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0.1 Preface

These notes are the result of a Master thesis and a series of lectures given at Institute Henri
Poincaré on the occasion of the intensive research period "The Mathematics of Climate
and the Environment".



Chapter 1

Non-Autonomous Dynamical
Systems

1.1 Introduction

In the following, to avoid misunderstandings, we have to always keep in mind the distinction
between climate and climate models. When we say that climate is non-autonomous we do
not criticize the several autonomous climate models, which may be perfectly justified by
reasons of simplicity, idealization, interest in particular phenomena and so on.

Climate is non-autonomous. Solar radiation is the most obvious non-autonomous ex-
ternal input. It has a daily component of variability and an annual component. The annual
component can be considered periodic; the daily one also if the random effect of clouds
is not included in it, otherwise could be considered as a random rapidly varying input.
Another fundamental non-autonomous input is produced by biological systems, in partic-
ular the CO2 emission by humans in the last 150 years. The latter input is non-periodic,
it has an increasing trend with some small variations. Another non-autonomous input,
this time at the level of models instead of climate itself, is the randomization of sub-grid
processes, more diffi cult to explain in a few words but fundamental in modern numerical
codes; this randomization has usually a stationary character. We have thus exemplified
non-autonomous inputs of periodic, increasing and random type.

We thus have, in general, a multidimensional PDE system of the form

∂tu = Au+B (u) + C (u, q (t)) +D (u)
·
ω (t)

(other generic descriptions are equally meaningful at this informal level). We collected in
u (t) the state variables (wind velocity, temperature etc.) and in q (t) ,

·
ω (t) the time-varying

inputs, separting them, for conceptual convenience, in deterministic slowly varying terms
q (t) (anthropogenic factors, annual variation of solar radiation) and stochastic fast varying
terms

·
ω (t) assumed to be a - possibly state dependent - white noise in time (delay terms,
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2 CHAPTER 1. NON-AUTONOMOUS DYNAMICAL SYSTEMS

relevant, will be assumed of the form that allows to write the previous system enlarging
the set of variables u (t)).

It is then clear that we shall spend considerable effort to keep into account some degree
of non-autonomy of the dynamics. We shall discuss different levels, concentrating on the
one typical of autonomous Random Dynamical Systems (RDS) for the development of
rigorous results, but with the hope that this more general presentation and insistence on
the role of non-autonomous inputs will trigger more research on non-autonomous RDS.

1.2 Non autonomous dynamical systems: definition and ex-
amples

A relatively general mathematical scheme is made of a metric space (X, d) and a family of
maps

U (s, t) : X → X, s ≤ t
(to fix the ideas we assume for simplicity that time parameters s, t vary in R, but different
time sets can be considered), with the two properties U (s, s) = Id and U (r, t) ◦U (s, r) =
U (s, t), r ≤ s ≤ t and various possible regularity properties, like U (s, t) continuous in X,
for every s ≤ t.We shall always assume continuity. Thus let us formalize as a definition:

Definition 1 A (forward in time) Non Autonomous Dynamical System (NADS) (also
called an evolution operator) is a family of continuous maps indexed by two times

U (s, t) : X → X s ≤ t

with the rules

U (s, s) = Id for all s

U (r, t) ◦ U (s, r) = U (s, t) for all s ≤ r ≤ t.

Remark 2 Sometimes the definition of U (s, t) and the rules are required also for s > t;
in that case we have a NADS with forward and backward properties. This is the case of
finite dimensional systems and usually of hyperbolic problems. Since, however, we shall
deal most often with parabolic problems, we restrict the exposition to the forward-in-time
case.

Remark 3 The case, for T = [0,∞), of a family depending on a single time parameter

U (t) : X → X t ≥ 0

with the rules

U (0) = Id

U (t) ◦ U (s) = U (t+ s) for all s, t ≥ 0
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is a particular case, called simply a Dynamical System (DS). The correspondence with the
more general concept is

U (s, t) = U (t− s)

(check that the properties of U (s, t) are satisfied).

Example 4 Let b : T × Rd → Rd continuous and satisfying

|b (t, x)− b (t, y)| ≤ L |x− y| for all t ∈ T and x, y ∈ Rd.

For every s ∈ T , the Cauchy problem

X ′ (t) = b (t,X (t)) t ≥ s
X (s) = x

has a unique global solution of class C1
(
T ;Rd

)
(classical Cauchy-Lipschitz theorem). De-

note it by Xs,x (t). The map
x 7→ Xs,x (t)

is Lipschitz continuous (from Gronwall lemma). The family of maps

U (s, t) : Rd → Rd s ≤ t

defined as
U (s, t) (x) = Xs,x (t)

is a Lipschitz continuous NADS. Verification is a particular case of computations similar
to those of Proposition 42 below.

Example 5 Consider the stochastic equation in Rd

dXt = b (Xt) dt+ dWt

where b : Rd → Rd is Lipschitz continuous and Wt is a Brownian motion (BM) in Rd.
Let C0

(
R;Rd

)
be the space of continuous functions null at t = 0. Let us first define the

two-sided Wiener measure. Take, on some probability space, two independent copies of the
BM W , say W (i)

t , i = 1, 2; define the two-sided BM:

Wt = W
(1)
t for t ≥ 0, Wt = W

(2)
−t for t ≤ 0;

and call P its law, on Borel sets of C0

(
R;Rd

)
; this is the two-sided Wiener measure.

Now consider the canonical space Ω = C0

(
R;Rd

)
with Borel σ-field F and two-sided

Wiener measure P. On (Ω,F ,P) consider the canonical two-sided BM defined as

Wt (ω) = ω (t) ω ∈ C0

(
R;Rd

)
.
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Let us now interpret the stochastic equation in integral form on the canonical space:

Xt (ω) = x+

∫ t

s
b (Xr (ω)) dr + ω (t)− ω (s) .

