition (x1 (0),...,zn (0)) € AC, if we can prove
that there exists C' such that

L(@1(t),...zn (1) <C

for all local solutions, then the solution is global, and unique.

Proof. It is sufficient to prove that there exist a,b > 0 such that
L(z1,...,xn) < aL(zq1,...,xN) + b

and then apply the previous exercise. ®
We may use the quantity L (z1,...,zx) to prove a first global existence result.

Proposition 4 If all £; > 0 (or all negative) then solutions are global, without collision.

Proof. Let (z1 (t),...,zx (t)) be a local solution. Since L is invariant,

L(z1(t),....xn (t) = L(z1(0),...,zxn (0))

we apply the previous Lemma with C = L (z1 (0) , ..., zx (0)). =
When the signs of ¢, are variable, we cannot use the invariants to prove no collision. In
the attempt to use the function L (z1,...,zx) we have, with L (t) = L (z1 (¢), ...,z (1)),

dL (t) z; (t) —x; (t) (dx;(t)  da (1)
E _ijg,:,,lei (t) = z; (1) ( dt dt )
Tidi
1

4

1 2 () — 2, (1) (2 () — 2 (1) <, (@ () — 2 ()
N 2 i,j:l;.,N |$l (t) — Ty (t)|2 ;gk |33z (t) — Tk (t)‘2 ng
i#]

The problem is to bound this sums. In the next section we show there are configurations
of collapsing vortices. Therefore some special ingredient is needed to bound the previous
terms.

)
|

My () — 2 (1)
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1.6 Two and three vortices

Again, we base the content of this section on [45]. In order to get more involved in vortex
dynamics, let us understand a few properties of the motion of two and three vortices.

In the case of two vortices (both £;, &5 not zero) we have

dz (t) 1 (r1(t)—=

_ 1 2
dt 2« 2 |J;1 (t) ) (t) 2
dea(t) 1, (¢1(t) —@a(t)"
dt 21 |y (1) — 22 (1)
c(t) =&z (t) + &yxe (t) = constant

I(t)=¢& |21 (t)|2 + &o |22 (t)]2 = constant
T (t) = 26,&q |1 (t) — z2 (t)]* = constant.

In particular we reduce the equations to

dxa (t) 1 (1 (1) — a2 (1)
dt 27 24 (0) — o (0)2
Case 1: & = —¢; (equal intensity counter-rotating vortices). In this case the two

vortices move parallel with constant velocity. Indeed,

c(t) =& (z1 (t) — x2 (t)) = constant

hence
dry (t) _ _ig (21 (0) — 22 (0)"
dt om ot |z1 (0) — x2 (O)|2
dzs (t) _ 1 (21 (0) — 2o (0))L
dt 21" (21 (0) — 22 (0)

In this case the two vortices rotate around their center ¢ =

Case 2: & # —&;.
810162200 1 geed,
cl' —&xq (t

§ow1 (1) —cl' + & (t)  T(x1(t) —¢)

m(t) =22 () = & &
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and similarly

hence

dt 27 |21 (0) — 22 (0)?
dza(t) _ 1 (z2(t) — o)
dt 21 |ay (0) — a2 (0))*

In the case of three vortices, we may have collision. The computations here are a
little bit boring but the results are very interesting. The triangle formed by the points
(1 (t),z2(t),z3(t)) plays a central role. Introduce the lenghts of the sides: l;; (t) =
|z; (t) — z; (t)|. With due patience, one can write relations between [;; () themselves and
with other quantities of interest. These are the results obtained by these relations:

day (1) _ 1 (m ) — o)t

Proposition 5 Assume

§160 + 6183+ 8283 =10
and (z1(0),2z2(0),z3(0)) satisfies
T(0)=0

(namely &€&y |21 (0) — 22 (0)° 4 &5 |1 (0) — w3 (0)|” + &3 |2 (0) — w3 (0)]* = 0). The
the solution (x1 (t),xz2 (t),xz3(t)), on any interval before possible collision, forms an auto-
stmilar triangle:

lia (t)  112(0) laz (t) 123 (0)

la3 (t)  123(0)’ lis(t) 3 (0)

(hence also 228 = ;ﬁggg} for all t in that interval.

In addition, if the triangle (1 (0), 22 (0),x3(0)) is not equilateral or degenerate (al-
ligned points), then there exists T* # 0 such that

t

lij (8) = Ui (0) /1 = 7
and, if T* > 0, the three points collision in finite time, otherwise, if T* < 0, the triangle
increase to infinity.
Example 6 One can prove that the choice

&1 =68 =2, §3=—1

z1 (0) = (_170)7 T2 (O) = (150)a T3 (0) = (17_\/§>

leads to collision in finite time.
Remark 7 Continuation after collision is an open problem. One could try to investigate

it by zero-noise limit, as it was successfully done for the easier system of Viasov-Poisson
point charges.
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1.7 No collision for a.e. initial condition

We present now a famous result of solvability for a.e. initial conditions, taken from [30] (on
the torus) and [43], Chapter 4 (in full space). It is our first example of solvability thanks
to random initial conditions. In full space there are a few additional difficulties (the need
to prove that particles cannot move too far from their initial configurations, a fact that
is true only under appropriate conditions) that we prefer to avoid. Thus we work on the
unitary torus T? = R?/Z2, as in [30]; here Lebesgue measure is a probability, and particle
displacement is controlled a priori by the compactness of the set.

The price to work on the torus T? is the non-esplicit form of the Green kernel and
Biot-Savart law. Let us spend a few preliminary remarks on this topic. Since the velocity
field v has to be periodic, the vorticity is necessarily zero mean:

/w(w)dx: VL~u(m)da::—/ w(z) - Vilde = 0.
T2 T2 T2

Writing expressions in Fourier form is not difficult (but not sufficient for our purposes).
Given a zero-mean function w € L? ('JI‘Q), write its Fourier series

W (l’) _ Z wkeZWik-x

kez?

in the sense of L? (']I‘z)—convergence, where wy, = [2 w () e~2mk 4y, Define

1 - Tik-x
¢ (zlw) = T2 Z || 2 wye?mk
kez?

1 - mik-x
u(zjw) = 5 Z k|72 ktwyemike,
kez?

We have
Ap(zlw) = w(z)
u(elw) = Vip(rlw)
divu (zjlw) = 0
Vtou(zlw) = w(z)

This defines, in Fourier, the velocity field associated to a vorticity field, the Biot-Savart
law on T?. If w is a distribution, we may extend the previous formulae; when w = 0y — 1
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2 for some y € T2, wy, = e 2™*Y_ hence

G(z,y) (ZU‘(; Z| |*2 2mik-(x—y)
kez2
K (z,y) = ViG(z,y)= (m_q___g,zjmrk%zmuww
kez?

