Zero-noise selection for Peano phenomena

Umberto Pappalettera

1 General theory of weak solutions to SDEs
indexed by noise intensity

Let (E,E&,Q), (& )i>0 a standard-filtered probability space equipped with a
standard Brownian motion B. Consider on this space the family indexed by
e € (0,1) of SDEs in dimension one:

t t
XP:/ b(X§5>)ds+e/ dB,, (1)
0 0

where b € Cy(R). Classical results about SDEs (see e.g. [4], Chapter 9)
guarantee strong existence and uniqueness for such SDEs, ¢ beeing fixed and
positive, so that it does make sense to talk about the law of X(©). We would
like to study the laws of the solutions of (1): in particular, we are interested
in the zero-noise limit of the previous equations and how this is related to
the deterministic ODE obtained by imposing ¢ = 0 in (1). In order to do
this we will introduce a new setting that turns out to be more convenient for
our purpose. Let 2 :== C(R",R) be the space of continuous functions from
R* to R, endowed with the distance:

D" (w,w') = Z 9=k SUPseo i lwe — wi
oo ? :
kEN L+ supsepox |wy — wi

where w; denotes the value of the function w € € at time . Then (Q, D!%¢) is a
Polish space and the convergence induced by DY is the uniform convergence
on compact subsets of RT. A well known result (see e.g. [5], section 1.3) is
that the Borel o-field F associated with the distance D¢ coincides with the
o-field generated by the projection maps m(w) = wy and F; == o{ms, s < t}
is a filtration on (€2, F). It turns out that X© : E — Q is measurable,
being 1, 0 X&) : E — R measurable for every ¢ > 0, hence we can consider
P = X;f) (Q), the law of X©) on Q. Here we have some general results about
the family of probabilities {IP<} cc(0,1) which somehow justify our interest in
the zero-noise limit of (1) and indicate a possible way to study this problem.
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Proposition 1. The family {P*}__ , is relatively compact with respect to
the weak convergence of measures.

Proof. The main tool that we are going to use is Prokhorov Theorem.

Let define on Q the process t — M;(w) = w; — fot b(ws) ds. By the very
definition of P¢ we have that Ve € (0, 1) the process M is a rescaled Brown-
ian motion on (2, F,P¢) endowed with the filtration (F;) and its quadratic
variation under P* is (M) = £2t.

Let consider now the set, depending on N € N:

Ly = {w € Q:Vm e N m > N,Vp e N Vinterval I C [0, m]
of lenght < 277 : osc(M (w), I) < 4+/2log 2mp2-> },

where osc(M (w), I) == sup,c;(Mi(w)) — infier(Mi(w)) denotes the oscillation
function. We want to show that Vo € (0,1) there is a N(«) such that
P*(Ln(@)) > 1 — « for every € € (0,1). Let divide the interval [0,m] into
m - 2P subintervals [; of the form [(j —1)-277,5-277],5 =1,...,m-2P. We
have the following inclusions:

m-2P

Ly C U U U {OSC(M(w),Ij) > 2\/210g2mp2—?’}
m>N peN j=1
m-2P

C U U U {sup |Mr(w) — M(j_l).pr(W)’ > \/2log 2mp2-P }

m>N peN j=1 "€l

By Markov Property of Brownian motion we know that for every ¢ > 0:

IP’E{ sup | M, (w) — Mj—1y.2-»(w)| > c} = P{ sup [eB,(w)| > ¢ },

rel; r<2-p

where B is a standard Brownian motion under P. By applying Doob’s max-
imal inequality to the stochastic exponential of B we obtain for any A > 0:

IP’{ sup B, (w) > c} = IP’{ sup e*Br@) > eAC}

r<2-P r<2-P

_a%e? _229-p
< ]P’{ sup eBr@)mTmr 5 ghem 2 }
r<2-P

2_2 2 2
<E [eAsBQ_p(w)f’\; 2_pi| A9 P_Xe _ )‘—2_1’7)\0.