Given ω ∈ C0

(
R;Rd

)
, we may solve uniquely this equation by the contraction principle,

first locally but then with global prolungation step by step, and construct a solution Xs,x
t (ω)

defined for all t, continuously dependent (in a Lipschitz way) on x. Again we set

U (s, t) (x) = Xs,x
t (ω) .

In this example the dynamical system is parametrized by ω, feature that we shall discuss
more extensively in later sections.

Example 6 On the torus T2 = R2/Z2 (just for simplicity) consider the Navier-Stokes
equations

∂tu (t, x) + u (t, x) · ∇xu (t, x) +∇xp (t, x) = ν∆xu (t, x) + f (t, x) (t, x) ∈ T × T2

divx u (t, x) = 0 (t, x) ∈ T × T2

with periodic boundary conditions, zero average, and the "initial" condition

u (s, x) = ϕ (x) .

Let H be the Hilbert space obtained as the closure in the L2-topology of C∞ periodic zero
average divergence free vector fields on T2. If

f ∈ L2
loc (T ;H) ϕ ∈ H

then there exists a unique weak solution, denoted by us,ϕ (t, x), with the property us,ϕ (t, ·) ∈
H and several others. The concept of weak solution of the 2D Navier-Stokes equations will
be explained later. The family of maps

U (s, t) : H → H s ≤ t

defined as
U (s, t) (ϕ) = us,ϕ (t, ·)

is a Lipschitz continuous NADS.

Example 7 On a smooth bounded open domain D ∈ R3 consider the diffusion equation

∂tθ (t, x) + u (t, x) · ∇xθ (t, x) = κ∆xθ (t, x) + f (θ (t, x)) +Q (t, x) (t, x) ∈ T ×D

where u is a velocity field, for instance solution of equations of Navier-Stokes type, f is a
nonlinear function, for instance

f (θ) = −Cθ4

and Q (t, x) is a time-dependent heat exchange, e.g. corresponding to solar radiation. Also
this equation generates a NADS in suitable function spaces. More details a due time.
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Can we introduce interesting dynamical concepts for such general objects? We discuss
(more or less everywhere in these lectures) mainly two concepts: attractors and measures
with suitable invariance properties. Behind these concepts there is invariance.

1.3 Invariance. Criticalities of the concept for NADS

In the autonomous case we say that a set A ⊂ X is invariant if

ϕt (A) = A for all t

(also the simpler property of positive invariance, ϕt (A) ⊂ A, sometimes is already quite
useful). To avoid trivialities (like ϕt (X) = X), one usually add the requirement of bound-
edness or compactness of invariance sets. This identifies a notion, for instance compact
invariant set, which is already quite useful and interesting. A probability measure µ is
invariant if

(ϕt)] µ = µ for all t

where ] stands for the push-forward ((ϕt)] µ is the probability measure defined by
(

(ϕt)] µ
)

(B) =

µ
(
ϕ−1
t (B)

)
for all Borel sets B). Being a probability measure implies it is almost sup-

ported on compact sets (in the sense of tightness), hence it incorporates a requirement
similar to the boundedness or compacteness of invariant sets.

In the non-autonomous case, invariance can be defined (presumably) only in the fol-
lowing way (we add compactness to go faster to the main points):

Definition 8 A family of sets {At ⊂ X, t ∈ R} is called a compact invariant set for U (s, t)
if At is compact for every t and

U (s, t)As = At for all s ≤ t.

A family of Borel probability measures {µt, t ∈ R} is invariant for U (s, t) if

U (s, t)] µs = µt for all s ≤ t.

Apparently they look similar to the autonomous case but they are almost empty con-
cepts, satisfied by trivial object of no long-time interest: assume the dynamics can be
run both forward and backward globally in time - as it is for usual ordinary differential
equations) and let

x (t) , t ∈ R

be a trajectory. It satisfies
U (s, t)x (s) = x (t)
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and thus the singleton {x (t)} is a compact invariant set; the same for any suitable bunches
of trajectories. Let {µt, t ∈ R} be simply defined by

µt = δx(t).

It is an invariant measure. This genericity is very far from the specificity of invariant sets
and measures of the autonomous case!

Example 9 Consider the equation

x′ (t) = −x (t) + f (t) , t ≥ s and t < s

x (s) = x0
s

with a given initial condition x0
s and a continuous function f . Its solution is

x (t) = e−(t−s)x0
s +

∫ t

s
e−(t−r)f (r) dr

=: e−(t−s)x0
s + xs (t) .

This is an example of full-time trajectory, hence {x (t)} is an invariant set, supporting a
delta Dirac invariant measure µt = δx(t); and this independently of the choice of s and x0

s.

Example 10 There is however a special case of the following example: the function

x−∞ (t) :=

∫ t

−∞
e−(t−r)f (r) dr

when defined, for instance when f has at most polynomial growth at −∞. This function
satisfies the differential equation, the singleton {x−∞ (t)} is an invariant set but it has
something special, intuitively speaking. For instance: assume f = 1 for simplicity; then the
function x−∞ (t) = 1, it is also bounded, but the other solutions above are all unbounded
as t→ −∞ except when x0

s = 1 (which is the case of x−∞ (t)).

The way to focus on interesting objects is to require, as in the previous example, that
they come from bounded elements at "time −∞". One can formulate several conditions;
let us focus first on the concept of global attractors.

Remark 11 Also in the autonomous case it happens for many examples that invariant sets
and invariant measures are non unique but this corresponds to interesting different long
time objects of the dynamics. In the example above the non-uniqueness is simply related to
different initial conditions, in spite of the fact that all trajectories tend to approach each
other when time increases. Thus it is an artificial non-uniqueness due to a drawback of the
concept.
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1.4 Global attractor and omega-limit sets

What does it mean that a set attracts others in the non-autonomous case?

