
Time Evolution of In�nite Particle Systems

by Francesco Grotto

The aim of these notes is to give a concise introduction to the theory of deterministic dynamics
of in�nite interacting particle systems at equilibrium. We will see how existence and uniqueness
for time evolution of an in�nite system of particles under Newton's law can be proved for almost
every initial data with respect to physically relevant invariant measures. Physical intuition will be
essential, so we deem it necessary to begin with a (very short and elementary) introduction to the
basic concepts of statistical ensembles and equilibrium states. Such introduction, in the easy case
of �nite systems presented in Section 1, will take place in Section 2, whereas the generalisation
to in�nite volume and particles will be treated in Section 3. Section 4 will then concern existence
of time evolution of particle systems, Section 5 will collect statements of further results, such as
uniqueness and invariance of Gibbs' measure.

1 Finite Particles in Finite Volume

Consider N point particles of unitary mass in Rd evolving according to Newton's law with force
given by a con�gurational pair potential �. Their positions and momenta are denoted by

(q1; p1); :::(qN ; pN)2Rd�d;

and they evolve according to the equations

(
qi_ = pi
pi_ =F (q)=¡

P
j=/ i
r�(qj¡ qi)

:

We assume �:Rd!R to be a smooth radial function. The precise form of �, that is the assumptions
one needs to make in order for the mathematical theory to work, is a crucial point. We might ask
for physically meaningful potentials, or aim to the greatest mathematical generality. However,
especially in the in�nite case, we would encounter hard di�culties and even open problems. We
will thus limit ourselves to the simplest nontrivial cases.

Such systems are Hamiltonian, that is, their dynamics can be rewritten as

�
qi_ = @piH(q; p)
pi_ =¡@qiH(q; p)

; H(q; p)=
1
2

X
i

jpij2+
1
2

X
j=/ i

�(qj ¡ qi);

where the Hamiltonian H is equivalently called the energy of the system. Let us recall two funda-
mental features of this kind of systems.

Proposition 1. Let H: (Rd�d)N!R be a smooth Hamiltonian. Global well-posedness holds for
Hamilton's equations. If xt=(pt; qt) is a solution, then we have

� (evolution of observables) if f : (Rd�d)N!R is a smooth observable, its value f(xt) on
a trajectory of the system satis�es

d
dt
f(xt)= ff ;Hg(xt)=

X
i=1

N

(@qif � @piH ¡ @pif � @qiH)(xt);
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as a consequence the Hamiltonian H is an integral of motion, that is, it is constant along xt;

� (evolution of states) if �: (Rd�d)N!R is a smooth nonnegative probability density, the
measure d�t = (xt)#�dpdq = �tdpdq on (Rd�d)N is absolutely continuous and its density
satis�es

@t�t=¡f�t; Hg=
Z
(Rd�d)N

X
i=1

N

(@qi�t � @piH ¡ @pi�t � @qiH)dpdq;

as a consequence Lebesgue's measure dpdq and every absolutely continuous measure f(H(q;
p))dqdp with integrable density f(H) are invariant.

It is natural to consider such �nite systems of particles inside a �xed �nite volume. In what follows,
we will do so treating two di�erent models:

� Periodic boundary conditions: we replace the con�guration space with the d-dimensional
torus Td=Rd/Zd, so that the phase space is now its tangent bundle Td�Rd; Hamilton's
equations do not change in their form, but they are to be considered as di�erential equations
on the (�at) manifold Td�Rd;

� Elastic boundary conditions: we �x a (smooth) domain D � Rd for the positions qi and
impose that whenever a particle hits the boundary @D it is elastically re�ected towards the
interior of D, that is, the tangential part of its velocity changes sign.

The periodic model is easier, since it deals with an actual Hamiltonian system on a (�at) manifold,
and in this case it is quite straightforward to deduce again conservation of energy and Liouville's
theorem. Let us devote the remainder of this section to the elastic re�ection model.

One way to build the elastic boundary is to modify the Hamiltonian, de�ning

H~(q; p) =
1
2

X
i

jpij2+
1
2

X
j=/ i

�(qj¡ qi)+
X
i

2hpi; n̂i�(qi2/D):

Formal di�erentiation promptly gives the desired re�ection at the boundary; however, distribu-
tional derivatives are needed in order to give a precise meaning to Hamilton's equations, thus we
prefer to avoid this strategy (which makes very di�cult to obtain, for instance, Liouville's theorem).