.e2 =1.¢e2

By taking A = ¢- 2P and using simmetry we get:

2 D
IP’E{ sup | M, (w) — Mj—_1y.2-»(w)| > c} <2.e 2%,

TG]]'



which after an opportune choice of the parameter ¢ becomes:

]P’E{ sup | M, (w) — Mj—1y.2-»(w)| > v/2log 2mp2-» } < ot=mp,

’I’EIJ'

thus we obtain the following estimate for the probability of L$;:

m-2P
Pe(LY) < Z Z Z IP’a{ sup | M, (w) — Mj_1y.0-»(w)| > \/2log 2mp2—» }
m>N peN j=1 rel;
m-2P

= 9D ) I

m>N peN j=1

as N — oo and uniformly in €, and so we have proved that Vo € (0, 1) there
is a N(or) such that P*(Lya)) > 1 — o for every € € (0,1). Now observe that
the same result holds true if we replace Ly, with:

L?V(a) = LN(Oc) ﬂ {w € Q Wy = O},

being the latter a set of full measure Ve € (0,1). We want to show that L?V(a)
is compact in €2, so that Prokhorov Theorem applies. Fixed any compact
K of RT, the family of functions L?V(a) is equicontinuous and equibounded
when restricted to K (here we use the fact that b is bounded), hence by
Ascoli-Arzela Theorem L?V(a) is relatively compact with respect to uniform
convergence on compact sets; being both the conditions that define L(])V(a)
closed under uniform convergence on compact sets, L?V(a) is closed in §2 and
so it is compact, and this completes the proof. O

The previous proposition guarantees at least that a zero-noise limit for (1)
exists in a weak sense, so that we do have something to talk about. The
following proposition is crucial in relating the family {P°}__ ) to the ODE
obtained by imposing ¢ = 0 in (1).

Proposition 2. Let {¢,},en C (0,1) be a sequence converging to zero and
suppose that P*» — P weakly as n — oco. Then the measure P only charges
solutions of the ODE:

X, = /0 tb(XS) ds. (2)

Proof. Let B be the Brownian motion driving the SDEs (1) and let W be its
law on (€, F). Then it is easy to check that P @ W converges weakly to
P ® W as measures on (2 x Q, F ® F), hence by Skorokhod Theorem there
exists a probability space (Q, F, If”) and random variables X&), X B(n) B
such that:



1. (XEn) BEn)) has law P @ W for every n € N;
2. (X, B) has law P ® W,

3. (Xn), BEn)) converges to (X, B) P-a.s. as n — oo, i.e. for almost
every & € €2 the function t — (X (@), B (@) converges uniformly
on compact subsets towards ¢ — (X;(@), B;(©)), being the pointwise
convergence in 2 x € given by the metric D!

Observe now that since the law of (X @), BEn)) is P @ W, the process
¢ ¢
s X - / b(XE)ds — e, / dBEn)
0 0

must have the same law of the process constantly equal to zero, thus we have
the following identity of stochastic processes

Xl g, / dBE — / BH(XE)ds, Poas. (3)
0 0
By 3, the LHS of equation (3) converges P-a.s. to X, while the RHS converges
P-a. 5. to fo s) ds, by continuity of b. Hence P—a s. we must have X, =

fo ds for every t > 0 and since X4 (P) = P this means that P{w € Q :
= fo ws)ds ¥t > 0} =1, that is the desired result. ]

Observe that the previous proposition completely solves the zero-noise prob-
lem when uniqueness holds for (2): in fact, any cluster point for ¢ — 0
of {P°}.¢ (o) must be the Dirac measure of the unique solution of (2). On
the other hand it opens up an entire category of problems when uniqueness
does not hold, namely that of identifying any possible weak limit of {P*} __ ©.1)

among all the probability measures on §2 that give full measure to the set of
solutions of (2). This motivates the study carried out in the next section,
where solutions of (2) are described and the concept of exit time from an
interval is introduced.

2 Description of solutions to the zero-noise
ODE

In this section a brief descrition of solutions of (2) will be given. No diffi-
culty arises from considering any initial condition different from zero, but we
restrict ourselves to this case to lighten the discussion. Being mostly inter-
ested in the case of non uniqueness, we will assume b(0) = 0 (if not, local
uniqueness holds) and also that the point 0 is an isolated zero of b.
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Proposition 3. Consider the problem (2), where b € Cy(R) and 0 is an
isolated zero of b: then there are local solutions to (2) different from the
constant one if and only if there exists » > 0 such that at least one of the
following holds:

1. b(z) > 0 for z € (0,r) and [ % < 00;

2. b(z) <0 for z € (—7,0) and [, " & < co.

In this case, denoting H(z) == [; %'
1. if b(z) > 0 or b(xz) < 0 in (—r,7), then there exists ¢, > 0 such that

locally X; = H1((t —to)™");

2. if zb(z) > 0 in (—r,7) and H(—r) = oo, H(r) < oo (respectively
H(—r) < oo, H(r) = o0), then the local solutions are the same as
the previous case with b(x) > 0 (respectively b(z) < 0);

3. if b(x) > 0 in (—r,r) and H(—r) < oo, H(r) < 00, then there exists
to > 0 such that locally either X, = (H|,, )7 ((t — to)") or X, =
(H|p )Mt —to)™).