One has G (z,y) = G (z — y,0), K (z,y) = K (z — y,0). We set

1 — mik-x
G(z) = _THZW 22k
kez3
K(I) — VJ_G - = Z |]€|7 k_J_ 27rzkm
k€Z2

These are periodic functions, with G (—z) = G (z), K (—z) = —K (z). The series defining
G (z) converges in H'~¢ ('JI‘Q) for every € > 0; and in WP (TQ) for every p < 2 (but not in
W12 (T?)); and thus in L4 (T?) for every ¢ < oo. The series defining K (z) converges in
L (?I‘Q) for every p < 2 (but not in L? (T2)). From the general theory of local regularity of
elliptic equations, G (z) (hence K (z)) is smooth outside z = 0 (and its periodic replicas).
The behaviour at z = 0 is more difficult; one can prove that

1
r(z):=G(2) = 5 loglal, el <

N

is smooth, because it solves in the sense of distributions, locally around = = 0, the equation
Ar = 0. Moreover r (—z) = r (z). It follows that, for

1 zt
K = ——: <
@)= g p T R@, el

N | —

where R (z) is smooth and R (—z) = —R (z), which implies in particular that R (0) = 0.
Thus the dynamics of point vortices is given by

P S K i (1) — 2y 1)

J#i

According to the ideas described in the previous sections (valid also on the torus), we want
to prove

L(z1(t),.zn(t) <C

2Tt must be zero average; but this subtraction does not change the role of the Green kernel in representing
solutions of Poisson equation Ay = w by convolution, for zero average fields w
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for certain initial conditions, where

L(zy,....,zN) = — Z G (x; — xj).

ij=1,..,N
i#]
And we have, with L (t) = L (z1 (t),...,zn (1)),
dL (t) N ‘ ' dxi (t) dSUj (t)
@ = T 2 VO - (t))< dt dt
1,]:1;.]'..,N

= — > VG@i®) -z (1) [ D &VIG (i () —w () = Y& VG (x5 () — 2k (1)
N

7’7]:177 k?él k#j

i#]

Here we see an important cancellation (its importance will be appreciated below): the term
in the sum }, ,; with k£ = j and the term in the sum »_, ,, with k =4 do not contribute,
because

VG (i (t) = z; (t) - VIG (x; (t) — z; (1) = 0.
These are the most singular terms, since for small |z; (t) — x; (t)| they behave like

1
i (8) = (1)

The other terms behave like
1 1
lzi (t) — x5 ()] |2i (1) — 2 (1)

with j # k, hence they are less singular when two particles approach each other. [At this
stage, this explanation is not fully convincing, having in mind the triple collisions, but we
shall clearly see the advantage soon.]

In order to make progresses, we need now to consider the flow map z° — =z (t\:co).
This is locally defined, when 20 ¢ A. However, the time before collision depends on z°
and complicate matters. To avoid these troubles, we mollify G in such a way that we have
global solutions for all 2°, a smooth flow, but also equal to the original solutions if particles
are not too close each other.

For every 6 € (0,1), denote by log® (r) a smooth function, defined for r > 0, such that

log® (r) = log(r) forr >4
‘log(‘s) ('r)‘ < Clog(r) forr >0

IN

‘d log® (r)

C
o ?forr>0
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for some constant C' > 0. Set

1

GO (z) = —1og® || +7(z)
2T

KO (z) = v+G®¥ (z)

for |z|, < %, periodically extended. Denote by (:13&‘” (t), ..., 3353) (t)) the unique solution of

(6)
L0 5 k0 (o (1) o (1)
i

with given (arbitrary) initial condition.

Lemma 8 Consider the smooth map z° — :EZ@ (t|x0) m (TQ)N. The probability product

N . . . )
measure Lebon on (’]1‘2) s invariant for this map.

Proof. It is a known fact for smooth flows that the determinant is given by the exponential
of the divergence of the vector field, which here is zero, hence the determinand is identically
equal to one. Hence the flow is Lebesgue measure preserving. Let us only check that the
divergence is zero: it is the sum of divergences on each component T2, which are all equal to
zero because the components have the form V-4 () (apply Schwarz theorem on mixed
second derivatives). m

Similarly to above, let us introduce the function

L(é) (q:l,...,a:N) = — Z <G(6) (xi—mj) —k)
ij=1,.,N
i#£]
where k is such that — (G(‘s) (x) — k:) > 0 for all z € T?. Setting L© (t) = L© (xgé) t),..., x%) (t)),

we have

7,09)
) _ oy wew (=7 ) -2 @) -
dt y 2 J
i,5=1,...,.N
i#]
6 é é 0
A ave® (2 1) - o (1)) - Y& vie® (o 1) o @)
ki kj

Again the terms in the last two sums of the form V+G(©) (1*2@ (t) — x§6) (t)) cancel with

vG® (a:,gé) (t) — xg.é) (t)) Using this estimate and the invariance of Lebesgue measure we
can prove:
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Lemma 9 There exists a constant C' > 0 such that, for all 6 € (0,1),

- G () o 0r @ 0 ) g0
/<T2>Nt§5%1i,j;.,N<G (" (tha?) o (tla?)) ~ k) da” < C.
i#g

Proof. We may summarize the last identity above in the form

dL® (t) (6)
_ . (%)
dt - N Z al]k‘]z Jk ( (t)>
i,5.k=1,....N
it itk
IO @) =YY (z; - ;) - VEGD) (w; — )

for suitable coefficients a;j;. Integrating in time, taking the supremum in time over [0, 7]
and then integrating with respect to the initial condition z°
J)k( 6) (sl )‘dx ) >

sup L) (t)da® < / ’ L®) (0)’ dz’+C / /
/(T?)N te[0,7] (12)N Z
Now we use the most essential ingredient: the invariance of Lebesgue measure under the

Z#J wﬁk,ﬁék
map 2° — (9 (s|z°). This gives us

6) (.09 0 0_
/(T2)N Jiin (ac (s]z ))’dw /(11‘2)

From the properties imposed on log(® (r) we have

, we have

I (@°)] da.

5 C
Ji(,j)k (330)‘ <

=i — gl i —

for some constant C' > 0, hence

IO @t <o [ ([ L) dwde <
i,jk J
()N " T2 |Ti — ]

(122 |78 — T
for some constant C’ > 0. Similarly, f(TQ)N ‘L(é) (0)| dz® < C” for some constant C’ > 0.

In conclusion,

_ 6) (®) @) (4100 _ 1) 4.0
[ £ (6960 )2 1) 1) as <
i#£]

for some constant C' > 0. m
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Remark 10 Without the cancellation of the most singular terms, we would have also

1
/T ——dadzj = +oo.

(T2)? |28 — 24

Theorem 11 For Lebesque a.e. initial condition z° € A€, there is no collision and the
solution is global and unique.

Proof. Denote by d( (a;o) the minimal distance between vortices of the smoothed system,
starting from z°, over [0, 7. Then

dgﬁs) (2°) < 6<=3Ttel0,T],Ji#j: ‘:1: (t]2°) — x§5) (t|x0)‘ <6

_ G©) 29 0 _
- tes[%%]” 21: N( ( (t|x ) E (t’x )> )
ij

> - (G<5> (6) — k) - —%logé —r (5)

hence

Leboy {a” € (1) : dfY («°) < 6}

0 2\NV . ©) (.0 0y _ ..(9) 0y) 1 _

< Leboy < z E(T) : tes[l(l)%}i7j§1;.7N(G (xl (t]x) z; (t\:n )) k:)> 27T10g(5 r(9)
i#£]

C

— 5= log§ — 1 (0)

where We have used Chebyshev inequality and the lemma, and have assumed § so small
that —5-logd — r (§) > 0. Thus, for a very large (in the sense of Lebesgue measure) set
of initlal conditions dg,é ) (2°) > 6, which means that 20 (#2%) =z (t[z") and no collision
occurs. This property is true for a.e. initial conditions, by the arbitrariety of §. m

Exercise 12 Show that the map z° — x (t]a:o) defined a.e. by the previous theorem is
measurable and preserves Lebesque measure.