A somewhat less drastic modi�cation of H is

H�(q; p)=
1
2

X
i

jpij2+
1
2

X
j=/ i

�(qj ¡ qi) +
X
i

g�(qi);

where g� is a smooth function converging pointwise to +1 � �(qi 2/ D) as � ! 0. The solution
(q�; p�) of the (classical) Hamilton's equations will converge to the one with instantaneous elastic
re�ections. Such limit clearly has discontinuous trajectories (of momenta), so it can not be a limit
in the topology of continuous functions, or even in Skorohod's topology of cadlag functions (since
it is a limit of smooth functions, which are a nowhere dense closed set in such topology). The
limit might be taken only pointwise in time, or in some Lp space. Again, we refrain from such
complicated considerations1.

What we will do is to consider the quotient phase space


= (D�Rd)/�; (q; p)� (q 0; p0), q= q 02 @D; hp; n̂i=¡hp0; n̂i;

1. The two outlined approaches are often referred to by physicists modifying the Hamiltonian by adding the potential
term V (q)=+1� �(qi2/ D).
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where n̂ is the outward normal versor on @D. Indeed, 
 is a �at manifold just as in the periodic
case, so we get, as above, conservation of energy and Liouville's theorem with no additional e�ort,
at least for the Hamiltonian dynamics on 
. Let us observe, though, that continuous trajectories on

 can be lifted uniquely to cadlag2 trajectories on D�Rd, and we thus recover the desired model.
Conservation of energy is now trivially preserved by the lifting, and so is Liouville's theorem, since
the measures we consider give 0 mass to the boundary @D�Rd.

2 Gibbs Measures for Finite Particle Systems

The topics we are going to treat are very classical, and we thus refer to any basic text on Statistical
Mechanics for a proper introduction to the subject. Our presentation aims to be motivational, so
it will be tailored on a particular model, the Newtonian particles on the torus T. As in the last
section, we restrict to the case of smooth, compactly supported pair potential U .

The point of view of statistical mechanics is the following: when the number of particles N is
large, on one hand the precise con�guration (microstate) of the physical system is very di�cult to
determine, on the other it is somewhat irrelevant if we aim to give a good description of the system
as a whole. Such a description will in fact depend on a small number of macroscopic observable
quantities, such as total energy, temperature, entropy and so on. The mathematical interpretation
of this idea is to associate to each choice of those relevant quantities a (probability) measure on
the phase space: such measures are called states of the system, and they are meant to �collect�
con�gurations with the speci�ed macroscopic quantities.

A prominent role is played by equilibrium states. It beyond our scope to give a correct physical
de�nition of equilibrium here: what we will do in the remainder of the section is to derive mathe-
matically the invariant measures corresponding to equilibrium states from physical principles that
we take as granted. An equilibrium state describes the long-time behaviour of a system. As time
passes and the physical system evolves, the free energy

A= hEi ¡TS

will decrease towards its minimum, so an equilibrium state should be a measure minimising the
free energy.

Let us make this vague consideration more precise: we �x three macroscopic observables of the
system, namely the number of particles N , the volume allowed for the particles' positions V and
the temperature T , or rather its inverse �= 1

T
. Temperature should be interpreted as an �average

energy�: in fact it is a quantity only de�ned at equilibrium.

In the de�nition of A above, E is the internal energy of the system, and in our case it coincides
with the Hamiltonian H, the bracket denote average with respect the considered state and S is
the entropy with respect a reference measure, which we assume to be Lebesgue's. In other terms,

8�dpdq 2Pr(
) A(�)=

Z

N

H(p; q)�(p; q)dpdq+ �

Z

N

�(p; q)log�(p; q)dpdq;

where we denoted the phase space with 
N =(Td�Rd)N.

Proposition 2. (Variational Principle) Let N 2N and � > 0 be �xed. There exists a unique
minimum mN;� for the functional A(�) among all the nonnegative probability densities � with
respect to Lebesgue's measure: such measure is called the Gibbs' measure relative to the Canonical
Ensemble, it is characterised by

A(mN;�)=min
�
A(�)= logZN;� ;

2. The choice of right-continuous paths is arbitrary: what really matters is to choose uniquely the momentum at
boundary hitting times of the trajectory.
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and it has the explicit form

dmN;�(p; q) =
1

ZN;�
e¡�H(p;q)dpdq; ZN;�=

Z



e¡�H(p;q)dpdq:

The proof of the latter statement is a simple application of Jensen's inequality. The name Canonical
Ensemble refers to the fact that we �xed N;V ; T , while the name Gibbs's measure to the speci�c
expression we found. Let us remark that such a characterisation of equilibrium measures is in
general di�cult to obtain for more complex systems.