We will call in the following (H ‘R ) H((t—1tp)™") the upper extremal solution
and (H |R ((t —to)*) the lower extremal solution to (2). Observe that
the upper extremal solution is the one which minimizes the exit time from
(—r,r) among all the solutions which leave (—r,7) at the point 7: in this case
the exit time is equal to H(r). Similarly, the lower extremal solution is the
one which minimizes the exit time from (—r,r) among all the solutions which
leave (—r,7) at the point —r: in this case the exit time is equal to H(—r).
These minimality results will be fundamental in the following analysis.

3 Exit time from the interval (—r,7r)

In this section we will follow the approch proposed by Bafico and Baldi in
[1]. First of all, we develop some technical tools that will be very useful in
the study of zero-noise limit of (1). Our investigation will be concerning the
function

7: 0 = RYU{+o00}
wrinf{t>0: |w| >r},

r being a positive real such that analysis of section 2 applies to our problem.
Here we have some nice properties that the function 7 enjoys.

b}



Proposition 4. 7: Q — Rt U{+o0} is lower semicontinuous. In particular,
7 is a random variable.

Proof. Tt suffices to show that for every a € R the set
{weQ:7(w)>a}

is open in Q with respect to the topology induced by D¢, Takew € {7 > a };
we have that sup,., |w:| < r, and by continuity of w and compactness of [0, ]
it exists € > 0 such that sup,., |w| < r —e. Now take n € N greater than a;
we have -

SUP¢e(0,n] |y — wi

1L+ Supyepo g lwe — wil’

D¢(w, ) > 27"
thus for § = 0(e,n) small enough the following implication holds:

D (w,w') < § = sup |w; —wj| <e,
tel0,n]

which means that v’ € {w € Q:7(w) > a}. O

Proposition 5. If P» — P weakly as n — oo, then

liminf EF" [r] > EF [7].

n—oo

Proof. Let define for every k € N the function

Te(w) = infﬂ{ (W) + k- D(w,w’) }.
w'e

Every 7 is bounded continous and the sequence {7x }ren is clearly increasing.
By choosing w' = w we get 7, < 7 and by lower semicontinuity of 7 the
sequence {7y }ren converges to 7. Hence for every n € N and every k € N:

EF" [1] > EF" (1]
Taking n — oo we obtain:

liminf E¥™" [7] > limsup EF™" [r)] = E¥ [r3] .

n—0o0 n—00

We conclude by taking the limit for £ — oo and by applying the Monotone
Convergence Theorem. O



Here we present the main idea of [1], which allows us to explicitely compute
some quantities related to 7 giving lots of information about the limit points
of {P°}. (1) for € = 0. Let r > 0 be as in section 2 and consider the
boundary value problem:

S¢l(x) + b(a)gl(x) =—1, z€(—r7)
{ Ge(—1) = ¢(r) =0 (4)

Let ¢. be a C? solution to (4). Let X(®) on the space (E, &, Q) be the solution
to (1) and define 7¢ = inf{t > 0 : X9 > r}. It6 Formula applied to the
semimartingale X (®) between time 0 and time ¢ A 7° gives:

o (xi5) =) + [ (s + Sorx) ) as
0

tATE
+ / ol (X)) dB,.
0

Using that ¢. solves (4) and taking expectation with respect to the proba-
bility Q we get:

E [0.(X{0)] = 6.(0) ~ B[t A .

Being ¢. bounded, the preceding equation implies Q{7¢ = +o00} = 0. Hence
taking t — oo we obtain that the LHS tends to zero by Dominated Con-
vergence, while the RHS tends to ¢.(0) — E2[r¢] by Monotone Convergence.
Thus we have ¢.(0) = E@[7°] and since the law of X() is P° we get the
fundamental identity:

¢-(0) = EF [7].
Now observe that the general solution to (4) is ¢.(x) = ¢ + oA () — B:(x),

where: N 5
A (x) :/ exp (——2/ b(u) du) dy,
0 e Jo

2 x x 2 u
B.(x) = 5_2/0 / exp (_5_2/ b(z) dz) du dy,
Yy Yy

and the constants ¢; and ¢y are given by:

) —A.(-r)
Ac(r) — A(—1)

—~
=

c1 =c(e) = B:

o = ca(e) =



Being A.(0) = B.(0) = 0 we deduce that EF* [7] = ¢;(g). In a similar fashion,
if we consider instead the problem:

2(@) + ba)ol(e) =0, we€(-rr)
(bs(_'r) =0
o(r) =1
we obtain:
— A (=)

PE{wEQ:T(w) < o0, wT:T} = A(r) = A(=r)’

and in the same way, interchanging boundary conditions:
Ac(r)
Ae(r) — Ac(=r)
We conclude this section with a proposition which allows to transfer infor-
mation about P¢ into information about any weak limit of P¢ for ¢ — 0.

