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1 General theory of weak solutions to SDEs

indexed by noise intensity

Let (E, E ,Q), (Et)t≥0 a standard-filtered probability space equipped with a
standard Brownian motion B. Consider on this space the family indexed by
ε ∈ (0, 1) of SDEs in dimension one:

X
(ε)
t =

∫ t

0

b(X(ε)
s ) ds+ ε

∫ t

0

dBs, (1)

where b ∈ Cb(R). Classical results about SDEs (see e.g. [4], Chapter 9)
guarantee strong existence and uniqueness for such SDEs, ε beeing fixed and
positive, so that it does make sense to talk about the law of X(ε). We would
like to study the laws of the solutions of (1): in particular, we are interested
in the zero-noise limit of the previous equations and how this is related to
the deterministic ODE obtained by imposing ε = 0 in (1). In order to do
this we will introduce a new setting that turns out to be more convenient for
our purpose. Let Ω := C(R+,R) be the space of continuous functions from
R+ to R, endowed with the distance:

Dloc
∞ (ω, ω′) :=

∑
k∈N

2−k
supt∈[0,k] |ωt − ω′t|

1 + supt∈[0,k] |ωt − ω′t|
,

where ωt denotes the value of the function ω ∈ Ω at time t. Then (Ω, Dloc
∞ ) is a

Polish space and the convergence induced by Dloc
∞ is the uniform convergence

on compact subsets of R+. A well known result (see e.g. [5], section 1.3) is
that the Borel σ-field F associated with the distance Dloc

∞ coincides with the
σ-field generated by the projection maps πt(ω) = ωt and Ft := σ{πs, s ≤ t}
is a filtration on (Ω,F). It turns out that X(ε) : E → Ω is measurable,
being πt ◦X(ε) : E → R measurable for every t ≥ 0, hence we can consider
Pε := X

(ε)
# (Q), the law of X(ε) on Ω. Here we have some general results about

the family of probabilities {Pε}ε∈(0,1) which somehow justify our interest in
the zero-noise limit of (1) and indicate a possible way to study this problem.
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Proposition 1. The family {Pε}ε∈(0,1) is relatively compact with respect to
the weak convergence of measures.

Proof. The main tool that we are going to use is Prokhorov Theorem.
Let define on Ω the process t 7→ Mt(ω) := ωt −

∫ t
0
b(ωs) ds. By the very

definition of Pε we have that ∀ε ∈ (0, 1) the process M is a rescaled Brown-
ian motion on (Ω,F ,Pε) endowed with the filtration (Ft) and its quadratic
variation under Pε is 〈M〉εt = ε2t.
Let consider now the set, depending on N ∈ N:

LN :=
{
ω ∈ Ω : ∀m ∈ N,m ≥ N,∀p ∈ N,∀ interval I ⊆ [0,m]

of lenght ≤ 2−p : osc(M(ω), I) ≤ 4
√

2 log 2mp2−p
}
,

where osc(M(ω), I) := supt∈I(Mt(ω))− inft∈I(Mt(ω)) denotes the oscillation
function. We want to show that ∀α ∈ (0, 1) there is a N(α) such that
Pε(LN(α)) ≥ 1 − α for every ε ∈ (0, 1). Let divide the interval [0,m] into
m · 2p subintervals Ij of the form [(j − 1) · 2−p, j · 2−p], j = 1, ...,m · 2p. We
have the following inclusions:

LcN ⊆
⋃
m≥N

⋃
p∈N

m·2p⋃
j=1

{
osc(M(ω), Ij) > 2

√
2 log 2mp2−p

}
⊆
⋃
m≥N

⋃
p∈N

m·2p⋃
j=1

{
sup
r∈Ij

∣∣Mr(ω)−M(j−1)·2−p(ω)
∣∣ >√2 log 2mp2−p

}
.