Remark 13 There are other results in the literature similar to the theorem, for other
systems, see for instance [1] that was previous to the investigations on vortex systems (but
does not cover them). Celestial mechanics is also a subject where these tools have been
considered.
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1.8 Weak form of Euler equations for point vortices

This section aims to answer the following natural question. Assume the point vortex
dynamics is well posed; define the associated vorticity and velocity fields as

wi (dz) = Zgi(sxi(t)
up (x) = Zgz (x,z; (

Can we say that the pair (u,w) satisfies the vorticity formulation
Ow~+u-Vw=0

of the 2D Euler equations in some suitable weak sense?

The solution w; (dz) is a special example of measure-valued solutions and thus let us
discuss the problem at this level of generality: we want to define vorticity-measure-valued
solutions of the 2D Euler equation. Being w; (dy) a measure, the velocity is given by

u(e) = [ K (@g) e (d).
Since boundary conditions matter here, we simplify and discuss the case in full space; thus

1 (z—y)"

K -

Let ¢ € CX (R2) be a test function. If w were a regular solution, still denoting the
associated measure by wy (dz) we would have

/¢> ) wy (da) — /¢ )wo (dx) = //¢> us (x) - Vws (x) dxds

where however the last term requires a definition. By Gauss-Green formulae (boundary
terms do not appear because ¢ is compact support) the last term is equal to

/ /ws us () - Vo (x) deds
which can be interpreted as

_ /Ot /u (2) - Vb (2) ws () ds.
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This expression is not well defined, in the direction of point particles that we are interested
in: if w; (dz) contains a term of the form (), then us (z) contans a term of the form
K (x,z; (t)) which diverges precisely at x; (t).

We may further write

= [ [ [ K@) Vo ). ) ds

Now comes the basic trick, common for instance to the so-called gradient systems in the
theory of particle systems [37]. Just renaming = by y and y by x and using the property

K(yax) =-K (QS‘,y)

we have

[ [E@w - Vowu o = [ [ K@) Vo)w. @do)w. @)
=~ [ [ K@) Tow)w. @y w. @)

which implies that

f ] [ranvewmuaa= |1 [ ST o 0o

The advantage is that the function

V¢ (x) -V (y)
2

is bounded, because |V¢ (x) — Vo (y)| ~ |z —y| at small distances. We have got the
indentity

Hy (x,y) = K (x,y) - forx #y

Jowantan ~ [swanw)= [ [ [ oo o an i

as a potentially interesting definition. When w; (dx) is a diffuse measure, the boundedness
of Hy (x,y) implies that the lat term is meanigful. However, when w; (dz) contains a term
of the form §,, 1), the product measure w; (dy) ws (dr) contains a concentrated mass on the
diagonal x =y, where Hy (x,y) is not well defined. Let us make the following choice:

K (% y) . V¢(w);V¢(y)

H¢(x,y)::{ . for x#vy ‘

for z=y

The "zero" on the diagonal corresponds to the cancellation of the self-interacting term
in the dynamics of point particles (naemly to the fact that we sum the contributions on
particle ¢ only from particles j # i).
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Definition 14 A time-dependent finite signed measure wy (dz), continuous in time in the
weak topology, is a measure-valued solution of Fuler equations if

Jo@ntin - [owotn = [ [ [ oo ti)e ) ds

forall p € CF (]RQ), where Hy (x,y) is defined above (with value zero on the diagonal).
Proposition 15 Let (21 (t), ...,y (t)), t € [0,T] be a trajectory in R*\A and let &4, ..., &,
being non-zero real numbers. It is a solution of the point vortex dynamics if and only if

wi (dz) = Y271 €04, 1) 18 a measure-valued solution of Buler equations.

Proof. If (1 (t),...,zn(t)), t € [0,T] is a solution outside the diagonal A for the point
vortex dynamics and ¢ € C2° (R2), then

J#i

Zﬁqﬁ i ( Zg¢ i ( Z&/ (w 2 ( Zgj (s))) ds.

Defined wy (dz) = Y i &04,1), the term Y1 &0 ( is [ ¢ (z)w (dz), also at time
t = 0. Moreover, since (by K (y,z) = —K (z,y))

ZZW 2i (5) §6K (i (s) w5 () = ZZW 2 () &K (25 (s), 23 (5))

i=1 j#i j= 11753
= —ZZW z; (5)) €&, K (i (5) 25 (3))
i=1 j#i
one has
55V (o () 66K (i (5) () = 3050 LN VOO e pe 1, (5) 1 (5)
i=1 j#i =1 j#i
= Z Z&QHQS (i (s), zj (s))
i=1 j#i
= Zfi&jlié(mi(s)amj (s))
ij=1

because Hy is zero on the diagonal

_ / / Hy (2, y) ws (dy) ws (d).
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Thus we have proved that wy (dz) = Y77 €05, is a measure-valued solution of Euler
equations.

Conversely, from the property that w; (dz) = Y 1 4 §i04,(1) is a measure-valued solution
of Euler equations, one gets that

n t
TITES SCICIRIES oty LTI S CIB o) 12
i=1

J#i

hods true for all ¢ € C2° (R?) and all ¢,y € [0,T]. Let us prove that 1 (t) satisfies the first
equation of the point vortex system; the proof for the others is the same. Given ¢y € [0, 77,
there is a small neighbour Y of ¢y in [0,7] and a radius > 0 with the properties that
z1 (t) € B(z1(to),r) fort € Y and z; (t) ¢ B (x1 (t9),2r) for t € T and i # 1. And, given
any coordinate k = 1,2 there is ¢ € C2° (R?) such that ¢ (z) = 2®) (the k—th coordinate
of x € R?) in B (z1 (ty),r) and ¢ (z) = 0 outside B (x1 (tg),2r). With this test function
we get, for t € T, in the identity above,

t n
k k
G0 () = 6ol () =& [ | ens 36K (@109, ) | ds
fo ji
where ey, is the k—th vector of the canonical basis of R?. Then
t n
o1 (®) = () = [ | D&K@ (5) s 5)) | ds

to —
J#

which implies, by the arbitrariety of ¢, that 1 (¢) satisfies the first equation of the point
vortex system. ®



Chapter 2

Gaussian Measures

2.1 Introduction

We move not to investigate deterministic Partial Differential Equations (PDEs) with ran-
dom initial conditions. In the case of a finite number of point vortices, the space of config-
urations is finite dimensional and Lebesgue measure is sufficient to develop the theory. For
PDESs, configurations are fields, no more particles, and thus we need measures on spaces of
fields. For the time being we limit ourselves to Gaussian measures in Hilbert spaces, the
most natural surrogate of Lebesgue measure. Strictly speaking, these Gaussian measures
do not even have invariance by rotation (opposite to the standard Gaussian vector in Rd),
but we shall introduce particular measures - especially the white noise - that are rotation
invariant in a suitable weak sense.

Strange enough at first sight, these measure are central in the investigation of 2D fluids,
although these are nonlinear dynamics (Gaussianity is preserved by linear transformations,
hence it is usually associated to linear problems). Experiments of turbulence in 2D revealed
that deviation from Gaussianity is extremely small, if any, hence Gaussian statistics are
relevant. A part from our central topic of 2D Euler equations, they are also relevant for
dispersive problems and Burgers equations. Also in the abstract theory of generalized flows
in Hilbert spaces, they play a basic role as a reference measure.