Remark 3. (Maxwellian distribution of momenta) Let us observe that, whatever the inter-
action potential U might be, under Gibbs' measure the momenta pi of particles are independent
Gaussian variables with mean 0 and variance �¡1/2:

The reader might wonder why we did not consider, and �x, the observable H (energy) instead of
the temperature (we would have obtained the so called Microcanonical Ensemble). The reason is
technical: even if less intuitive, the Canonical ensemble is easier to treat in terms of mathematics.
In fact, we are going to replace in an analogous fashion the observable N (number of particles)
with the chemical potential � or the activity z, taking the role of �average number of particles�,
thus de�ning the Grand Canonical Ensemble. This is going to be an important step towards a
good understanding of Gibbs' measure for in�nite particles.

Since we want to let N vary, we need to �x some additional notation. In the remainder of this
section, we consider the phase space


~ =
G
N=0

1

(Td�Rd)N /�;

where � denotes equivalence by permutations of the variables in the N -fold product. We take such
quotients to ensure that the particles are indistinguishable. This was not a problem when their
number was �xed, but in this new setting overcounting would cause a problem known as Gibbs'
paradox , namely entropy would not be an extensive quantity. We refer the reader to the literature
about such problems. The Lebesgue's measure on 
~ is de�ned as

d x~=
M
N=0

1

d p~Nd q~N =
M
N=0

1
1

N !
dp1:::dpN dq1:::dqN:

Remark 4. The latter expression should remind the reader that any function f 2L1(XN /�) is
in fact a symmetric function on XN, and it holds

Z
XN/�

fdx=

Z
XN

fdx~=
1
N !

Z
XN

fdx:

For �xed �; �� 0, we de�ne the Gibbs' measure relative to the Grand Canonical Ensemble as

dm�;�(x~)=
1

Z�;�
e¡�(H(x~)¡�N(x~))d x~; Z�;�=

Z

~
e¡�(H(x~)¡�N(x~))d x~;

where N(x~)= �(Td�Rd)N/�(x~) and H(x~) is the Hamiltonian on (Td�Rd)N /� if N(x~)=N . The
same variational principle of the Canonical Ensemble is satis�ed, with the only di�erence that �N
should be subtracted to the internal energy.
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Everything can be more conveniently expressed in terms of non-symmetrised variables and substi-
tuting z= e�� � 1,

dmz;�(x)=
1

Z�;�

M
N=0

1
zN

N !
e¡�H(p;q)dpNdqN ; Zz;�=

X
N=0

1
zN

N !

Z
(Td�Rd)N

e¡�H(p;q)dpNdqN:

Remark 5. (Poisson distribution of N) In the limit case �=0, it is easily observed that under
mz;� the number of particles N is a Poisson random variable of mean 1. The general case is more
complicated, let us only observe that in the free interaction case U =0 we have

Zz;�=
X
N=0

1
zN

N !

�
2�

�

�
dN

2 =
X
N=0

1
�(z; �)N

N !
;

and, as a consequence,

dmz;�(x)=
M
N=0

1
�(z; �)Ne�(z;�)

N !

�
2�
�

�
dN

2 e
¡�p1

2

2 dp1:::e
¡�pN

2

2 dpN ;

thus N is Poisson with mean �(z; �) and momenta are centred Gaussian variables of variance �¡1.

Exercise 1. (Gibbs' measures for Gradient Di�usions) Consider, for suitably smooth and integrable
potential U :Rd!R, the following SDE:

dXt=¡rU(X)dt+
2

�

r
dBt;

where B is a d-dimensional Brownian motion. Prove, by studying the associated Fokker-Planck equation,
that such di�usion process has a unique invariant measure m� =

1

Z�
e¡�U(x)dx, that such measure satis�es a

variational principle analogous to the one we stated above, and that the corresponding free energy functional
is a Lyapunov function for the Fokker-Planck equation, that is, it decreases along solutions of the equation.

3 Con�guration Space for In�nite Particles

In order to study in�nite particle systems, the �rst step is to clarify what is the phase space in
which we set the problem. Motivated by the above discussion, we expect momenta of particles
to have Maxwellian distributions, that is, to be independent Gaussian variables. We thus ignore
momenta in this section, and discuss only the con�gurational part of phase space. Overall, the
aim of this section is to provide the correct generalisation of Gibbs' measures on the con�guration
space for in�nite particles; however we will not discuss whether our de�nitions can be motivated
by physical principles, such as the variational principles of Section 2 (which, by the way, is the case).