Definition 12 We say that A (t) attracts B at time t if for every ε > 0 there exists s0 < 0
such that for all s < s0 we have

U (s, t) (B) ⊂ Uε (A (t)) .

We say that a family of sets {A (t) , t ∈ R} attracts B if the set A (t) attracts B at time t,
for every t ∈ R.

This definition can be formulated by means of the non-symmetric distance between
sets. Given A,B ⊂ X define

d (B,A) = sup
x∈B

d(x,A)

where d(x,A) = inf
y∈A

d(x, y).

Then A (t) attracts B if
lim

s→−∞
d (U (s, t) (B) , A (t)) = 0.

Definition 13 We call pull-back omega-limit set of B at time t the set

Ω (B, t) =
⋂
s0≥0

⋃
s≤s0

U (s, t) (B)

= {y ∈ X : ∃xn ⊂ B, sn → −∞, U (sn, t) (xn)→ y} .

Notice that obviously it can be an empty set.

Proposition 14 A (t) attracts B if and only if Ω (B, t) ⊂ A (t).

Proof. Let us prove that if A (t) attracts B then Ω (B, t) ⊂ A (t). Take y ∈ Ω (B, t) and
xn ∈ B, sn → −∞ such that

U (sn, t) (xn)→ y.

We have U (sn, t) (xn) ∈ Uε (A (t)) eventually, hence y is in the closure of Uε (A (t)). By
arbitrariety of ε, y ∈ A (t).

Let us prove the converse statement by contradiction. Assuming that A (t) does not
attract B means that there exists ε > 0 such that, for every s0 < 0 there exists s < s0

and x ∈ B such that U (s, t) (x) /∈ Uε (A (t)). We can thus construct a sequence with this
property so that a point y ∈ Ω (B, t) does not belong to Uε (A (t)). This contradicts the
assumption.

Below we give the definition of compact absorbing family; we anticipate here for com-
pactness of exposition a criterium partially based on such a concept.
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Proposition 15 In general,

U (s, t) Ω (B, s) ⊂ Ω (B, t) .

If there is a compact absorbing family, then

U (s, t) Ω (B, s) = Ω (B, t) .

Proof. Take y ∈ Ω (B, t) and xn ∈ B, sn → −∞ such that

U (sn, s) (xn)→ y.

Then
U (sn, t) (xn) = U (s, t)U (sn, s) (xn)→ U (s, t) y

namely U (s, t) y ∈ Ω (B, t), i.e. U (s, t) Ω (B, s) ⊂ Ω (B, t). Conversely, take z ∈ Ω (B, t)
and xn ∈ B, sn → −∞ such that

U (sn, t) (xn)→ z.

Then
U (s, t)U (sn, s) (xn)→ z.

The existence of a compact absorbing set implies that U (sn, s) (xn) is included, eventually,
in a compact set, hence there is a convergent subsequence U (snk , s) (xnk) → y, hence
y ∈ Ω (B, s) and z = U (s, t) y, therefore Ω (B, t) ⊂ U (s, t) Ω (B, s).

Definition 16 Given the NADS

U (s, t) : X → X s ≤ t, s, t ∈ R

we say that a family if sets
A (t) t ∈ R

is a pull-back global compact attractor (PBCGA) if:
i) A (t) is compact for every t ∈ R
ii) A (·) is invariant: U (s, t) (A (s)) = A (t) for every s ≤ t, s, t ∈ R
iii) A (·) pull-back attracts bounded sets:

Ω (B, t) ⊂ A (t)

for all bounded set B ⊂ X.

Remark 17 The climate we observe today is the result of a long time-evolution of some
(unknown) initial condition. We thus observe configurations in the pull-back attractor.
This is why the notion is at the core of conceptual climatology.
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Example 18 Consider again Example 9, with f bounded (one can consider a more general
case). The singleton {x−∞ (t)} is a compact global attractor, while each other invariant set
of the form {x (t)} (or compact unions of such sets not containing {x−∞ (t)}, see Section
1.6) is not. What distinguishes the two cases is only property (iii). Take a bounded set B.
Then

U (s, t) (B) =
{
e−(t−s)x0

s + xs (t) ;x0
s ∈ B

}
where

xs (t) =

∫ t

s
e−(t−r)f (r) dr

We have

d (U (s, t) (B), {x−∞ (t)}) = sup
x0s∈B

d
(
e−(t−s)x0

s + xs (t) , x−∞ (t)
)

≤ e−(t−s) sup
x0s∈B

∣∣x0
s

∣∣+ |xs (t)− x−∞ (t)|

which is easily seen to go to zero as s → −∞. On the contrary, taken x0
0 6= x−∞ (0), we

have

d
(
U (s, t) (B),

{
e−tx0

0 + x0 (t)
})

= sup
x0s∈B

d
(
e−(t−s)x0

s + xs (t) , e−tx0
0 + x0 (t)

)
= sup

x0s∈B

∣∣∣e−(t−s)x0
s + xs (t)− e−tx0

0 − x0 (t)
∣∣∣

= sup
x0s∈B

∣∣∣e−(t−s)x0
s + (xs (t)− x−∞ (t))− e−t

(
x0

0 − x−∞ (0)
)∣∣∣

where we have used
x−∞ (t) = e−tx−∞ (0) + x0 (t) .

The quantities supx0s∈B
∣∣e−(t−s)x0

s

∣∣ and |xs (t)− x−∞ (t)| converge to zero as s→ −∞ while
the quantity e−t

(
x0

0 − x−∞ (0)
)
is not zero and independent of s. Hence the distance above

does not tend to zero as s→ −∞.