2.2 Gaussian measures

2.2.1 Definition and properties

Generalities on Gaussian measures in Banach and Hilbert spaces c¢n be found in several
books, see for instance [11], [21], [24], [39].

Let H be a separable Hilbert space, with inner product (.,.) and norm ||-||, endowed
with the Borel o-field B(H). Denote by 7, the projector z — <3:, %> in H.

27
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Definition 16 We say that a probability measure p on (H,B (H)) is Gaussian if

(7h)g 1

is a Gaussian measure on R for every h € H\ {0}. A random variable X on a probability
space (2, F,P) with values in H is called a Gaussian vector in H if its law on H is a
Gaussian probability measure, or equivalently if the real-valued random variable

(X, h)
is Gaussian for every h € H.

Definition 17 If p is a Gaussian probability measure on (H,B(H)), law of a Gaussian
vector X,
i) the element m € H defined by the identity

(. b = /H () o (dr) = B[(X, 1))

is called mean of i
i1) the linear operator @ in H defined by the identity

(@Qh. k) = /H (. h) (&, k) o (de) = B [(X, ) X, )]

is called covariance operator of p; the same terminology will be applied to Gaussian random
variables.

The definition is meaningful because one can prove that, given a Gaussian probability
measure p on (H,B(H)), m € H and a linear bounded operator ) : H — H exist and are
unique, with the previous properties. We do not prove this claim, as well as the following
one (since we usually construct the measures, see below):

Proposition 18 (@ is non-negative selfadjoint; and trace class, namely

o0

Z (Qe;,e;) < 00

i=1
for every complete orthonormal system {e;} of H.

Remark 19 As a consequence, one can see that Q is compact. If {e;} is made of eigen-
vectors of @), with eigenvalues {0’%} (such a basis exists because @ is compact self-adjoint),
then

> (Qeiyer) =) o}
=1 =1

(called trace of Q).
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Definition 20 Given a Gaussian r.v. X from (2, F,P) to H, called @ the covariance of
the law of X, taken a complete orthonormal system {e;} of H made of eigenvectors of Q,
with eigenvalues {a?}, we call Karhunen—Loéve expansion of X the formula

X = Z X ez €; = ZUzG €i

where G; = (X, e;) /o; when o; # 0 (otherwise set Y; =0).
The definition is meaningul and interesting because:

Proposition 21 The real valued Gaussian variables (X, e;) (resp. Y;), i € N are indepen-
dent, with variance o (resp. one) and the series converges in L* (Q; H).

Proof. We just sketch the convergence in L? (; H): since E[G;G;] = E[G/]E[G,] = 0
when i # 7,

m 2 m
Z aiGiei Z UZ‘O']'E[GZ'GJ'] <€l‘,€j>

i=n-+1 1,j=n+1
m
= Z ez,eZ = Z 0‘ < 0.
i=n+1 i=n+1

Hence > 7 | 0,Gje; is a Cauchy sequence in L?(Q; H), that is complete. m

The precise definition of Karhunen—Loéve expansion is not essential in itself later on but
it expresses a crucial decomposition that will be used below also in reverse order, namely
to construct Gaussian measures in Hilbert spaces starting from a basis and a sequence of
independent standard variebles.

2.2.2 Construction of Gaussian measures
We prove the converse of the facts stated above:

Theorem 22 Given m € H and a non-negative selfadjoint and trace class linear operator
Q : H — H, there exists a (unique) Gaussian probability measure on (H,B(H)) with m
and Q@ as mean and covariance operator.

The measure can be constructed as follows: taken a complete orthonormal system {e;} of
H made of eigenvectors of Q, with eigenvalues {a?}, so that y 72, 0‘? < 00, taken a prob-
ability space (2, F,P) with a sequence of real valued standard Gaussian random variables
{G;} (see the Appendiz), the series

00
X =m-+ ZaiGiei
=1

converges in L2 (Q; H) to a Gaussian vector X with mean m and covariance operator Q.
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Proof. We limit the details to the case m = 0, without restriction of the difficulties. Let
X, = Z?:l o;Gie;; it is very easy to check that X, are Gaussian vectors. Let us prove
that {X,},cy is a Cauchy sequence in L? (; H). For m > n we have

m 2 m
E |:HXm - XnH?q} = E Z UiGiei = Z O'inE [GiG]] <ez~, 6]‘)
i=n+1 1,j=n+1
= Z o7 (e, e) = Z 07 < o0.
i=n+1 i=n+1

Hence, since Y%, 07 < oo, we deduce that {X,}, oy is Cauchy in L? (Q; H) and thus con-
verges to some random vector X € L? (Q; H). For every h € H, we have as a consequence

(X,h) = L*(Q)- lim (X,,h).

n—oo

Hence we deduce that (X, h) is Gaussian, for every h € H (hence X is Gaussian), mean
zero, and also that

E[(X,h) (X,k)] = lim E[(Xn,h) (Xe, k)] = lim Z 0:0,B[GiGj] (e;, h) (e, k)

n
. 2
= nlLrgOZai (ei, h) {ei, k) .
i=1
Now, it is a simple exercise to show that this limit is equal to

(Qh, k)

where @ can be expressed as Qh = > o2, 02 (e;, h) e;. This proves that @ is the covariance
operator. ®m

Remark 23 Strange enough, we had two ways to prove that the mixed terms were equal
to zero: if i £ j
E[GiG,] =E[G]|E[G;] =0

but also
<€i7 ej> =0.

This abundance of cancellations is suspicious. The reason is that Gaussian meausures have
much stronger convergence properties; just the convergence in L? (; H) is, in a sense, too
easy and follows from more than one argument. We shall see the additional properties
much later in the lectures, when dealing with dispersive equations.
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Remark 24 In the computation of E[(X, h) (X, k)] the coefficients 02 are not needed any-
more to make the series convergent. Even without them, the limitlim, .o Y i (i, h) (€, k)
exists, equal to (h,k). This fact is also very strange, a priori: the coefficients 012 are es-
sential sometimes, no more sometime else. We shall see below soon a formalization of this
fact.

2.3 General Gaussian measures on the torus

2.3.1 Elements of Fourier analysis on the torus

Consider the torus T¢ = R%/Z¢. Although not always strictly necessary, in the sequel we
consider only zero-average functions on T¢, to avoid troubles sometimes (for instance when
we solve Af = g, g has to be zero average; when we define Sobolev spaces, we want to
use the multiplier \k|2a also for negative a without restrictions). When we give a name to
a space, like L2 (Td; (C), we tacitly assume it is restricted to zero-average functions. The
wave numbest then will be restricted to

zd .= 7\ {0} .