Let us begin by introducing the following set:


 = flocally �nite sequences (qi)�Rdg
� 
0= fdiscrete positiveRadonmeasures onRdg
� M+(Rd)= fpositiveRadonmeasures onRdg:

We endowM+(Rd) with the vague topology (induced by the duality with Cc1(Rd)), and its subsets

, 
0 with the subspace topology. Let us emphasise that while 
0 is a closed set in this topology,

 is not. However, it can be shown that 
 with this topology is in fact a Polish space, that is, its
topology is induced by a distance which makes it complete (and it is separable). In what follows
we will sistematically identify con�gurations q 2
 with measures on Rd made of the (countable)
sums of Dirac's deltas on the points qi.
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Remark 6. The distance on 
 we just mentioned can be chosen as the following L2-Wasserstein-
like distance: for q; q 02
, we set

d(q; q 0)= inf
Z
jx¡ y j2�q;q 0(dx; dy)

r
;

where the in�mum is taken over all the locally �nite sequences (qi; qi0) � Rd � Rd (identi�ed as
measures �q;q 0 on the product Rd�Rd) with marginals q and q 0.

The reader can check that a base for the topology on 
 is given by

Bm;�;K= fq 2
: q(K)= q(�)=mg; m2N;K �compact��openR
d;

while the associated Borel �-algebra is generated by

Bm;�= fq 2
: q(�)=mg; m2N;��RdboundedBorel set:

Let us set up some notation: for a �xed Borel subset ��
,


�= fq 2
: q(�c)= 0g'
G
N=0

1

�N /�;

where we denote by � the equivalence under permutation of variables,

��: 
!
�; ��q(A) = q�(A)= q(A\�);
f�(q)= f(��q); for f : 
!Rmeasurable;

��=(��)]� for �Borelmeasure on
:

To describe measures on 
, which is a matter of paramount importance for us, we need to resort
to conditional distribution on bounded regions of Rd. Making our treatment precise will require
some facts about conditional probabilities which we recall in the forthcoming Remark.

Remark 7. Let (
;F ;P) a probability space, (T ;T ) and (S;S) measurable spaces. A probability
kernel from T to S is a map p:T �S!R+ which is T -measurable in T and a probability measure
on (S;S) for each t2T . If �: 
!S and �:
!T are random variables, � has a regular conditional
distribution with respect to � if there exists a probability kernel p from T to S such that

p(�;B)=P(� 2B j�) =E[�B(�)j�(�)]:

If S; T are regular enough (say Polish spaces), conditional distributions always have regular
versions.

The following proposition will allow us to build measures on 
 starting from systems of conditional
distributions on bounded regions, provided they are consistent in the sense we are going to specify.

Proposition 8. Given m a probability measure (a nonnegative Borel measure of total mass 1) on

, there exists regular conditional distributions

��(q�c;�)=m(q 2�jq�c);

where � is any bounded Borel set of Rd, � a Borel set of 
, and q, q�c are to be understood as
random variables under m. Moreover, �� satisfy the compatibility relations

� ��(�;�\�0)= ��0(�)��(�;�) for all �2B(
) and �02B(
�c),
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� ��0(q;�)=
R
��(q

0;�)��0(q; dq
0) for all ���0�Rd bounded Borel sets.

Conversely, given a system of probability kernels �� from 
�c to 
 satisfying the relations above,
there exists a (possibly non unique) measure m which has them as conditional distributions on
bounded regions.

Remark 9. The �rst part of the statement is a simple consequence of the facts we recalled above
on conditional probabilities, thanks to the fact that q: 
!
 (the identity) and q�c: 
!
�c are
random variables on Polish spaces. As for the second part, we want to point out that uniqueness of
the measure built from a system of conditional distribution is quite a subtle matter. In particular,
non-uniqueness might occur in the case of equilibrium (Gibbs) measures, a fact which is related to
the physical phenomenon of phase transitions.

Remark 10. As a consequence of the �rst compatibility relation,

��(q�c;�)=��(q�c;��\��c) = ���c
(q�c)��(q�c;��);

where we used the notation (valid only inside this remark)

��= fq 2
 j 9q 02�:��q=��q
0g;

the analogous holding for ��c. In particular without loss of generality we can consider �� as
a measure on 
� '

F
N=0
1

�N /�. Indeed, the intuitive understanding of �� as the law of ��q
conditioned to a given ��cq is now a formal statement.

As a �rst example (and in order to provide a �uniform� reference measure on 
), we de�ne the
Poisson-Lebesgue measure, which is in a sense the simplest possible measure on 
. In the light of
the latter remark, we directly write �� as a measure on 
�, in fact Lebesgue's measure, and we
take it independent of q�c:

��(q�c; dq�)=
X
N=0

1
e¡j�jj�jN

N !
dq1

�:::dqN
� ;

(where we denoted by dqi� the Lebesgue's measure on � normalised to be a probability measure).
We will denote with m the Poisson-Lebesgue measure on 
, and with mz the measure built in the
same way but starting from Lebesgue's measure on � multiplied by z � 0.