1.5 A criterium for existence of global attractor

Definition 19 A family of sets D (t), t ∈ R is called a bounded (resp. compact) pull-back
absorbing family if:

i) D (t) is bounded (resp. compact) for every t ∈ R
ii) for every t ∈ R and every bounded set B ⊂ X there exists tB < t such that

U (s, t) (B) ⊂ D (t) for every s < tB.
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Theorem 20 Let U (s, t) be a continuous NADS. Assume that there exists a compact pull-
back absorbing family. Then a PBCGA exists.

In infinite dimensional examples of parabolic type the existence of a compact absorbing
family is usually proved by means of the following lemma; hence what we usually apply in
those examples is the next corollary.

Lemma 21 Let U (s, t) be a continuous NADS. Assume that:
i) (compact NADS) for every t and bounded set B ⊂ X, the set U (t, t+ 1) (B) is

compact
ii) there exists a pull-back absorbing family.
Then there exists a compact pull-back absorbing family.

Proof. Call D (t) the (bounded) absorbing family. Set D′ (t) = U (t− 1, t) (D (t− 1)). It
is easy to check that this is a compact absorbing family.

Remark 22 In the compactness assumption for U (t, t+ 1) the time lag 1 is obviously ar-
bitrary. Over this remark and the peculiarities of certain examples, the literature developed
a more general criterium based on asymptotic compactness.

Corollary 23 Let U (s, t) be a continuous NADS. Assume that:
i) (compact NADS) for every t and bounded set B ⊂ X, the set U (t, t+ 1) (B) is

compact
ii) there exists a pull-back absorbing family.
Then a PBCGA exists.

Example 24 We show by a simple example that the property of pull-back absorbing set
can be verified in examples. Consider, over all t ∈ R, the equation

X ′ (t) = f (t)X (t)−X3 (t)

where f (t) is a given bounded function. In the following arguments we can think that we
work on a "pull-back" interval [s, t] or equivalently on a standard forward interval [0, T ]:
the bounds are the same, depending only on ‖f‖∞.

We prove now that a pull-back absorbing family exists, made of a single bounded set
(hence backward frequently bounded); in finite dimensions the closure of a bounded set is
compact, hence a PBCGA exists.

Let us investigate the time-evolution of the "energy" of a solution:

d

dt
X2 = 2XX ′ = −2f (t)X2 − 2X4 ≤ 2 ‖f‖∞X

2 − 2X4.
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What counts is the strong dissipation for large values of |X| provided by the term −2X4;
the term 2 ‖f‖∞X2 may complicate the dynamics in a bounded region around the origin
but not "at infinity". One way to capture rigorously these features is to estimate

2 ‖f‖∞X
2 − 2X4 ≤ C −X4

for some C = C (‖f‖∞) > 0, then reducing the inequality to

d

dt
X2 ≤ C −X4

(this step is not really necessary, one can work with the original inequality). Let y (t) (for
us = X2 (t)) be a non negative differentiable functions which satisfies, for every t ≥ 0,

y′ (t) ≤ C − y2 (t) .

A simple picture immediately clarifies the result. Since the function y 7→ C − y2 (t), for

y ≥ 0, is positive in the interval
(

0,
√
C
)
, negative for y >

√
C, the same happens to

y′ (t). Therefore, if y (0) ∈
[
0,
√
C
]
, we can show that y (t) ∈

[
0,
√
C
]
for every t ≥ 0. If

y (0) >
√
C, y (t) decreases until y (t) >

√
C. More precisely, if y (0) ∈

[
0,
√
C + 1

]
, then

y (0) ∈
[
0,
√
C + 1

]
for every t ≥ 0; if y (0) >

√
C + 1, in a finite time depending on y (0)

the function y (t) enters
[
0,
√
C + 1

]
and then (for what already said) it never leaves it.

Translated to X (t): the ball B
(

0,
√
C + 1

)
is an absorbing set.

Proof. (Proof of Theorem 20) Set

A (t) =
⋃

B bounded

Ω (B, t).

Let us prove it fulfills all properties of a PBGCA. By definition, Ω (B, t) ⊂ A (t), hence we
have pull-back attraction.

From property (ii) of absorbing set,

Ω (B, t) ⊂ D (t)

for every t and every bounded set B. In particular,⋃
B bounded

Ω (B, t) ⊂ D (t) = D (t) .

Hence A (t) ⊂ D (t) namely it is compact (being closed subset of a compact set).
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Let us prove forward invariance. It will be an easy consequence of the forward invariance
of omega-limit sets: U (s, t) Ω (B, s) ⊂ Ω (B, t). It implies⋃

B bounded

U (s, t) Ω (B, s) ⊂
⋃

B bounded

Ω (B, t) = A (t) .

We always have the set-theoretical property

U (s, t)

( ⋃
B bounded

Ω (B, s)

)
⊂

⋃
B bounded

U (s, t) Ω (B, s)

hence we have proved that

U (s, t)

( ⋃
B bounded

Ω (B, s)

)
⊂ A (t) .

But, by continuity of U (s, t) and definition of A (s) we have

U (s, t)A ((s)) = U (s, t)

( ⋃
B bounded

Ω (B, s)

)
⊂ U (s, t)

( ⋃
B bounded

Ω (B, s)

)
which implies

U (s, t)A ((s)) ⊂ A (t) .

The opposite inclusion
A (t) ⊂ U (s, t)A ((s))

is the most tricky step of the proof. Let z ∈ A (t). There exists a sequence of bounded sets
Bn and points zn ∈ Ω (Bn, t) such that

z = lim
n→∞

zn.

Each zn is equal to
zn = lim

k→∞
U (snk , t) (xnk)

where limk→∞ s
n
k = −∞ and (xnk)k∈N ⊂ Bn. Hence

zn = lim
k→∞

U (s, t) (U (snk , s) (xnk)) = lim
k→∞

U (s, t) (ynk )

ynk := U (snk , s) (xnk) .