]P)E{wEQ:T(w)<+oo, wT:—r}:

Proposition 6. Let ¢, — 0 as n — oo and suppose that P*» — P weakly;
then:
limianP’e"{T < 400, Wy = 7“} > IP{T < 400, Wy = 7“},

n—o0

liminf P { 7 < +00, wr = =1 } > P{ 7 < +o0, w, = —r }.
n—0o0
If moreover P{7 = +00} = 0 one can replace the inequalities by equalities

and liminf by lim.

Proof. Using the explicit descritption of section 2, it can be verified that
I{r<to0,wr=r} and l{;cfoo w,——r} are lower semicontinuous at every point
w € ) solution to (2), then P-a.s. and the same proof of proposition 5 applies.
If moreover P{7 = +oo} = 0 then 1{ <o w =r} + lfrcioo,w,=—ry = 1 P-as.
and thus:

IED{T<+OO, wT:r} SlimianPﬁ"{T<+oo, wT:T}

n—o0

< limsupIP’an{T < 400, Wy = r}

n—oo

~1 —liminf]Pa"{T < 400, w, = _r}

n—00
< 1—IP{T<+OO, wT:—r}
:IP’{T<+OO, wT:r}.
and the thesis follows from the equality:
hminﬂ?ﬁ"{ T < 400, wy = 7‘} = limsupPE"{ T < 400, wy =17 }

n—oo n—00



4 Main theorem

In this section the main theorem of [1] is presented. It deals with the case
3 of proposition 3, where a twofold family of solutions to (2) exists. This
analysis relies on the description of solutions to (2) given in section 2 and
estimates on the expected value of 7 following by the theory developed in
section 3. We will see how in the zero-noise limit the upper extremal solution
and the lower extremal solution to (2) are selected, due to their minimality
property. Explicit weights will be identified, depending on the behaviour of
Pe{T < 400,w, =71} as e — 0. We begin with the following:

Lemma 7. Suppose that b(z) > 0 for x € (0,r) (respectively b(z) < 0 for
x € (—r,0) ) and that for some ¢ > 0 the function

h(z) = min b(y), (resp.k(x): max b(y ))

yE[z,z+4] yElz—d,x]

[ (o [ o =)

i) = [ (vt = [555)

Proof. We only consider the case b(z) > 0 for z € (0,7), being the proof
identical in the other one. First of all, note that if the hypothesis of the
theorem hold with § = ¢§y, then they also hold with every positive § < 9.
We want to study the behaviour as ¢ — 0 of

2 T T 2 u
B.(r) = 6—2/ / exp (—g/ b(2) dz) du dy
0 Jy Y
2 r y+4 2 u
= 5_2/0 /y exp (—g/y b(2) dz) du dy
2 T T 2 u
+—2/ / exp (——2/ b(z) dz) du dy
€ 0 Jy+o € Y

The latter integral tends to zero as € — 0 because the integrand tends uni-
formly to zero; regarding the first one:

/ ' / y+5%exp (-% /y e dz) du
/ / 1u 260) o (—%/yub(z) dz) du.

is such that

Then




Since

yro 2b 2
/ / exp (——2/ b(z) dz) du
u=y
= ex —z/ub(z) dz
we have the following chain of inequalities:
-1 y+4 2 2 u
( max b(u)) < lim inf/ — exp <——2/ b(z) dz) du
u€ly,y+94)] e=0 J, € e* Jy
y+90 2 2 u
< limsup/ — exp (——2/ b(2) dz) du
e—0 y € € y

-1
§< min b(u))
u€ly,y+4)

and the result follows by taking § — 0 and by Dominated Convergence (here
the hypothesis of integrability play a role in giving a domination for the
integrand). O

=1 + 0(1)E~>07

u=y+4

Theorem 8. Suppose that zb(z) > 0in (—r,r) and H(—r) < oo, H(r) < oc;
in addition, suppose also that it exists 6 > 0 such that the functions

h(z) = min b(y), k(zr)= max b(y)

y€[z,z+0] y€Elz—6,]

fig <o aw =

Then every limit value of P¢, ¢ — 0, is concentrated on the upper extremal
solution and the lower extremal solution to (2) for a small time interval.

are such that

Proof. Observe that by Lemma 7 EF™" [7] is bounded and thus by proposition
5 we have P{7 = 400} = 0. Therefore by proposition 6:

—A,(=7)
Plw, =r} = hm IP’E"{wT =r} = lim K
n—oo Ag, (T) - Agn(_T)

=p e [0,1].
Hence proposition 5 and Lemma 7 give:
E° [7] < pH(r) + (1 — p)H(-7).