Recall that a complete orthonormal system in the complex Hilbert space L2 ('JI‘d )
(with the inner product (f, g) 9)12(1e,0) = Jra f( g (x)dz) is given by the functions ey, (z) =
ezzgmk.x’ ke,

A complex-valued function f € L? (Td; (C), developed in series f (z) = Zkezg f(k:) e (),
f(k)={/, ek>L2(11‘d;<c) is real valued if and only if f (—k) = f (k). The space of such func-

tions is the Hilbert space L? (']I‘d), with the inner product (f,g) fﬂ.d x)dx. We
may split Zg in two parts

Z¢ = AU (—A)

where A C Z& and —A are disjoint. Then, using f(—k) = f(k:), we have

FR)er @)+ F(-k)eon(@) = Fker (@) + F ) er (@) = 2Re (F (K ex (=)
= 2Ref (k) cos (2mik - x) — 21Im f (k) sin (2wik - z)
and

Ref(k) = /]I‘d f () cos (2mik - z) dx
Imf(k) = /’ﬂ‘d f (z)sin (27mik - z) dx.
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Using these facs and a few additional computations one can check that a complete ortho-
normal system of the real space L? (']I‘d) is

e (z) = cos (2mik - x) for keA
FYW T sin (2mik-x) for ke —A

with eg = 1.
We may introduce Hilbert subspaces of H as follows: for every a > 0, we set

H® = Wo? (Td> ={ fel? (’]I‘d) SN ‘f(k)f <
kezd

with inner product

(fr9) e = Y [K** F (k)G ().

kezd

Lemma 25 The linear operator A* defined as

A =" [k F (k) ex

kezd
is an isomorphism between W2 (Td) and L? (Td); and more generally ' between
A% Weth2 (T1) o w2 (1),
In particular
(f,9) e = (A" f, A%) (2.1)

Let us identify a function f € L2 (']I‘d) with the sequence of its Fourier coefficients
(f(k’)) € CZ. Under this identification, we can write

o e (Td> = (€ (R} pegg € CEre(~k)=€(k) and Y [k[**[¢ (K)]* < o0
kezd

This definition is meaningful also for negative «, so we adopt it for all
a e R

Introducing distributions on T¢, performing Fourier analysis on distributions, identifying
L? (’]I‘d) with a certain natural subset of distributions, one can define spaces of distributions

! By little abuse of notation, we denote in the same way the operator independently of the spaces between
it acts.
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which correspond to W2 (Td) with negative a, under the correspondence between spaces
of functions and spaces of sequences described above. We write L? (Td) for W92 (']I‘d), in
the spaces of sequences.

The operator A® may be defined, for every a € R, as acting on any space of sequences
Wath:2 (']I‘d). Simply, it maps a sequence {¢ (k)}kezg e Wwoth2 (Td) into the sequence

{1k & (k) }eza € W2 (TY).
Lemma 26 All the results of Lemma 25 remain true for every o, 8 € R.
As an exercise one can also prove:

Theorem 27 For every f € R and o > 0, the embedding W+5:2 ('I[‘d) c wh2 (']I‘d) 18
compact. Moreover, the operator A=%, considered as an operator in W52 (']I‘d), 18 compact.

For every a € R, let us describe a complete orthonormal system of W2 (']I‘d).

Lemma 28 Given o« € R, the sequence

{fit = {1kl en} = {A "ex}
is a complete orthonormal system in W? (Td).

Proof. We limit ourselves to notice that

<fna f77/>Wa,2(Td) = <AafnaAafn'> = <6na€n’> = Oy -

Remark 29 Let us explain better some notations used above. For negative o, ey corre-
sponds to a distribution (in the identification of L? (Td) with a certain natural subset of
distributions) and thus to an element of the space of sequences W2 (Td), the sequence equal
to zero except for the k-position, where it is equal to 1. That sequence in not W2 (Td)—
norm one. We set again fi := |k|”“ ek, also for negative o, understanding with fy the
sequence equal to zero except for the k-position, where it is equal to |k|™“. As above, one
can check that {fi} is a complete orthonormal system in W2 (Td).

2.3.2 Examples of Gaussian measures

After these definitions, let us define a Gaussian measure in L? (Td). In the sequel we mix
the general notations above about Gaussian measures with those used here for the Fourier
decomposition on the torus; in particular we replace the indexes in N by indexes in Z¢;
nothing changes, except notations, because Z? is countable.

If a > ¢, then D kezd k| 2* < co. From Theorem 22 we have:
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Proposition 30 Let {G}};cza be a sequence of i.i.d. standard Gaussian variables on a
probability space (2, F,P). Assume
- d
a> —
2
and take

The series

converges in L? (Q; L? ('[[‘d)) to a Gaussian random variable with values in L? (Td). The
law of X is a Gaussian probability measure on L? (Td), with mean zero and covariance
operator

Qh = Z or (h,ex) ex, helL? (']I‘d) .

kezd

It is useful to generalize this example to any space W2 (Td) in place of L? (Td) (es-
pecially with negative exponent a). Take any a € R. Recall that {f;} = {|k| “ex} is a
complete orthonormal system of W2 (']I‘d).

Proposition 31 Given any o € R, defined {fr} = {|k|” " er}, taken a sequence {Gk}kezg
of i.i.d. standard Gaussian variables on a probability space (2, F,P) and the numbers

or = |k[7*

for some

o> g
2

the series

X =Y 04Gy(w) f

kezd

converges in L? (Q; W2 (’]Td)) and defines a Gaussian random variable in W? (']I‘d). The
law of X is a Gaussian probability measure on W2 ('I['d), with mean zero and covariance
operator @Q : W2 (']Td) — W2 (Td) given by

QU = Z O'z <1J, fk)Wo"Z(Td) fk Ve Wa’2 (Td> .

kezgd
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2.4 White noise and Wiener integral on T¢

Central to our discussion are two Gaussian measures on certain Sobolev spaces W2 (’]I‘d).
In this section we extensively use the abbreviation H® for W2 (Td).

Let us start with white noise on T, The idea is to take the Fourier basis (e;) described
above, a sequence {Gk}kezg of i.i.d. standard Gaussian variables on a probability space
(©, F,P) and try to understand the convergence of the series

X = Z Gk (w) €.

kezgd

Convergence of this series is understood here as the convergence in some topology of the
finite sums

Xy = Z Gi (w) eg.

kezg,|k|<N
We have
Xn= > oxGr(w) fr
keZd |k|<N
where
fo=1k"er,  op=1K"".

If we choose any o > g, the condition Zkezg ai < oo is fulfilled and we have convergence

of Xy to a well defined Gaussian random variable X in L? (Q; H~®). One can realize that
the random variable X and its law do not depend (the random variable in the sense of
equivalence class) on the value of a > g. Setting

d

H™2" =0, H "

with Fréchet topology (d(f,g) = > oo 27" (Hf - gHH_%_

a random variable in H~2~ and its law as a probability measure on this space.

A 1)), we may consider X as

1
n

Definition 32 The random variable X = Zkezg G (w) ek defined above, which takes val-

. _d_ . . . . . .
ues in H™ 27, is called white noise on T?, and its law is called white noise measure on
T<.

In principle, we cannot write (X, h) when h € L? (’]I‘d), because X takes values only in
H~%~. We could introduce the duality between H™% ¢ and H2t* (for any € > 0), extend

the inner product (-,-) to this duality and define (X, h) when h € H gte, However, in a
suitable sense, (X, h) is well defined for every h € L? (']I‘d), as we now explain.
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Take h € L? (Td). The sequence of random variables

(Xn,hy = > Gilerh)

keZd |k|<N

is obviously well defined. It is Cauchy in L% (Q2): for M > N

2

E|l Y Gilexh) = Y E[GkGw] (e h) (ex, )
N<[E[<M N<[E[|K|<M
= Z <ek7 h>2
N<[k[<M

and the series Zkezg (e, h)? converges to ||h||*>. Thus we define (X, h) as the L2 (Q)-limit
of (Xn,h).

Definition 33 Given h € L? (T?), the L? (Q)-limit of (X, h)
(X,h) :=L*(Q)- lim (Xy,h)

is called Wiener integral of h. It is a centered Gaussian random wvariable with variance

2
12|
Proposition 34 For every h, k € L? (Td)

E[(X,h) (X, k)] = (h, k).