The existence of a compact absorbing set D (s) implies that there exists a subsequence(
ynknm

)
m∈N

with a limit

yn = lim
m→∞

ynknm

yn ∈ D (s) .
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Then, by continuity of U (s, t),
zn = U (s, t) yn.

Again by compactness of D (s) there is a subsequence (ynj )j∈N with a limit y ∈ D (s). By
continuity of U (s, t),

z = U (s, t) y.

It remains to check that y ∈ A (s). Due to the closure in the definition of A (s), it is
suffi cient to prove that ynj ∈ A (s). Looking at the definition of ynknm , we see that its limit
(in m) yn is in Ω (Bn, s), hence in A (s).

1.6 On the uniqueness of the global attractor

The attraction property has a strong power of identification, with respect to the poor
property of invariance. However, given a global attractor A (t) we may always add to it
trajectories {x (t)} and still have all properties, because compactness and invariance are
satisfied and attraction continue to hold when we enlarge the attracting sets. One way
to escape this artificial non-uniqueness is by asking a property of minimality. We call it
so because of the use in the literature of attractors, although minimal in set theory is a
different notion.

Definition 25 We say that a global compact attractor A (t) is minimal if any other global
compact attractor A′ (t) satisfies

A (t) ⊂ A′ (t)

for all t ∈ R.

When it exists, the minimal global compact attractor is obviously unique.

Proposition 26 Under the assumptions of Theorem 20, the attractor

A (t) =
⋃

B bounded

Ω (B, t)

is minimal.

Proof. If A′ (t) is a global attractor, it includes all omega-limit sets, hence it includes
(being closed) A (t).

The previous solution of the uniqueness problem is very simple and effi cient under the
assumptions of Theorem 20, which are those we verify in examples. However, at a more
conceptual level one could ask whether there are cses when we can establish uniqueness
from the definition itself. Indeed, in the autonomous case (see for instance the first chapter
of [49]) it is known that the analogous concept is unique as an immediate consequence of



14 CHAPTER 1. NON-AUTONOMOUS DYNAMICAL SYSTEMS

the definition, because the attractor is itself a bounded set and the attraction property of
bounded sets easily implies uniqueness.

We thus mimic the autonomous case by a definition and a simple criterium.

Definition 27 A family of compact sets A (t), t ∈ R, is called backward frequently bounded
if there is a bounded set B and a sequence sn → −∞ such that A (sn) ⊂ B for every n ∈ N.

Proposition 28 In the category of backward frequently bounded families, the PBCGA is
unique, when it exists.

Proof. Assume A (·) and Ã (·) are two PBCGA, both backward frequently bounded and
let B be a bounded set and sn → −∞ be a sequence such that A (sn) ⊂ B for every n ∈ N.
Take z ∈ A (t) and, thanks to property U (sn, t)A (sn) = A (t), let xn ∈ A (sn) be such
that U (sn, t)xn = z. We have xn ∈ B. Hence we have

z ∈ {y ∈ X : ∃xn ⊂ B, sn → −∞, U (sn, t) (xn)→ y} .

This proves
A (t) ⊂ Ω (B, t) .

But
Ω (B, t) ⊂ Ã (t)

hence
A (t) ⊂ Ã (t) .

The converse is also true, hence the two families coincide.

Example 29 In Example 9 with f bounded, both {x−∞ (t)} and any compact invariant
set containing {x−∞ (t)} is a compact global attractor. But only {x−∞ (t)} is backward
frequently bounded.

1.7 Invariant measures: attempts of qualifications to reduce
non-uniqueness

For invariant measures it is more diffi cult to remedy the criticalities in the definition of
invariance. Already in the case of autonomous systems, the global compact attractor is
unique but invariant measures are not - without this fact being a pathology; for instance any
system with multiple equilibria has a dirac Delta invariant measure for each equilibrium,
plus their convex combinations. Therefore it is necessary to accept some degree of non-
uniqueness, intrinsic of the dynamics; but we would like to eliminate the artificial non-
uniqueness caused by the poor definition. How to separate these two different sources of
non-uniqueness?
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The idea, supported by physical meaning, is always looking for objects, at time t, which
come from visible objects at time −∞. Call P (X) the set of Borel probability measures
on X.

Definition 30 We say that a time-dependent probability measure µt, invariant for U (s, t),
is the time-development of ρ ∈ P (X) if

lim
s→−∞

U (s, t)] ρ = µt for all t ∈ R.

We say it is the average-time-development if

lim
T→+∞

1

T

∫ t

t−T
U (s, t)] ρds = µt for all t ∈ R.

When one or the other of these concepts hold only up to a subsequence, we say that µt is
a (average-) time-development up to a subsequence.

In the previous definitions the limits are understood in the weak sense: for every φ ∈
Cb (X) we have

lim
s→−∞

∫
X
φ (U (s, t)x) ρ (dx) =

∫
X
φ (y)µt (dy)

in the first case (time-development) and

lim
T→+∞

1

T

∫ t

t−T

∫
X
φ (U (s, t)x) ρ (dx) ds =

∫
X
φ (y)µt (dy)

in the second case (average-time-development); we have also used the theorem on trans-
formation of integrals on the left-hand-side of these reformulations.

In a later chapter we shall also discuss the very important concept of physical measure,
which relates to the concept of time-development of a measure ρ, but with a further speci-
fication about ρ. Time-developments and physical measures are the most important ones,
those which really capture essential features of the dynamics.