By Markov Property of Brownian motion we know that for every c > 0:

Pε
{

sup
r∈Ij

∣∣Mr(ω)−M(j−1)·2−p(ω)
∣∣ > c

}
= P

{
sup
r≤2−p

|εBr(ω)| > c
}
,

where B is a standard Brownian motion under P. By applying Doob’s max-
imal inequality to the stochastic exponential of B we obtain for any λ > 0:

P
{

sup
r≤2−p

εBr(ω) > c
}

= P
{

sup
r≤2−p

eλεBr(ω) > eλc
}

≤ P
{

sup
r≤2−p

eλεBr(ω)−λ
2ε2

2
r > eλc−

λ2

2
2−p
}

≤ E
[
eλεB2−p (ω)−λ

2ε2

2
2−p
]
· e

λ2

2
2−p−λc = 1 · e

λ2

2
2−p−λc.

By taking λ = c · 2p and using simmetry we get:

Pε
{

sup
r∈Ij

∣∣Mr(ω)−M(j−1)·2−p(ω)
∣∣ > c

}
≤ 2 · e−

c2

2
2p ,
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which after an opportune choice of the parameter c becomes:

Pε
{

sup
r∈Ij

∣∣Mr(ω)−M(j−1)·2−p(ω)
∣∣ >√2 log 2mp2−p

}
≤ 21−mp,

thus we obtain the following estimate for the probability of LcN :

Pε(LcN) ≤
∑
m≥N

∑
p∈N

m·2p∑
j=1

Pε
{

sup
r∈Ij

∣∣Mr(ω)−M(j−1)·2−p(ω)
∣∣ >√2 log 2mp2−p

}
≤
∑
m≥N

∑
p∈N

m·2p∑
j=1

21−mp → 0,

as N →∞ and uniformly in ε, and so we have proved that ∀α ∈ (0, 1) there
is a N(α) such that Pε(LN(α)) ≥ 1−α for every ε ∈ (0, 1). Now observe that
the same result holds true if we replace LN(α) with:

L0
N(α) := LN(α) ∩ {ω ∈ Ω : ω0 = 0},

being the latter a set of full measure ∀ε ∈ (0, 1). We want to show that L0
N(α)

is compact in Ω, so that Prokhorov Theorem applies. Fixed any compact
K of R+, the family of functions L0

N(α) is equicontinuous and equibounded

when restricted to K (here we use the fact that b is bounded), hence by
Ascoli-Arzelà Theorem L0

N(α) is relatively compact with respect to uniform

convergence on compact sets; being both the conditions that define L0
N(α)

closed under uniform convergence on compact sets, L0
N(α) is closed in Ω and

so it is compact, and this completes the proof.

The previous proposition guarantees at least that a zero-noise limit for (1)
exists in a weak sense, so that we do have something to talk about. The
following proposition is crucial in relating the family {Pε}ε∈(0,1) to the ODE
obtained by imposing ε = 0 in (1).

Proposition 2. Let {εn}n∈N ⊆ (0, 1) be a sequence converging to zero and
suppose that Pεn → P weakly as n→∞. Then the measure P only charges
solutions of the ODE:

Xt =

∫ t

0

b(Xs) ds. (2)

Proof. Let B be the Brownian motion driving the SDEs (1) and let W be its
law on (Ω,F). Then it is easy to check that Pεn ⊗W converges weakly to
P⊗W as measures on (Ω× Ω,F ⊗ F), hence by Skorokhod Theorem there
exists a probability space (Ω̃, F̃ , P̃) and random variables X̃(εn), X̃, B̃(εn), B̃
such that:
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1. (X̃(εn), B̃(εn)) has law Pεn ⊗W for every n ∈ N;

2. (X̃, B̃) has law P⊗W;

3. (X̃(εn), B̃(εn)) converges to (X̃, B̃) P̃-a.s. as n → ∞, i.e. for almost

every ω̃ ∈ Ω̃ the function t 7→ (X̃
(εn)
t (ω̃), B̃

(εn)
t (ω̃)) converges uniformly

on compact subsets towards t 7→ (X̃t(ω̃), B̃t(ω̃)), being the pointwise
convergence in Ω× Ω given by the metric Dloc

∞ .