In the terms of the remark above, the conditional distribution �� gives to ��q the following law:
independently of the distribution of ��cq, the number of particles is chosen with a Poisson random
variable of mean j�j, then the positions of the N particles are chosen independently (of ��cq, N
and of each other) with law dq�. When considering mz, the only change is in the Poisson variables
mean, which becomes z j�j.

The following important facts on the Poisson-Lebesgue measures are left to the reader as exercises:
indeed, they are just facts about sequences of independent Poisson variables.

Exercise 2. (Moment Generating Function) For any f 2Cc1(Rd), it holds

Em

�
exp
Z
Rd

f(x)dq(x)

�
= exp

Z
Rd

(ef(x)¡ 1)dx:

Exercise 3. In dimension d=1, it holds

m

�
limsup
n!1

q([n; n+1])

logn/ log logn
=0

�
=1;

which gives an upper bound (which is unfortunately not sharp) on the growth of local densities. (Hint: use
Stirling's formula).
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Exercise 4. Let �= j�j, then for N >�, uniformly in the �0s with same measure,

m(q(�)>N)� e¡�(e�)N

NN
;

which, for instance, gives a uniform bound on the mean number of particles in unitary cubes. (Hint: use the
exponential Chebichev's inequality).

We can now de�ne Gibbs' measures on 
 using the Poisson-Lebesgue measure as a reference. Let
us �x parameters � > 0 and z > 1, and consider the local energy on a bounded borel set ��Rd,

E�: 
!R; E�(q)=
1
2

X
qi;qj2�

U(qi; qj)+
X

qi2�;qj2/�
U(qi; qj);

where U is a pair potential on which we need to make (as in the �nite case) some assumptions.
We will consider U(x; y) = U(jx ¡ y j) given by a smooth, compactly supported, radial function.
We then de�ne conditional distributions as

��(q�c;�)= �Z��<1(q�c)
1

Z�
�(q�c)

Z



��(q�c+��q
0)e¡�E�(q�c+��q

0)mz(dq
0);

where the partition function is given by

Z�
�(q�c) =

Z



e¡�E�(q�c+��q
0)mz(dq

0):

Exercise 5. Check that the �� thus de�ned satisfy the compatibility relations.

A measure having these conditional distributions, which we denote by mz;�, is called a Grand
Canonical Gibbs' measure. As we have already said, it might not be unique. It is possible, but very
di�cult, to prove uniqueness for z small (that is, smaller than a constant depending on � and the
particular U we chose).

Remark 11. If we choose U =0;we get again (independently of �) the Poisson-Lebesgue measure,
so our notation m for both measures but with di�erent subscripts is in this sense coherent.

Proposition 12. (Ruelle's probability bounds) Let U be a pair potential satisfying:

� Superstability: the potential can be written as a sum U = U 0 + U 00, where U 0 is such that
there exists B> 0 such that for any �nite con�guration q1:::qm it holds

1
2

X
i;j=0

m

U 0(qi¡ qj)�¡mB;

(U 0 is stable) and U 00 is a positive continuous function such that U 00(0)> 0;

� Lower regularity: there exists a positive decreasing function u: [0;1)!R+ such that

U(x)�¡u(jxj)8x2Rd and
Z
0

1
td¡1u(t)dt<1:

Let fQkgk2Zd is the partition of unitary lattice cubes of Rd indexed by their bottom-left vertex, then

9g > 0; d� 0 8k 2Zd mz;�(q(Qk)>n)� exp(¡gn2+ dn):

8



Note that such estimate is quite stronger than the one we got for the Poisson-Lebesgue measure
in the exercise above.

Remark 13. We observe that the zero potential U = 0 is stable but not superstable, and it is
thus ruled out by our hypothesis. We refer to the original work of Ruelle for a thorough derivation
of the result and deeper analysis of the hypothesis above. For the sake of simplicity, our reader
should think of a potential shaped like �fr�1ge(1¡r

2)¡1, even if this is far from the most general
assumptions we might make.

In fact, the above estimate is the only thing we will use in dealing with Gibbs' measures on 
,
so one might as well try and restrict the discussion of Newton's equations to a certain set of
initial data satisfying an upper bound on particle densities at in�nity derived by Ruelle's bound,
ultimately ignoring all the complications of there measures. However, aside from the motivational
purpose, we have decided to introduce Gibbs' measures, even if in a way which is all but lacking of
formal completeness, because they will play an important role in at least two di�erent ways. The
�rst, as we just mentioned, is to determine a full measure subset of 
 of �good� initial data for the
dynamics. The second is the fact that they will be left invariant by the dynamics, thus providing
the estimates needed for a global (in time) well-posedness result. All of this will be the content of
the next Section.