Remark 31 It is possible to formulate general existence theorems for invariant measures,
based on the existence of compact global attractors (als in the non autonomous case). How-
ever, this is a very poor information opposite to attractor, because of the non-uniqueness
just mentioned. Using the concept of compact absorbing set, there is a chance to prove a
general theorem about existence of average-time-development measures up to subsequences,
in the spirit of Krylov-Bogoliubov argument, for every a priori given ρ ∈ P (X). However,
stronger results are missing in full generality on the NADS. The additional structure of
RDS illustrated in the next sections will be fundamental to reach a first relevant result on
time-development of suitable measures ρ ∈ P (X).
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1.8 Separation between non-autonomous input and autonomous
dynamics: cocycles

In all examples of non-autonomous sources described above for climate - perhaps with the
exception of certain sub-grid models, but this is not very clear - the non-autonomy is not
in the structural aspect of the dynamics itself, but it is due to some external time-varying
input. A way to account for this fact is to introduce a separate structure for the input and
a sort of autonomous dynamical system for the dynamics.

The time-varying input is described either by a single function

ω : R→Y

(Y is a set) and all its translations

Ω = {θtω; t ∈ R}

where θtω : R→Y is defined as

(θtω) (r) = ω (t+ r)

or more generally by a set Ω and a group of transformations θt : Ω→ Ω,

θ0 = Id

θt+s = θt ◦ θs.

The dynamics is described by a family of continuous maps ϕt (ω) : X → X parametrized
by elements ω ∈ Ω.

Definition 32 A dynamical system over the structure
(
Ω, (θt)t∈R

)
is a family of continu-

ous maps
ϕt (ω) : X → X

satisfying the cocycle properties

ϕt+s (ω) = ϕs (θtω) ◦ ϕt (ω)

ϕ0 (ω) = Id

for all values of the parameters.
When (Ω,F ,P) is a probability space, θt are measurable transformations and P is invari-

ant under θt (in such a case we say that
(
Ω,F ,P, (θt)t∈R

)
is a metric dynamical system),

and ϕ is a strongly measurable map, and the previous identities are asked to hold for P-a.e.
ω, we say that ϕt (ω) is a Random Dynamical System (RDS).
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We have been intentionally vague in qualifying whether the identities hold P-a.s. uni-
formly in the time parameters or not. The easy case for the development of the theory
is when they hold uniformly, which is however more diffi cult to check in examples; many
results may be extended to the case when the null sets may depend on parameters. We
address Chapter 3 for precise results.

A basic question is whether the two schemes, NADS and cocycles, are equivalent. The
answer is that cocycles are richer structures.

Proposition 33 Given a dynamical system ϕt (ω) over the structure
(
Ω, (θt)t∈R

)
, given

ω ∈ Ω, the family of maps
Uω (s, t) : X → X s ≤ t

defined by
Uω (s, t) = ϕt−s (θsω)

is a non-autonomous dynamical system.

Proof. Clearly continuity holds as well as Uω (s, s) = Id. For s ≤ r ≤ t we have

Uω (r, t) ◦ Uω (s, r) = ϕt−r (θrω) ◦ ϕr−s (θsω)

= ϕt−r (θr−sθsω) ◦ ϕr−s (θsω)

= ϕt−s (θsω) .

Conversely, given a NADS, let us see whether we can define a cocycle. The definition
of ϕt (ω) is obvious:

ϕt (ω) = Uω (0, t) .

However, the family Uω (s, t) does not incorporate information about (θt)t∈R. The group
must be given; but then it is necessary to ask a compatibility rule with Uω (s, t) to deduce
the cocycle property.

Proposition 34 Let Uω (s, t) be a NADS parametrized by ω in a structure
(
Ω, (θt)t∈R

)
.

Assume
Uθtω (0, s) = Uω (t, t+ s) .

Then ϕt (ω) := Uω (0, t) satisfies the cocycle property. The condition is also necessary;
more generally it holds

Uθrω (s, t) = Uω (s+ r, t+ r) . (1.1)

It follows from the identities

ϕs (θtω) ◦ ϕt (ω) = Uθtω (0, s) ◦ Uω (0, t)

ϕt+s (ω) = Uω (0, t+ s) .
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Formula (1.1) follows from

Uθrω (s, t) = ϕt−s (θsθrω) = ϕt+r−(s+r) (θs+rω) = Uω (s+ r, t+ r) .

Therefore the cocycle structure is richer than NADS and may produce stronger results.
We have to check it holds in examples and, as already said, it holds when the source of
non-autonomy is external to an autonomous dynamics, as it is in all our examples.

Let us make two different examples of metric dynamical system
(
Ω,F ,P, (θt)t∈R

)
. In

the next section we write a detailed example of random dynamical system ϕt (ω).

Example 35 On the canonical two-sided Wiener space defined in Example 5 consider the
"shift"

θt (ω) = ω (t+ ·)− ω (t)

for every ω ∈ C0

(
R;Rd

)
. By known properties of Brownian motion it follows (θt)] P = P.

Indeed, if (Xt)t∈R is a two-sided BM with law P, we have

θt (X·) (r) = Xt+r −Xt

which is a new two-sided Brownian motion.

Example 36 On C
(
R;Rd

)
consider the ordinary shift

θt (ω) = ω (t+ ·) .

Given a two-sided Brownian motion (Xt)t∈R and two strictly positive numbers λ, σ, define
(Yt)t∈R as

Yt =

∫ t

−∞
e−λ(t−s)σdXs

which can be also defined by integration by parts, to avoid stochastic integrals. One can
prove it is pathwise well defined and it is a stationary Gaussian process, solution of

dYt = −λYtdt+ σdXt.

Call P its law; by stationarity, we have (θt)] P = P for every t ∈ R.

1.9 Improvement of the invariance concept for cocycles

It is apparently a simple exercise to reformulate invariance and attraction in this new
language. However, there is a surprise. Let us start with invariant set, parametrizing by
ω: a family of sets {At (ω) ⊂ X, t ∈ R} such that

Uω (s, t)As (ω) = At (ω) for all s ≤ t.
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Therefore the reformulation is

ϕt−s (θsω)As (ω) = At (ω) for all s ≤ t.

namely, changing times,

ϕt (θsω)As (ω) = At+s (ω) for all t ≥ 0 and all s;

in particular,
ϕt (ω)A0 (ω) = At (ω) for all t ≥ 0.