Observe now that since the law of (X̃(εn), B̃(εn)) is Pεn ⊗W, the process

t 7→ X̃
(εn)
t −

∫ t

0

b(X̃(εn)
s ) ds− εn

∫ t

0

dB̃(εn)
s

must have the same law of the process constantly equal to zero, thus we have
the following identity of stochastic processes

X̃(εn)
· − εn

∫ ·
0

dB̃(εn)
s =

∫ ·
0

b(X̃(εn)
s ) ds, P̃-a.s.. (3)

By 3, the LHS of equation (3) converges P̃-a.s. to X̃, while the RHS converges
P̃-a.s. to

∫ ·
0
b(X̃s) ds, by continuity of b. Hence P̃-a.s. we must have X̃t =∫ t

0
b(X̃s) ds for every t ≥ 0 and since X̃#(P̃) = P this means that P{ω ∈ Ω :

ωt =
∫ t

0
b(ωs) ds ∀t ≥ 0 } = 1, that is the desired result.

Observe that the previous proposition completely solves the zero-noise prob-
lem when uniqueness holds for (2): in fact, any cluster point for ε → 0
of {Pε}ε∈(0,1) must be the Dirac measure of the unique solution of (2). On
the other hand, it opens up an entire category of problems when uniqueness
does not hold, namely that of identifying any possible weak limit of {Pε}ε∈(0,1)

among all the probability measures on Ω that give full measure to the set of
solutions of (2). This motivates the study carried out in the next section,
where solutions of (2) are described and the concept of exit time from an
interval is introduced.

2 Description of solutions to the zero-noise

ODE

In this section a brief descrition of solutions of (2) will be given. No diffi-
culty arises from considering any initial condition different from zero, but we
restrict ourselves to this case to lighten the discussion. Being mostly inter-
ested in the case of non uniqueness, we will assume b(0) = 0 (if not, local
uniqueness holds) and also that the point 0 is an isolated zero of b.
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Proposition 3. Consider the problem (2), where b ∈ Cb(R) and 0 is an
isolated zero of b: then there are local solutions to (2) different from the
constant one if and only if there exists r > 0 such that at least one of the
following holds:

1. b(x) > 0 for x ∈ (0, r) and
∫ r

0
dy
b(y)

<∞;

2. b(x) < 0 for x ∈ (−r, 0) and
∫ −r

0
dy
b(y)

<∞.

In this case, denoting H(x) :=
∫ x

0
dy
b(y)

:

1. if b(x) ≥ 0 or b(x) ≤ 0 in (−r, r), then there exists t0 ≥ 0 such that
locally Xt = H−1((t− t0)+);

2. if xb(x) ≥ 0 in (−r, r) and H(−r) = ∞,H(r) < ∞ (respectively
H(−r) < ∞,H(r) = ∞), then the local solutions are the same as
the previous case with b(x) ≥ 0 (respectively b(x) ≤ 0);

3. if xb(x) ≥ 0 in (−r, r) and H(−r) < ∞,H(r) < ∞, then there exists
t0 ≥ 0 such that locally either Xt = (H

∣∣
R+)−1((t − t0)+) or Xt =

(H
∣∣
R−)−1((t− t0)+).

We will call in the following (H
∣∣
R+)−1((t− t0)+) the upper extremal solution

and (H
∣∣
R−)−1((t − t0)+) the lower extremal solution to (2). Observe that

the upper extremal solution is the one which minimizes the exit time from
(−r, r) among all the solutions which leave (−r, r) at the point r: in this case
the exit time is equal to H(r). Similarly, the lower extremal solution is the
one which minimizes the exit time from (−r, r) among all the solutions which
leave (−r, r) at the point −r: in this case the exit time is equal to H(−r).
These minimality results will be fundamental in the following analysis.

3 Exit time from the interval (−r, r)
In this section we will follow the approch proposed by Bafico and Baldi in
[1]. First of all, we develop some technical tools that will be very useful in
the study of zero-noise limit of (1). Our investigation will be concerning the
function

τ : Ω→ R+ ∪ {+∞}
ω 7→ inf{ t ≥ 0 : |ωt| ≥ r },

r being a positive real such that analysis of section 2 applies to our problem.
Here we have some nice properties that the function τ enjoys.
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Proposition 4. τ : Ω→ R+∪{+∞} is lower semicontinuous. In particular,
τ is a random variable.