Now observe that minimality property of upper and lower extremal solutions
implies that every probability P concentrated on the solutions of (2) and such
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that P{w, = r} = p and P{w, = —r} = 1 — p must necessarily satisfy the
opposite inequality, i.e.

EF [r] > pH(r) + (1 — p)H(=7).

The equality is possible only if, when restricted to a small time interval, the
probability P gives mass p to the upper extremal solution and mass 1 — p to
the lower extremal solution, which proves our claim. O

5 Some examples

In this section we are going to study some zero-noise limit as an application of
the results developed so far. By Theorem 8 we will need to compute certain
limits for € — 0 in order to completely characterize the probability for upper
and lower extremal solution to be selected, so the following Lemma will be
useful.

Lemma 9. Let B and G be strictly increasing functions on [0, 7] with B(0) =
G(0) = 0 and lim,,o B(x)/G(x) = 0. Suppose that there exists a function
h such that lims_,oh(5) = 0 and that for every § > 0 and for every x in a
neighborhood of 0 (depending on ¢) the inequality §G(z) < G(h(d)x) holds.

Then: )
! —=B d
lim fOT exp ( E () dov_ (5)
=0 [ exp (—E—QG(QJ)) dz

Proof. Since B and G are strictly increasing, by uniform convergence we
have: /
lim Jo exp (—%B(x)) dv — lim fy exp (—%B(x)) du
=0 [y exp (= 5G(2)) dv =0 fOTN exp (—2G(x)) da
for any ' < r and v’ < r. Fix now § > 0 and 7’ < r such that for every x < r/

the inequality B(z) < éG(x) holds (this is possible because the hypothesis
on the limit of the ratio B(z)/G(x)), so that we get:

/OT/ exp <—§2B($)> dr > /Owh(é) exp (—%G(y)) %7

by a change of variable argument. Thus the limit in (5) is greater than 1/h(0)
for every 6 > 0 and is therefore equal to +oc. m

The same idea (and calculations) gives the following:
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Lemma 10. Let B and G be strictly increasing functions on [0,r] with
B(0) = G(0) = 0 and lim, o B(z)/G(z) = M € R. Suppose that there
exists a continuous function h such that for every K > 0 there exists § > 0
and two functions ky and ko, depending on K and 6, such that lim, o k;(z) =
lim, 0 ko(z) = 1 and for every x € [0,6] the inequality ko(z)G(h(K)zx) <
KG(x) < ki(2)G(h(K)x) holds. Then:

iy do P (=5B() dz 1
e—=0 for exp (—%G(x)) dx h(M)

Now we have all the machinery and we are ready for some concrete example.

Example 1.
B cx® if x> 0;
bz) = { —co(—x)* if <0,
with ¢1,co > 0 and a < 1. By Theorem 8 in the zero-noise limit extremal
solutions are selected, and weights are determined by the limit:

Ao e (<4 fy () du) dy
lim = lim = Y =P
e=0 A(r) — A (—r) =0 f_r exp (_5_2 fo b(u) du) dy

Since: y o e i S 0
/ b(u) du = { o 1+ay1+a Y=
0 i (=y) e ity <0,

we can rewrite p by a change of variable as:
L g do o (Caviay™) dy
P 0 Jo oxp (—Z1Ey') dy

and Lemma 10 finally gives that the probability p for the upper extremal
solution to be selected in the zero-noise limit equals:

1

cl+a
b= 1 T -
14+« 1+«
c, Tt

Example 2. 1
olz) = { <_x>;fg2<slff if; ﬁ i i 8
Here the upper extremal solution is selected with probability:
1
P

12



Example 3.
B cx® if x> 0;
b(z) = { —cy(—2)? if 1 <0,

with ¢1,co > 0 and a« < f < 1. Here the same calculations and Lemma 9
give p = 1, regardless of the choice of coefficients ¢; and c,.

Example 4.

x® if x> 0;
b<“’):{ 0 if =<0,

with @ < 1. Here Theorem 8 does not apply, but comparison criterion for
SDEs gives that, when the noise ¢ is stricly positive, the unique solution to
this equation is greater or equal to the unique solution to the equation with
drift equal to (for instance):

~ x® if x> 0;
bz) = { —(—z)HTa if <0,

hence necessary also in this case the upper extremal solution is selected in
the zero-noise limit with probability p = 1.
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