Until now nothing has changed. But now we can ask more: that

At (ω) = A0 (θtω) (1.2)

in which case the condition becomes

ϕt (ω)A0 (ω) = A0 (θtω) for all t ≥ 0.

The new condition (1.2) is not automatically satisfied. It is a sort of θt-stationarity of the
random set A0 (ω).

Definition 37 Given a dynamical system ϕt (ω) over the structure
(
Ω, (θt)t∈R

)
, we say

that a set A (ω) parametrized by ω ∈ Ω is invariant if

ϕt (ω)A (ω) = A (θtω) for all t ≥ 0.

Moreover, we say that a Borel probability measure µ (ω) parametrized by ω ∈ Ω is
invariant if

ϕt (ω)] µ (ω) = µ (θtω) for all t ≥ 0.

Proposition 38 If A (ω) (resp. µ (ω)) is invariant for ϕt (ω), then

At (ω) := A (θtω)

(resp. µt (ω) := µ (θtω)) is invariant for Uω (s, t).

Proof. We have, for all s ≤ t,

Uω (s, t)As (ω) = ϕt−s (θsω)A (θsω)

= A (θt−sθsω)

= At (ω) .
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Example 39 Consider the random dynamical system ϕ of example 57 below, associated
to the stochastic equation

dXt = −αXtdt+ σdWt.

For almost every ω, the integral

x0(ω) = −
∫ 0

−∞
αeαsσω(s)ds

is convergent, as a consequence of the fact that, for almost every ω, Wt
t converges to 0 as t

goes to infinity (see for example [32], problem 9.3). We show that {x0 (ω)} is an invariant
set, and then the random measure δx0(ω) is invariant for ϕ. Comparing with example 18,
we see that the new notion of invariance capture the same property of attractors, at least
in this particular case. We have

ϕ(t, ω)x0(ω) = e−αtx0(ω) + σω(t)−
∫ t

0
αe−α(t−s)σω(s)ds

= −
∫ 0

−∞
αe−α(t−s)σω(s)ds+ σω(t)−

∫ t

0
αe−α(t−s)σω(s)ds

= −
∫ t

−∞
αe−α(t−s)σω(s)ds+ σω(t)

= −
∫ 0

−∞
αeαsσω(t+ s)ds+ σω(t)

(∫ 0

−∞
αeαsds

)
= −

∫ 0

−∞
αeαsσ(ω(t+ s)− ω(t))ds = x0(θtω).

The compact global attractor constructed by Theorem 20 is invariant in this new sense,
when the NADS comes from a cocycle.

Theorem 40 Let ϕt (ω) be a cocycle over
(
Ω, (θt)t∈R

)
, and let

Uω (s, t) = ϕt−s (θsω)

be the associated NADS. Let At (ω) be the minimal global compact attractor associated to
Uω (s, t). Then it holds (1.2), which implies that A0 (ω) is invariant for the cocycle, in the
sense of Definition ??.

Proof. We prove the analog of (1.2) for the omega-limit sets:

Ωt (B,ω) = Ω0 (B, θtω) .

By definition of At (ω), it follows (1.2). The identity of omega-limit sets is due to the
following fact. The set Ωt (B,ω) is made of points y such that there exist xn ∈ B, sn → −∞
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such that Uω (sn, t)xn → y. The set Ω0 (B, θtω) is made of points y′ such that there exist
x′n ∈ B, s′n → −∞ such that Uθtω (s′n, 0)x′n → y′. But the latter formula, from (1.1), can
be rewritten as Uω (s′n + t, t)x′n → y′. Thus (renaming sn = s′n + t) we see that the two
conditions are equivalent, they define the same set.

The theory in the case of RDS will be explicitly developed in Chapter 3. In the next
section we describe a non-autonomous version. Since the examples we have in mind allow
to use the description based on the group θt, we use it having verified that it augments the
richness of the theory.

1.10 Non-autonomous RDS (naRDS)

An RDS as defined above is a non-autonomous system. However, we shall call it an au-
tonomous RDS. The attribute of autonomous refers to the fact that ϕt is time-independent.
For applications to climatology the most interesting scheme would be to put into ω the
fast varying sources of time-variation, stationary or with stationary increments, but con-
sidering also slowly varying ones, which may be periodic (annual solar radiation) or have
a trend (CO2). Thus we need a concept of non-autonomous Random Dynamical Systems
(naRDS). The generic equation we have in mind has the form

∂tu = Au+B (u) + C (u, q (t)) +D (u)
·
ω (t)

where q is the slowly varying term and
·
ω is white noise.

Definition 41 A non-autonomous Random Dynamical System (naRDS) is made of two
input structures and a cocycle over their product. Precisely, the two input structures are(

Q, (ϑt)t∈R
)
,
(
Ω,F ,P, (θt)t∈R

)
where Q, Ω are sets, (ϑt)t∈R is a group of transformations of Q,

(
Ω,F ,P, (θt)t∈R

)
is a

metric dynamical system, to which we associate the product space

Γ = Q× Ω γ = (q, ω) ∈ Y

and the group of transformations

Θt : Γ→ Γ Θt (q, ω) = (ϑtq, θtω) .

The cocycle over
(
Γ, (Θt)t∈R

)
is a family of maps on a metric space (X, d)

ϕt (γ) : X → X

such that

ϕ0 = Id

ϕt+s (γ) = ϕs (Θtγ) ◦ ϕt (γ)

for all values of the parameters.
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In the finite dimensional case, this is a quite generic structure. Using the theory of
stochastic flows, it is not necessary to restrict to special noise. Let us however illustrate by
a simple example with additive noise the definition, to put hands in a concrete example.