Proof. It suffices to show that for every a ∈ R+ the set

{ω ∈ Ω : τ(ω) > a }

is open in Ω with respect to the topology induced by Dloc
∞ . Take ω ∈ { τ > a };

we have that supt≤a |ωt| < r, and by continuity of ω and compactness of [0, a]
it exists ε > 0 such that supt≤a |ωt| ≤ r− ε. Now take n ∈ N greater than a;
we have

Dloc
∞ (ω, ω′) ≥ 2−n

supt∈[0,n] |ωt − ω′t|
1 + supt∈[0,n] |ωt − ω′t|

,

thus for δ = δ(ε, n) small enough the following implication holds:

Dloc
∞ (ω, ω′) < δ =⇒ sup

t∈[0,n]

|ωt − ω′t| < ε,

which means that ω′ ∈ {ω ∈ Ω : τ(ω) > a }.

Proposition 5. If Pεn → P weakly as n→∞, then

lim inf
n→∞

EPεn [τ ] ≥ EP [τ ] .

Proof. Let define for every k ∈ N the function

τk(ω) := inf
ω′∈Ω
{ τ(ω′) + k ·Dloc

∞ (ω, ω′) }.

Every τk is bounded continous and the sequence {τk}k∈N is clearly increasing.
By choosing ω′ = ω we get τk ≤ τ and by lower semicontinuity of τ the
sequence {τk}k∈N converges to τ . Hence for every n ∈ N and every k ∈ N:

EPεn [τ ] ≥ EPεn [τk]

Taking n→∞ we obtain:

lim inf
n→∞

EPεn [τ ] ≥ lim sup
n→∞

EPεn [τk] = EP [τk] .

We conclude by taking the limit for k → ∞ and by applying the Monotone
Convergence Theorem.
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Here we present the main idea of [1], which allows us to explicitely compute
some quantities related to τ giving lots of information about the limit points
of {Pε}ε∈(0,1) for ε → 0. Let r > 0 be as in section 2 and consider the
boundary value problem:{

ε2

2
φ′′ε(x) + b(x)φ′ε(x) = −1, x ∈ (−r, r)
φε(−r) = φε(r) = 0

(4)

Let φε be a C2 solution to (4). Let X(ε) on the space (E, E ,Q) be the solution

to (1) and define τ ε := inf{t ≥ 0 : |X(ε)
t | ≥ r}. Itô Formula applied to the

semimartingale X(ε) between time 0 and time t ∧ τ ε gives:

φε(X
(ε)
t∧τε) = φε(X

(ε)
0 ) +

∫ t∧τε

0

(
b(X(ε)

s )φ′ε(X
(ε)
s ) +

ε2

2
φ′′ε(X

(ε)
s )

)
ds

+

∫ t∧τε

0

εφ′ε(X
(ε)
s ) dBs.

Using that φε solves (4) and taking expectation with respect to the proba-
bility Q we get:

EQ
[
φε(X

(ε)
t∧τε)

]
= φε(0)− EQ [t ∧ τ ε] .

Being φε bounded, the preceding equation implies Q{τ ε = +∞} = 0. Hence
taking t → ∞ we obtain that the LHS tends to zero by Dominated Con-
vergence, while the RHS tends to φε(0)−EQ [τ ε] by Monotone Convergence.
Thus we have φε(0) = EQ [τ ε] and since the law of X(ε) is Pε we get the
fundamental identity:

φε(0) = EPε [τ ] .

Now observe that the general solution to (4) is φε(x) = c1 + c2Aε(x)−Bε(x),
where:

Aε(x) =

∫ x

0

exp

(
− 2

ε2

∫ y

0

b(u) du

)
dy,

Bε(x) =
2

ε2

∫ x

0

∫ x

y

exp

(
− 2

ε2

∫ u

y

b(z) dz

)
du dy,

and the constants c1 and c2 are given by:

c1 = c1(ε) = Bε(r)
−Aε(−r)

Aε(r)− Aε(−r)
+Bε(−r)

Aε(r)

Aε(r)− Aε(−r)
,

c2 = c2(ε) =
Bε(r)−Bε(−r)
Aε(r)− Aε(−r)