Exercise 6. Let m� be a Gibbs' measure (with intensity z = 1) associated to a potential satisfying Ruelle's
hypothesis. Then, independently of �,

m�

 
sup
k2Zd

q(Qk)

logjk j _ 1
p <1

!
=1:

Exercise 7. Include in the de�nition of Gibbs' measures Maxwellian momenta for the particles. More precisely:
de�ne the phase space for in�nite particles inRd (still called
) including both the con�gurational part discussed
above, that is the sequences (qi), and coordinates for momenta, that is a sequence (pi)�Rd. A Gibbs' measure
with parameters z; � on the new space should give to the con�guration q the same law of the ones we just built,
and make the momenta pi centred independent Gaussian variables of variance �¡1 (independent also of q).

From now on, we will denote by 
 the phase space for positions and momenta described in the
latter exercise, and by m� a Gibbs' measure on such space. We will set z=1 to lighten notation.

4 Existence of In�nite Particles Dynamics

The aim of this section is the following: given an initial datum (p0; q0) belonging to a full-measure
subset of 
 with respect to a Gibbs measure m�, we will prove the existence of solutions to the
in�nite set of di�erential equations8><>:

q_i= pi
p_i=¡

P
j=/ i
rU(qj¡ qi)

qi(0)= q0;i; pi(0)= p0;i;

(1)

(the indices i denoting an arbitrary enumeration of the particles in the initial datum). Such
solutions will de�ne a measure preserving �ow on (
;m�).

In order to carry out our program, we need a good set of approximate solutions, in the sense that
they should be easy to treat mathematically, and some good a priori estimates, in the sense that
they should provide compactness of our approximants.

We will use as approximated solutions the following well-posed dynamics. Let R> 0, and denote
by BR the ball of Rd centred in the origin with radius R. We will denote by (ptR; qtR) the evolution
of (p0; q0) given by:

1. particles outside BR (that is, particles with qi2/ BR) remain still: q_i= p_i=0;
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2. particles inside BR evolve according to our system of equations but are elastically re�ected
by the boundary (as in the �rst section).

Proposition 14. The expression TtR(p0; q0)=(ptR; qtR) de�nes a semigroup of measurable mappings
Tt
R: 
!
 which preserve any Gibbs' measure m� (independently of �).

Proof. Thanks to the results of the �rst section, it is readily checked that for any �xed R, TtR

does preserve the conditional probabilities ��. Indeed, since it acts as identity on the �� with �
disjoint from BR, by the compatibility relations one reduces himself to check that �BR is preserved.
However, �BR is the grand canonical Gibbs' measures on BR with elastic boundary, up to adding
to the Hamiltonian the interaction with the �xed part of the con�guration outside BR, which is
not touched by TtR. Thus, the evolution is in fact the Newtonian evolution of particles inside BR
with re�ecting boundary under a given (constant in time) external force, so Liouville's theorem
applies and the proof is concluded. �

Remark 15. To be precise, checking only the conditional distributions, we are implicitly assuming
uniqueness of the Gibbs' measure. Since this might not be true, either one assumes it, or instead
he says that TtR maps a Gibbs' measure to another with same potential and temperature. To �x
ideas, our reader should assume uniqueness.

Let us turn to the estimates. The key quantity to estimate is the desplacement of positions qi in a
�nite interval of time, since increments of momenta depend only on such displacement because of
the Newtonian nature of our problem. We begin with a small but signi�cative computation: from
now on we denote

log+x= logjxj _ 1 8x2Rd:

Lemma 16. For any b > 0 there exists a constant M(b) > 0 such that any f 2 C1([0; T ]; Rd)
satisfying Z

0

T jf 0(t)j
log+f(t)

dt� b

also satis�es

jf(T )¡ f(0)j �M(b)log+jf(0)j:

Proof. It is clear that for any such f it holds

jf(T )¡ f(0)j � b � log+kf k1;

so we only need to control log+kf k1 in terms of log+jf(0)j. By triangular inequality the line above
implies that

kf k1¡ b � log+kf k1� jf(0)j;

hence, setting c(b) =minr�0
log+r

log+(r¡blog+r)
(which is always a positive number as the reader can

check), we get

log+kf k1
log+jf(0)j

� c(b);

and this, together with the above inequality, concludes the proof with M(b)= b � c(b). �
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Before we state and prove the announced a priori estimates, let us introduce some useful quantities,
the mere de�nition of which should motivate the computation we just carried out. We set, for
(p; q)= f(pi; qi)i2Ig2
,