Proof.
E[(X,h) (X.k)] = lim E[(Xy,h)(Xn, k)= lim > E[GGy] (exh) (ex, k)
EAPTESY
= Jm > lersh) (er, k) = (b, k).
k<N
|

Remark 35 The previous proposition tells us that, in a sense, the covariance of white
noise in L? ('I['d) is identity. However, white noise is not a random variable in L? (Td).

Remark 36 FEspecially in Physics, one loosely think to X as a random function X (x) of
x € T¢ and introduce the "function”

q(z,y) =B[X (2) X (y)]
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called covariance function. Continuing this series of heuristic computations we have

E[TdX(x)h(:n)dm X(y)k‘(y)dy]:/jrdh(z)k(z)dz

Td
namely
q(z,y) =6 (z—y).

This is the famous "definition" that can be found in some literature: white noise is a delta-
correlated centered random field.

Remark 37 Although in the previous example we cannot talk of covariance in L? (Td)
in a strick sense, the message is also that the notion of covariance depends on the inner
product, namely from the space where we look to the measure.

2.4.1 White noise and Brownian motion

We may repeat the present theory for the Hilbert space L2 (0,1) instead of L? (Td) (no
periodic conditions), without any essential change. Define

B; = <X, 1[0,t]> te [0, 1] .

One can prove that (By),¢[ ] is @ Brownian motion (not necessarily continuous). Formally

B; = fg X (s)ds, hence X may be formally thought as the derivative of Brownian motion.
These remarks correspond to a well known construction of Brownian motion based on the
formula

o0
By =Y Gngn (1)
n=1
where g, (t) = fot en (s)ds and {en}, oy is any complete orthonormal system in L? (0, 1).

Moreover, heuristically,

1 1 1
(X,h>:/0 h(t)X(t)dt:/o h(t)dit(t)dt:/o h(t)dB (t).

In other words, (X, h) corresponds to a stochastic integral with respect to the process B (t).
Since h is deterministic, these integrals are usually called Wiener integrals instead of Ito
integrals.

2.5 Gaussian Free field on T¢

The second central measure for our interests is the so called Gaussian Free field (GFF) on
T. In a sentence, it is white noise in W12 (']I‘d) instead of L? (']I'd), hence it is one degree
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more regular. Two rough motivations are: it corresponds to Brownian motion instead of
white noise; its covariance is the Poisson kernel. Let us see the precise definition. See other
details on [10], [47], [51].

Taken a sequence {Gy} kezd of i.i.d. standard Gaussian variables on a probability space

(Q, F,P), consider the series
1
F=Y T Ger

kezd

We have to investigate the convergence of the finite sums
1 ~
Fv= Y mGk Wer= Y  okGrW)fi
kezd |k|<N keZd |k|<N

where B
fe = k" e, or = k|7,

If we choose any o > g, the condition ) kezd 0'% < oo is fulfilled and we have convergence
of Fy to a well defined Gaussian random variable F in L? (Q; H‘O‘+1), being H— 2! the

space where (fk) is a complete orthonormal system. As above, we may consider F' as a

random variable in H~271~ and its law as a probability measure on this space.

Definition 38 The random variable F = Zkezg Wlleek defined above, which takes values

in Hfg“*, is called Gaussian Free field (GFF) on T%, and its law is called GFF measure
on T,

Remark 39 In dimension 1, it is analogous to Wiener measure.
Given h € W12 (T?), we may define (Fiy, k) as
(Fn by =3 Vlf|Gk (e, h)
k<N
where we set (recall that A= : W—12 (T?) — L? (T?))
(e, h) == (Aex, A"'h) = |k| (ex, A7 R).

Lemma 40 For every h € W12 (Td),

(FNn,h) = Z G ( [k, h>W71,2(’]1‘d)

|k|<N

where recall (from Lemma 28) that {fi} = {|k|ex} is a complete orthonormal system in
w12 (Td) .
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Proof. The term (e, h) is also equal also to |k|? (Ater, A"1h) and we have relation (2.1)
between inner products, so in particular

<A716k, A71h> = <€k7 h>W—1¢2('JI‘d)

which implies

<FN7 h> = Z Gk ‘k| <ekv h>W71,2(']1‘d) = Z G, (fkw h>W71,2('[rd) .

N<|k|I<M N<|k|I<M

Based on this lemma, entirely analogous to the previous case of white noise are the
following facts.

Proposition 41 Given h € W12 (T%), the L? (Q)-limit
(F,h)

of (Fn,h) exists; it is a centered Gaussian random variable with variance HhH%V_l,Q(Td).
For every h,k € W—12 (Td)

E [(F, h) (F, k)] = (b, k) yy v (pay = (A'h, ATE) .

Remark 42 Rewriting <A_1h,A_1k:> as <A_2h7 k‘>, in a sense, the covariance in L? (Td)
of GFF is A=2, the inverse of the Laplacian (this is why we said above that the covariance
is the Poisson kernel). However, GFF is not a random variable in L? (Td). See also next
remark.

Remark 43 Similarly to Remark 36, we may write

B [ x@n@a [ xwrwa] = [ [ ca-prwres
Td Td Jd

Td
hence the covariance function of GFF is

q(z,y) =G (z—y)
where G (z) is the Poisson kernel on T<¢. Namely, up to a smooth remainder, we have
q(z,y) ~ log |z —y|

when x,y are close.
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2.6 (Gauss measure and abstract Wiener space

The previous description is self-contained and sufficient for our purposes but embedding it
into the framework of the so called abstract Wiener space may help the understanding and
the connection with the literature. Many texts include elements on the theory of abstract
Wiener spaces, like [11], [38].

Let H be a Hilbert space. Given m = 0 and @) = Id, the identity operator, we would like
to define a Gaussian measure in H with covariance @, because of its property of invariance
by rotation. But it is impossible, we know that () has to be trace class. Let us describe
the surrogate of this concept.

Let {e;} be a complete orthonormal system of H. The Borel o-field B (H) is generated
by the family C of sets of the form

(A nenast (4y)

when n varies in N and Ay, ..., A, in the Borel sets of R. We call these sets cylindrical
rectangles. The algebra A generated by C is made of the sets of the form 7! (A) when
n varies in N and A in the Borel sets of R”, where m, := (7¢,, ..., Te, ). In the following
definition, notice the term "Gauss" measure, opposite to Gaussian measure.

Definition 44 We call Gauss measure the finite additive measure ul, on (H, A) such that
all (7rei)ﬁ W are independent standard Gaussian measures.

This measure exists (uniquely): on a cylindrical rectangle its value is equal to

- 1 2
Ot (AN NNt (4,)) = / ~2dx. 2.2
pe (e, (A1) T (An)) H v (2.2)

In a sense, this measure has covariance equal to the identity: if h, k are elments of H in
the span of finitely many elements of {e;}, we have

N
/H . h) (o, K G () =S ek / 5, e3) (3, e5) 1 (dz)

(
ij=1 H
N
i=1

However, it turns out that the Gauss measure is not o-additive on A (we do not prove
this). In order to make a progress, let us introduce a very important assumption.