.
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Being Aε(0) = Bε(0) = 0 we deduce that EPε [τ ] = c1(ε). In a similar fashion,
if we consider instead the problem:

ε2

2
φ′′ε(x) + b(x)φ′ε(x) = 0, x ∈ (−r, r)

φε(−r) = 0
φε(r) = 1

we obtain:

Pε
{
ω ∈ Ω : τ(ω) < +∞, ωτ = r

}
=

−Aε(−r)
Aε(r)− Aε(−r)

,

and in the same way, interchanging boundary conditions:

Pε
{
ω ∈ Ω : τ(ω) < +∞, ωτ = −r

}
=

Aε(r)

Aε(r)− Aε(−r)
.

We conclude this section with a proposition which allows to transfer infor-
mation about Pε into information about any weak limit of Pε for ε→ 0.

Proposition 6. Let εn → 0 as n → ∞ and suppose that Pεn → P weakly;
then:

lim inf
n→∞

Pεn
{
τ < +∞, ωτ = r

}
≥ P

{
τ < +∞, ωτ = r

}
,

lim inf
n→∞

Pεn
{
τ < +∞, ωτ = −r

}
≥ P

{
τ < +∞, ωτ = −r

}
.

If moreover P{τ = +∞} = 0 one can replace the inequalities by equalities
and lim inf by lim.

Proof. Using the explicit descritption of section 2, it can be verified that
1{ τ<+∞, ωτ=r } and 1{ τ<+∞, ωτ=−r } are lower semicontinuous at every point
ω ∈ Ω solution to (2), then P-a.s. and the same proof of proposition 5 applies.
If moreover P{τ = +∞} = 0 then 1{ τ<+∞, ωτ=r } + 1{ τ<+∞, ωτ=−r } = 1 P-a.s.
and thus:

P
{
τ < +∞, ωτ = r

}
≤ lim inf

n→∞
Pεn
{
τ < +∞, ωτ = r

}
≤ lim sup

n→∞
Pεn
{
τ < +∞, ωτ = r

}
= 1− lim inf

n→∞
Pεn
{
τ < +∞, ωτ = −r

}
≤ 1− P

{
τ < +∞, ωτ = −r

}
= P

{
τ < +∞, ωτ = r

}
.

and the thesis follows from the equality:

lim inf
n→∞

Pεn
{
τ < +∞, ωτ = r

}
= lim sup

n→∞
Pεn
{
τ < +∞, ωτ = r

}
.
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4 Main theorem

In this section the main theorem of [1] is presented. It deals with the case
3 of proposition 3, where a twofold family of solutions to (2) exists. This
analysis relies on the description of solutions to (2) given in section 2 and
estimates on the expected value of τ following by the theory developed in
section 3. We will see how in the zero-noise limit the upper extremal solution
and the lower extremal solution to (2) are selected, due to their minimality
property. Explicit weights will be identified, depending on the behaviour of
Pε{ τ < +∞, ωτ = r } as ε→ 0. We begin with the following:

Lemma 7. Suppose that b(x) > 0 for x ∈ (0, r) (respectively b(x) < 0 for
x ∈ (−r, 0) ) and that for some δ > 0 the function

h(x) = min
y∈[x,x+δ]

b(y),

(
resp. k(x) = max

y∈[x−δ,x]
b(y)

)
is such that ∫ r

0

dx

h(x)
<∞,

(
resp.

∫ −r
0

dx

k(x)
<∞

)
.

Then

lim
ε→0

Bε(r) =

∫ r

0

dx

b(x)

(
resp. lim

ε→0
Bε(−r) =

∫ −r
0

dx

b(x)

)
.