B(p; q) = sup
i2I

jpij
log+qi

;

B~(p; q) = sup
k2Zd

B~k(p; q)

log+k
; B~k(p; q)= max

qi2Qk
jpij;

B�(p0; q0) =
1
�

Z
¡1

1
B(Tt(p0; q0))

dt
1+ t2

;

where the Qk's are the usual partition in lattice cubes of Rd and Tt is a measurable mapping of 

into itself (which will be speci�ed case by case). We might have de�ned B� simply integrating on a
bounded interval of time, avoiding the necessity of the weight (1+ t2)¡1 (the constant �¡1 is there to
normalise the integral). We choose this de�nition in order to easily treat global (in time) existence.

Proposition 17. (A priori estimates) Let Tt: 
!
 be a semigroup of measurable mappings
preserving m� de�ned by a time evolution t 7! f(pi;t; qi;t)i2Ig such that���� ddt qi;t

����� jpi;tj 8i2 I ; t2R:

It holds Em�[B] = Em�[B�] < 1, the value of the integral being independent of the particular
evolution Tt we chose. Moreover, on the full-measure set 
� =fB�<1g (with respect to m�), which
is also independent of Tt,

jqi;t¡ qi;0j �M(�(1+ �2)B�(p0; q0))log+qi;0 8i2 I ; jtj � � ;

where M(�) is the constant of the lemma above.

Remark 18. We can not stress enough that the constants in the estimate we provide are

� uniform in Tt, so that they can be applied to the whole set of approximations in order to
obtain compactness;

� depending on the initial data (p0; q0), thus we will not be able to treat simultaneously the
set of good initial data, or in fact any set of initial data of positive measure. We will come
back later on this.

Proof. Note that, up to a universal constant, 0�B(p; q)�B~(p; q), so we can check the integrability
of B~ to obtain the one of B. In other words, we reduce ourselves to control particles inside the
cubes Qk, and thanks to Ruelle's estimates we are exceedingly e�cient at it. By conditioning, and
since momenta have Gaussian distributions, we �rst bound

m�

¡
B~k(p; q)�A

�
=

X
n=0

1

m�(q(Qk) =n)m�

¡
B~k(p; q)�A

��q(Qk)=n
�

�
X
n=0

1

m�(q(Qk) =n) �nCe¡C 0A2=Ce¡C
0A2Em�[q(Qk)]

� Ce¡C
0A2;

where C and C 0 are positive constants (depending on �), and the last passage is due to the fact
that by Ruelle's bounds Em�[q(Qk)] is bounded uniformly in k (we renamed the constant C in the
last step). Hence,

m�(B~(p; q)�A) =
X
k2Zd

m�

¡
B~k(p; q)�A log+k

�
�C

X
k2Zd

e¡C
0A2(log+k)2;
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which is actually more than we need. Once we have established integrability of B, since by assump-
tion Tt preserves m�,

Em�[B�]=Em�

�
1
�

Z
¡1

1
B �Tt

dt
1+ t2

�
=
1
�

Z
¡1

1 dt
1+ t2

�Em�[B] =Em�[B];

thus concluding the proof. �

Exercise 8. Explicit the missing detail of the integrability of B~ integrating in A the estimate we got above.

The reader will notice that the approximants we described above �t the hypothesis of our estimates.
Indeed, we are ready to pass to the limit and obtain the promised existence result. In what follows,
analogously to B� above,

B�R(p0; q0) =
1
�

Z
¡1

1
B(Tt

R(p0; q0))
dt

1+ t2
;

B�1(p0; q0) = liminf
R!1

B�R(p0; q0):

By Fatou's lemma (and integrability of B�R) we have that B�1 is integrable, in particular the set

�1= fB�1<1g�
 is of full measure.

Proposition 19. Let (p0; q0)2
�1, then there exists a solution, global in time, of

8><>:
q_i= pi
p_i=¡

P
j=/ i
rU(qj¡ qi)

qi(0)= q0;i; pi(0)= p0;i:

Proof. By assumption, there exists a constant b > 0 and a sequence RN"1 such that B�RN(p0;
q0)� b, and thus by the a priori estimates,

jqi;tRN ¡ qi;0j �M(�(1+ �2)B�RN(p0; q0))log+qi;0 8i2 I ; jtj � � :

Let us now �x i 2 I and � > 0, and denote M = M(�(1 + �2)B�RN(p0; q0)). We can choose N
(depending on i; �) such that the i-th particle does not hit the boundary of BRN in the time interval
[¡� ; � ], imposing