Assume we have a Hilbert space B ? with inner product (.,.)5 and norm ||-|| 5, such
that:

2The notation B alludes to the fact that, in a more general theory of abstract Wiener spaces, Banach
spaces B are used; here we restrict ourselves to a simpler set-up.
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i) H C B with continuous dense embedding
ii) there is a complete orthonormal system {f;} of B, with {f;} C H, and a sequence
of (strictly) positive real numbers {o;} satisfying

o
§ 2
i=1

such that the sequence of vectors
{eit = A{oifi}
is a complete orthonormal system of H
iii) defined the linear bounded operator /@ : B — H as

VQh=> (h, fi)poifi
=1

one has

(h, k)B = <\/§h7 \/§k> :

Remark 45 From (i)-(ii) it is true that \/Q : B — H is well defined and bounded, because
VRh=> (h fi)pei
i=1

and Y 72, <h7fi>2B = ||h||129

Remark 46 Recall Lemma 28 to help the intuition: H could be L? (Td), B could be
W52 (T%) for suitable positive s, hence basis {|k|* ex} of L* (T?) and {fi} of W2 (T?)
correspond each other by the relation fr = |k|” ex. And one has

<f7 g)W*S,Z(’]I‘d) = <Aisf7 Aisg> .
Example 47 From the facts recalled in the previous remark, the pair of spaces
H = I? (Td>
B = w2 (1)
satisfy the previous assumptions (1)-(ii)-(iii) when
S d
79
and the operator \/Q is A5,
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Example 48 But also the pair of spaces
H = wh (1)
B = W*S+1,2 <Td>

satisfy the previous assumptions (i)-(ii)-(iii) when s > 3 and the operator \/Q is again

A5,

Theorem 49 Under assumptions (i)-(ii), the operator Q : B — B defined as

Qh=QVQ = i (h, fi) p o3 £
i=1
is trace class in B and defines a centered Gaussian measure jig on B with the property
/B (@) {2, k) i (d2) = QI k), hok € B
and also the property
/B (2 h) (0 k) p (d) = (ho k), Bk e H. (2.3)

The measure pg extends ,u% when it is considered as a measure on cylinder sets of B.

Proof. For the first part, just notice that

Y (Qfi,fiyp =) 0f <o0
i=1 i=1

and apply Theorem 22. Identity (2.3) is proved as follows. Set A = (\/@)71. Then we
have

/ (. 1) (k) iy (dw) = / (Az, Ah) g, (A, AR) 5 s (d)
B B
= (QA’h, A’k) , = (Ah, Ak) g = (h, k)

where we leave to the reader to justify some intermediate steps. Finally, the last claim
requires to extend the projections ., to B, consider the sets 7' (A1) N---Na ! (A,)
as subsets of B and consider definition (2.2) as the definition of a measure pu2 on the
generators of an algebra of events on B; then one can check that g extends pd (this fact
is essentially clear from (2.3)). m

In a sense, with property (2.3) and the fact that pug extends ,uOG we have realized our
program of defining a centered Gaussian measure associated to the identity operator, but
we had to enlarge the original Hilbert space.
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Definition 50 The triple (H, B, pg) will be called an abstract Wiener space.
Example 51 White noise on the torus is the abstract Wiener space of Example 47 above.

Example 52 The GFF on the torus is the abstract Wiener space of Example 48 above.

2.7 Random fields

Very often all the previous concepts are introduced, in the literature, using the language
of random fields, instead of random variables taking values in Hilbert spaces or probability
measures on Hilbert spaces. Let us briefly introduce this language, without pretending to
be exhaustive.

To avoid abstract sentences, consider again the example of the torus and set H =
W2 (']I‘d) for a certain given a > 0 (so it is a function space).

Definition 53 A random field (in the strict sense) (Xy),cra is a family of random varables
indexed by x € T¢. A random field "in the broad sense” is an element of L? (']I‘d; L? (Q)),
namely a collection of equivalence classes of random variables, indexed by a.e. x € T? (and
taken the equivalence classes also in x).

Let X be a Gaussian random variable on a probability space (€2, F,P) with values in
L? (']I‘d), as in all the sections above. Let us explain two equivalent ways we may think to
X as a random field in the broad sense. We know that X € L? (Q; L? (Td)). By Fubini-
Tonelli theorem, we may see X as an element of L2 (Q x T4, R) and also as an element of
L? (T4 L?(Q)). Therefore, it defines a random field in the broad sense.

Let us give an alternative more concrete construction, not based on Fubini-Tonelli
theorem. Let X be a centered Gaussian random variable on a probability space (€2, F,P)
with values in L? (Td) and let Q be the covariance of the associated Gaussian measure
on L? (’]I‘d). Take a complete orthonormal system {e;} of L? (Td) made of eigenvectors of
Q, with eigenvalues {a%}. With this choice, we know that the Gaussian random variables
(X,e), k € 7% are independent, centered with variance ai. Consider now the finite sums

> (X (W) en) e (@),

|k|<N

These are elements of L? (T%; L?((2)). The series is Cauchy in L? (T%; L?(2)) because, for
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M > N,
2
/E Y Xeer(n)| |do = > /E[<X>€k><X76k’>]|€k($)||€k’(x)|d$
Td Td
N<|k|<M N<|k|,|k'|<M
= > [ E[a] @)
N<lkl<m T
- > df lawka= Y o
N<lklgm OT N<[|k|<M

whence it follows the Cauchy property, because Zkezg U% < 00. The limit

Z <X, €k> (&%

kezgd

in L? (']I‘d; L? (Q)) is the random field in the broad sense described above.

Recall Sobolev embedding theorem: if o > %, then W2 (']I‘d) is continuously embedded
into C' (T%). A centered Gaussian random variable X on (2, F,P) with values in W2 (T%)
is a random variable on (2, F,P) with values in C (']I‘d). Composing this Banach-valued
random variable with the pointwise evaluation map at any given point z € T¢, a real-valued
random variable X, is well defined. The family (X,),cra is a random field (in the strict
sense).

Remark 54 When d = 1, usually we call stochastic processes these random fields.

Both constructions apply to the case when we start with a Gaussian measure p on
(H,B(H)), instead of a Hilbert space valued random variable. In this case we simply
define the canonical process X: we introduce the canonical space (Q, F,P) = (H,B(H), )
and we define X to be the identity, X (h) = h for every h € H. This is a random variable
with law p and we may associate to it random fields as above.

2.7.1 Distributional random fields (random distributions)

In the case when X is a centered Gaussian random variable on (2, F,P) with values in
W2 (']I‘d) but with negative «, it is not possible to associate (classes of equivalence of)
functions to X. We simply say that X is a random distribution of class W2 (Td).

An nteresting fact, however, is the possibility to define suitable averages of certain
random distributions. We describe this in the following section.
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2.8 Averages of the GFF on T?

Let F be the GFF on T?, shortly defined as
1
F = Z mGk@k
kezd

where {G}} kez? is a sequence of i.i.d. standard Gaussian variables on a probability space
(Q,F,P) and {ek}kezg is the usual basis of L? (T?). Taken a Borel set A C T?, we want
to define ﬁ J4 F (x) dz, but obviously F' is not a function. A "solution" however is easy,

because the indicator function 14 belongs to L2 (']I‘Z), hence to W12 (Tz), and we know
from Proposition 41 that a Gaussian random variable denoted by (F, h) is well defined for
every h € W12 (’]I‘Z). Thus we simply set

|jl|/AF(x)dx - <F,|;|1A>.

Remark 55 Check that the same can be done in any dimension and also for the white
noise in place of the GFF.

This definition was easy and very general. More specific of the GFF (and other random
distributions but not all) is the possibility to define integrals on 1-dimensional sets. We
use here the language of distributions and the duality between W12 (T2) and W12 (TQ).