Proof. We only consider the case b(x) > 0 for x ∈ (0, r), being the proof
identical in the other one. First of all, note that if the hypothesis of the
theorem hold with δ = δ0, then they also hold with every positive δ < δ0.
We want to study the behaviour as ε→ 0 of

Bε(r) =
2

ε2

∫ r

0

∫ r

y

exp

(
− 2

ε2

∫ u

y

b(z) dz

)
du dy

=
2

ε2

∫ r

0

∫ y+δ

y

exp

(
− 2

ε2

∫ u

y

b(z) dz

)
du dy

+
2

ε2

∫ r

0

∫ r

y+δ

exp

(
− 2

ε2

∫ u

y

b(z) dz

)
du dy

The latter integral tends to zero as ε → 0 because the integrand tends uni-
formly to zero; regarding the first one:∫ r

0

∫ y+δ

y

2

ε2
exp

(
− 2

ε2

∫ u

y

b(z) dz

)
du

=

∫ r

0

∫ y+δ

y

1

b(u)

2b(u)

ε2
exp

(
− 2

ε2

∫ u

y

b(z) dz

)
du.
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Since ∫ r

0

∫ y+δ

y

2b(u)

ε2
exp

(
− 2

ε2

∫ u

y

b(z) dz

)
du

= exp

(
− 2

ε2

∫ u

y

b(z) dz

) ∣∣∣∣∣
u=y

u=y+δ

= 1 + o(1)ε→0,

we have the following chain of inequalities:(
max

u∈[y,y+δ,]
b(u)

)−1

≤ lim inf
ε→0

∫ y+δ

y

2

ε2
exp

(
− 2

ε2

∫ u

y

b(z) dz

)
du

≤ lim sup
ε→0

∫ y+δ

y

2

ε2
exp

(
− 2

ε2

∫ u

y

b(z) dz

)
du

≤
(

min
u∈[y,y+δ,]

b(u)

)−1

and the result follows by taking δ → 0 and by Dominated Convergence (here
the hypothesis of integrability play a role in giving a domination for the
integrand).

Theorem 8. Suppose that xb(x) ≥ 0 in (−r, r) and H(−r) <∞,H(r) <∞;
in addition, suppose also that it exists δ > 0 such that the functions

h(x) = min
y∈[x,x+δ]

b(y), k(x) = max
y∈[x−δ,x]

b(y)

are such that ∫ r

0

dx

h(x)
<∞,

∫ −r
0

dx

k(x)
<∞.

Then every limit value of Pε, ε → 0, is concentrated on the upper extremal
solution and the lower extremal solution to (2) for a small time interval.

Proof. Observe that by Lemma 7 EPεn [τ ] is bounded and thus by proposition
5 we have P{τ = +∞} = 0. Therefore by proposition 6:

P{ωτ = r} = lim
n→∞

Pεn{ωτ = r} = lim
n→∞

−Aεn(−r)
Aεn(r)− Aεn(−r)

= p ∈ [0, 1].

Hence proposition 5 and Lemma 7 give:

EP [τ ] ≤ pH(r) + (1− p)H(−r).

Now observe that minimality property of upper and lower extremal solutions
implies that every probability P concentrated on the solutions of (2) and such
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that P{ωτ = r} = p and P{ωτ = −r} = 1 − p must necessarily satisfy the
opposite inequality, i.e.

EP [τ ] ≥ pH(r) + (1− p)H(−r).

The equality is possible only if, when restricted to a small time interval, the
probability P gives mass p to the upper extremal solution and mass 1− p to
the lower extremal solution, which proves our claim.

5 Some examples

In this section we are going to study some zero-noise limit as an application of
the results developed so far. By Theorem 8 we will need to compute certain
limits for ε→ 0 in order to completely characterize the probability for upper
and lower extremal solution to be selected, so the following Lemma will be
useful.

Lemma 9. Let B and G be strictly increasing functions on [0, r] with B(0) =
G(0) = 0 and limx→0B(x)/G(x) = 0. Suppose that there exists a function
h such that limδ→0 h(δ) = 0 and that for every δ > 0 and for every x in a
neighborhood of 0 (depending on δ) the inequality δG(x) ≤ G(h(δ)x) holds.
Then:

lim
ε→0

∫ r
0

exp
(
− 2
ε2
B(x)

)
dx∫ r

0
exp

(
− 2
ε2
G(x)

)
dx

= +∞. (5)

Proof. Since B and G are strictly increasing, by uniform convergence we
have:

lim
ε→0

∫ r
0

exp
(
− 2
ε2
B(x)

)
dx∫ r

0
exp

(
− 2
ε2
G(x)

)
dx

= lim
ε→0

∫ r′
0

exp
(
− 2
ε2
B(x)