RN > jqi;0j+M log+qi;0

(this is a direct consequence of the estimate above). Moreover, if L is the diameter of the support
of U , the a priori estimate also gives us that the j-th particle interacts with the i-th one at some
moment in the time interval [¡� ; � ] if and only if

jqj;0j ¡M log+qj;0� jqi;0j+M log+qi;0+L:

As a consequence, there can be only a �nite number of particles which interact with the i-th in
the time interval [¡� ; � ], say n, and this number does not depend on N . We thus bound

jp_i;tRN j �n krU k1

(using in an essential way the smoothness hypothesis on U). Let us stress that this last estimate
holds for any i2N , � > 0 �xed, uniformly in N (big enough) and jtj � � .
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Ascoli-Arzela Theorem now ensures (up to subsequences) the uniform convergence of pi;t
RN on

[¡� ; � ], but in fact a diagonal argument provides convergence on compact subsets of R. Since
q_i;t
RN= pi;t

RN, the same convergence takes place also for qi;t
RN.

Identi�cation of the limit is now a simple exercise: for a given time t there exists N big enough
such that 8<: qi;t

RN= qi;0+
R
0

t
pi;s
RNds

pi;t
RN= pi;0¡

R
0

tP
j=/ i
rU(qj;sRN ¡ qi;s

RN)ds;

that is, the i-th particle satis�es Newton's equations without re�ections. Since in [0; t] the i-th
particle interacts with �nitely many other particles (whose number does not depend on N as noted
above), and thus as N!1 not only qi;t but also all the qj;t interacting with it converge uniformly,
then the above equations pass to the limit (smoothness of U has to be used again here). This
argument can be repeated for all particles and all bounded time integrals. �

5 Remarks on Uniqueness and Stationarity

The �nal result of the previous section leaves of course many questions open. Let us list some of
them: we will answer below with a few precise statements that, however, we will not prove here.

� In the existence theorem there is no measure theory, and the construction is adapted to a
single phase space point (p0; q0). Is there a way to work simultaneously with (almost all)
points, or even with a positive measure set of them?

� The latter question is clearly related to this one: can we pass to the limit the invariance
result for Gibbs' measures we proved for TtR?

� Is it possible to remove some of the hypothesis on U , especially the ones which are not
needed for Ruelle's bounds to hold? (Non compact support and presence of singularities are
ubiquitous phenomena in physically relevant potentials).

� Does uniqueness of the solution hold for the initial data we chose? Does uniqueness hold for
any initial data at all? Does this question require even more hypothesis on U to be answered?

The theory developed since the works of Lanford by Dobrushin, Fritz et cetera, answers to many
of these questions. Here are some facts already known to Lanford.

Proposition 20. (Uniqueness) Under the above hypothesis on U, there exists at most one
solution of Newton's equations on [0; � ] for initial data satisfying

sup
k2Zd

q(Qk)

log+k
p <1;

among those solutions for which

sup
t2[0;� ]

sup
i2I

jqi;t¡ qi;0j
log+qi;0

<1:

The hypothesis on the initial data does not really concerns us, since we have proved it to hold for
almost every con�guration with respect to Gibbs' measure. The second, however, does, since there
might be �singular� solutions of the equations (with particles moving quite far from their starting
position) not covered by our hypothesis. In fact, we have a sort of �conditional� uniqueness result.
We will be reassured about this below, but �rst let us turn to the issue of �non-uniformity� of the
passage to the limit in the existence result.
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Proposition 21. Fix �; r; � > 0. There exists R� such that for R>R�,

jqi;tR ¡ qi;tj � � 8i: jqi;0j � r; jtj � � ;

the latter holding for all (p0; q0) ofm� measure at least 1¡� (where qi;t without superscripts denotes
the limiting solution).

Corollary 22. The approximant �ows TtR converge in measure (both in space with respect to Gibbs'
measure and on compact time intervals) to a limit Tt which is thus jointly measurable in time and
space, a semigroup of mappings and preserves Gibbs' measure for each �xed t.

Turning back to uniqueness, what happens is that even if there exist multiple anomalous solutions
which are not covered by our uniqueness result, they can not be pieced together to form a measure
preserving �ow.

Proposition 23. Let St be a �ow of Newton's equations3 preserving a Gibbs' measure m�, then
(for any �xed t) St and Tt, the latter being de�ned by the solution we built in the existence result,
must coincide almost surely with respect to m�.

3. That is, a semigroup of measurable mappings of 
 into itself preserving m� induced by a solution of the usual
in�nite system of equations.
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