Lemma 56 Let v :[0,1] — T2 be a closed simple C' curve. Consider the map

reo [ san= [ raen]o)e

from W2 (Tg) to R. The map is well defined and continuous, hence it defines an element
of W12 (']I‘2), that we denote by I':

v)= [ 166 o)

Proof. First, recall that
[ seenfiela= [ rae)ao

where L is the length fol "y (s)‘ ds of the curve and [ : [0, L] — T? is the reparametrization

of the curve by arc length. Hence it is sufficient to prove that there exists a constant C' > 0
such that

L
/0 F (@) do| < Cfllram
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for all f smooth (hence all f € W12 (TQ), by density). Now we restrict ourselves to prove
the claim in the simple case when 7 is the boundary of a ball B (0,r) C T? with small » > 0.
The proof in the general case is not so different but requires some additional argument.

Thus consider B (0,r) and its boundary described by the curve 7 : [0,27r] — T?
given by 7 (s) = r(cost/r,sint/r). Define a smooth vector field v : T2 — R? such that
v(x) = fa7 on OB (0,7) (one can take v with compact support around 9B (0, ), of the form
v (x) = g (|z|)  with suitable g). By Gauss-Green formula, we have

[ Vi@ @i [ @i [ @@ e

dB(0,r)

where n (o) is the outer normal to 9B (0, 7). Hence, since v (o) -n (o) = 1,

/ (o) / Vf(x)-v(x)dx—i—/ F (@) divo (z) da
oB(0,r) B(0,r) B(0,r)

ol [, 195 @)l do + vl [ 1f (0)]da

Cllf llwra(re)

~
Q
QL
q
Il

IN

IN

by Holder inequality. m
Based on the previous lemma and Proposition 41, we give the following definition.
Denote by |v| the length of ~, fol 'y(s)’ ds.

Definition 57 Let v : [0,1] — T? be a closed simple C' curve and let ' € W12 (T?) be
the associated distribution, given by Lemma 56. Let F' be the GFF on T?. We set

‘;/VF(U) do = <F |i|r>

called average of F' on .

In particular, denoting by B (z,r) the ball in T? of center z and radius r, and by
OB (z,r) the counter-clockwise curve at the boundary of B (x,r), we set

1
F(ZE,T‘) = 277““ 8B($’T)F(U) dJ

This is a well defined random variable, for every (x,r) € T? x (0,00). One can prove that
the random field F'(x,r) admits a continous version.

Theorem 58 On (z,7) € T? x (0,00), there exists a Hélder continuous version of the
random field F (x,r).
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Proof. We only give the idea. One can apply Kolmogorov regularity theorem in each set
of the form (z,7) € T2 x [a,b], with 0 < a < b < co. One has to prove that

B(|F (e.r) = F(@,7)[] <C (lo =o'+ |r = '[7")
for some p, a > 0. Due to Gaussianity of F (z,7) — F (2/,7'), it is sufficient to prove
B(|F (z,r) = F (/,7)[*] < C (Jo =]+ |r =)
for some € > 0. It is also sufficient to prove separately
B([F0,r) - F 0] <clr-rf
B||F (z,r) = F («/,7)]*] <Cla-a'|"
Now one has to perform suitalbe lengthy computations, based on the next lemma. m

Lemma 59
Var | [r) do] =0, -1 = | [ ot -2 o] o] s

More generally,

E[LF<o>daL,F<a>da} =/01/01G(7(t)—7’(8)) 5]

Proof. The following proof is a little bit formal, just to sketch the idea. We have

7' (t)| dsdt.

1
I = (A7) = [ A7) () [ ()] as

where

1 .
(A™'T) (a:):/o Gz~ (1) |7 (t)ds

and G is Green kernel on T2, G (z) = log |z| + 7 (z) close to z = 0. Hence

= [ [ 660 -6 )| o]

We leave the second identity as an exercise. ®
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2.8.1 Special properties of the GFF

With little effort, from the previous lemma one can show that

1
Var[F (z,r)] ~ log —
r

for small values of r. Thus, in a sense, |F (z,7)| ~ y/log 1. This is not strictly correct,

but gives a general idea. However, due to flucturations, there are points x where the size
of |F' (z,7)| is much bigger. One can prove that, for a.e. realization of the continuous field
F (z,r), the set of points = such that
F(x,r
limil (z,7)] =a>0

r—0 log %

is non empty and has Hausdorff dimension equal to a certain value in (0, 2), depending on
a.

Thus in some vague sense |F (z,7)| looks like a huge family of point vortices, with
exceptionally high values localized in small sets.

For reasons related to conformal field theory, it is interesting trying to introduce on T?

a measure of the form
e F (@) g

where F'(z) is a non-rigorous notation for the GFF. But F' is a random distribution of
class H™, thus F'(x) has no meaning. Then one considers the approximations

C.e"F @) gy,

The choice of the normalizing constant is made by a simple Gaussian computations. Let
us look for C, such that [E [C’eeVF (”)} is constant. From a known formula on the moment
generating function of a Gaussian r.v., we have

E |:67F(ac,e):| _ egVar[F(a:,e)] _ e%log% _

™
"’H\)‘ —

,Y2

hence C¢ = €2 . One can prove the following result.

72
Theorem 60 For every v < 2, chosen €, = 2", the random measures ;2 e (@) weakly
converge, a.s., to a random measure p on T2, which has no atoms and is positive on positive
Lebesgue measure sets.

The intuition is that Lebesgue measure on T? is made much larger where F' (x) has
exceptionally large positive values (recall the result above on their existence) and almost
zero where F'(x) has exceptionally large negative values. Another intuition is that there
is a metric behind, which makes distant points that are close under Euclidean metric, and
viceversa, with the result that certain points of T? are crossed nearby by a huge amount
of geodesics. See [10] for further informations.



Chapter 3

From Random Particles to
Measures on Fields

3.1 Point vortices and white noise

Let (X;);cy be a sequence of independent r.v., on a probability space (2, F,P), taking
values in T?; assume they are all uniformly distributed. On the same probability space, let
(&i);en be a sequence of centered independent r.v. with the same distribution, say N (0, 1).
Assume that (X;);. and (§;),cy are independent.

For every N € N, consider the random signed measure on T?

Z fz (SX d:B

It is a random variable from (Q, F,P) to the space W12 ('I[‘Q). Indeed, Wite?2 (’]1‘2) is
continuously embedded into C' (']I‘2) by Sobolev embedding theorem and that the delta
Dirac 4, is a continuous linear functional on each W1te2 (']I‘Q).

Recall the concept of white noise on T?: it is a Gaussian measure on H~'~. Both
the law of the empirical measure Sy of the point vortices and white noise are probability
measures on H 1.

Theorem 61 The law of wy on H™'~ converges weakly to the law of white noise (weakly
in the probabilistic sense, in the topology of H~ 1~ ).

Proof. Step 1. If we give for granted the CLT of Section 6.3, it is a simple application of
that theorem. Let us prove this claim. In Step 3 we prove, in our particular case, the only
detail about the CLT that was left unproved in Section 6.3.

Given € > 0, consider the separable Hilbert space H = W 1762 (T2) and the random
vectors &;0x,, which take values in H. They are independent and equally distributed. If
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we prove that £;dx, has finite second moment in H, and centered, then the CLT applies
and the limit Gaussian measure has the same covarance of £;dx,. We have

B |l6xl}] = B[] E [10x15] = B [10x13]

But
lox, g = sup  