)
dx∫ r′′

0
exp

(
− 2
ε2
G(x)

)
dx

for any r′ < r and r′′ < r. Fix now δ > 0 and r′ < r such that for every x < r′

the inequality B(x) ≤ δG(x) holds (this is possible because the hypothesis
on the limit of the ratio B(x)/G(x)), so that we get:∫ r′

0

exp

(
− 2

ε2
B(x)

)
dx ≥

∫ r′h(δ)

0

exp

(
− 2

ε2
G(y)

)
dy

h(δ)
,

by a change of variable argument. Thus the limit in (5) is greater than 1/h(δ)
for every δ > 0 and is therefore equal to +∞.

The same idea (and calculations) gives the following:
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Lemma 10. Let B and G be strictly increasing functions on [0, r] with
B(0) = G(0) = 0 and limx→0B(x)/G(x) = M ∈ R. Suppose that there
exists a continuous function h such that for every K > 0 there exists δ > 0
and two functions k1 and k2, depending on K and δ, such that limx→0 k1(x) =
limx→0 k2(x) = 1 and for every x ∈ [0, δ] the inequality k2(x)G(h(K)x) ≤
KG(x) ≤ k1(x)G(h(K)x) holds. Then:

lim
ε→0

∫ r
0

exp
(
− 2
ε2
B(x)

)
dx∫ r

0
exp

(
− 2
ε2
G(x)

)
dx

=
1

h(M)
.

Now we have all the machinery and we are ready for some concrete example.

Example 1.

b(x) =

{
c1x

α if x ≥ 0;
−c2(−x)α if x < 0,

with c1, c2 > 0 and α < 1. By Theorem 8 in the zero-noise limit extremal
solutions are selected, and weights are determined by the limit:

lim
ε→0

−Aε(−r)
Aε(r)− Aε(−r)

= lim
ε→0

∫ 0

−r exp
(
− 2
ε2

∫ y
0
b(u) du

)
dy∫ r

−r exp
(
− 2
ε2

∫ y
0
b(u) du

)
dy

= p.

Since: ∫ y

0

b(u) du =

{
c1

1+α
y1+α if y ≥ 0;

c2
1+α

(−y)1+α if y < 0,

we can rewrite p by a change of variable as:

1

p
= 1 + lim

ε→0

∫ r
0

exp
(
− 2
ε2

c1
1+α

y1+α
)
dy∫ r

0
exp

(
− 2
ε2

c2
1+α

y1+α
)
dy

and Lemma 10 finally gives that the probability p for the upper extremal
solution to be selected in the zero-noise limit equals:

p =
c

1
1+α

1

c
1

1+α

1 + c
1

1+α

2

.

Example 2.

b(x) =

{
−x 1

2 log(x) if x ≥ 0;

(−x)
1
2 log(sinx2) if x < 0,

Here the upper extremal solution is selected with probability:

p =
1

1 + 2
2
3

.
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Example 3.

b(x) =

{
c1x

α if x ≥ 0;
−c2(−x)β if x < 0,

with c1, c2 > 0 and α < β < 1. Here the same calculations and Lemma 9
give p = 1, regardless of the choice of coefficients c1 and c2.

Example 4.

b(x) =

{
xα if x ≥ 0;

0 if x < 0,

with α < 1. Here Theorem 8 does not apply, but comparison criterion for
SDEs gives that, when the noise ε is stricly positive, the unique solution to
this equation is greater or equal to the unique solution to the equation with
drift equal to (for instance):

b̃(x) =

{
xα if x ≥ 0;

−(−x)
1+α
2 if x < 0,

hence necessary also in this case the upper extremal solution is selected in
the zero-noise limit with probability p = 1.

References

[1] R. Bafico, P. Baldi, Small random perturbations of peano phenomena,
Stochastics, 6:3-4, p. 279-292, 1982.

[2] R. Buckdahn, M. Quincampoix, Y. Ouknine, On limiting values of
stochastic differential equations with small noise intensity tending to zero,
Bull. Sci. Math., 133, p. 229-237, 2009.

[3] P. Priouret, Processus de diffusion et équation différentielles stochas-
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