Proposition 42 Let b : Rm × Rd → Rd continuous and satisfying

|b (a, x)− b (a, y)| ≤ L |x− y| for all a ∈ Rm and x, y ∈ Rd.

Let q ∈ C (R;Rm). Consider the non-autonomous stochastic equation

dXt = b (q (t) , X (t)) dt+ dWt

where Wt is a Brownian motion in Rd. It generates a naRDS.

Proof. This equation can be easily solved by usual stochastic methods. For the purpose
of introducing the associated naRDS we interpret this equation pathwise: for every ω ∈
C
(
R;Rd

)
we consider the integral equation

x (t) = x0 +

∫ t

0
b (q (s) , x (s)) ds+ ω (t) .

By classical contraction principle one can easily prove it has a unique solution

xq,ω,x0 ∈ C
(
R;Rd

)
.

Then we set
Q = C (R;Rm) ϑtq = q (t+ ·)

Ω = C
(
R;Rd

)
θtω = ω (t+ ·)− ω (t)

F = Borel σ field of Ω, P = two-sided Wiener measure;

ϕt (q, ω) (x0) = xq,ω,x0 (t) .

In other words, with the notation γ = (q, ω),

ϕt (γ) (x0) = x0 +

∫ t

0
b (q (s) , ϕs (γ) (x0)) ds+ ω (t) .

In order to say that this example satisfies the abstract properties of a naRDS we have
to check a few conditions. Group properties of shifts are obvious; property (θt)] P = P was
already discussed above. We have to prove the cocycle property

ϕt+s (γ) = ϕs (Θtγ) ◦ ϕt (γ) .
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We have

ϕt+s (γ) (x0) = x0 +

∫ t+s

0
b (q (r) , ϕr (γ) (x0)) dr + ω (t+ s)

= x0 +

∫ t

0
b (q (r) , ϕr (γ) (x0)) dr + ω (t)

+

∫ t+s

t
b (q (r) , ϕr (γ) (x0)) dr + ω (t+ s)− ω (t)

= ϕt (γ) +

∫ t+s

t
b (q (r) , ϕr (γ) (x0)) dr + (θtω) (s)

r=t+u
= ϕt (γ) +

∫ s

0
b ((ϑtq) (u) , ϕt+u (γ) (x0)) du+ (θtω) (s)

hence we see that
z (s) := ϕt+s (γ) (x0) s ≥ 0

satisfies

z (s) = z0 +

∫ s

0
b (q∗ (u) , z (u)) du+ ω∗ (s)

where z0 = ϕt (γ), q∗ (u) = (ϑtq) (u), ω∗ (s) = (θtω) (s). By uniqueness of solutions to this
equation,

z (s) = ϕs (q∗, ω∗) (z0) .

Collecting all identities and definitions,

ϕt+s (γ) (x0) = ϕs (q∗, ω∗) (z0)

= ϕs (ϑtq, θtω) (ϕt (γ))

which means precisely ϕt+s (γ) = ϕs (Θtγ) ◦ ϕt (γ).

Remark 43 At the structural level (group and cocycle properties) there is nothing special
in the additive noise. What is special is the possibility to solve, uniquely, the equation for
all elements ω ∈ C

(
R;Rd

)
of the Wiener space, namely the pathwise solvability. Similar

tricks hold only for few equations, like

dXt = b (q (t) , X (t)) dt+XtdWt.

However, in general there are two possibilities. One is the theory of rough paths, which at
the price of some additional regularity of coeffi cients and a certain high level background in
stochastic analysis, enables to solve "any" stochastic equation pathwise. One has to replace
the Wiener space C

(
R;Rd

)
by the more structured space of (geometric) rough paths. This
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non trivial theory has the advantage to be fully pathwise and thus entirely analog to the
previous additive noise example. The other possibility is to use the theory of stochastic
flows. That theory claims that, given the stochastic-process solutions Xx0

t (ω), which at
time t are equivalence classes (hence not pointwise uniquely defined in ω), there is a version
of the family such that we can talk of the space-time trajectories

(t, x0)→ Xx0
t (ω)

and, even more, we can do the same starting from an arbitrary time t0. Elaborating this
concept with non trivial further elements, one can construct a naRDS (the technical diffi -
culty is only in the stochastic part, not the non-autonomous one).



Chapter 2

Generalities on RDS

2.1 Random dynamical systems

The theory of random dynamical systems develops with the introduction of probability
instruments into classical deterministic models, to help representing uncertainties or sum-
ming up complexity. After the first work by Ulam and Neumann ([?]) in 1945 showing this
need for intersection of probability theory and dynamical systems, the interest for the sub-
ject rises around the Eighties with the development of stochastic analysis and the discover
of random and stochastic differential equations as sources for random transformations.

In this chapter we introduce the definition of random dynamical system (also abbre-
viated as RDS), and show how RDSs can be generated in continuous and discrete time.
Then we present a finite dimensional model which exemplifies many properties of fluido-
dynamical systems, and we outline the definition of the RDS associated to the stochastic
Navier-Stokes equations. We end by giving the statement of the multiplicative ergodic
theorem, which allows the definition of Lyapunov exponents for an RDS.

In all chapters we will write T for the set of times, referring to the groups T = R, Z
(two-sided time), or to the semigroups T = R+, N (one-sided time).

2.2 Definitions

The theory of random dynamical systems enlarges the classical theory of dynamical sys-
tems, investigating those situations in which a noise is supposed to perturb the system.
The noise is formalized with a family of mappings (θ(t))t∈T of a measurable space (Ω,F)
into itself, satisfying the following conditions:

(i) the map (ω, t) 7→ θ(t)ω is measurable;

(ii) θ(0) = idΩ, if 0 ∈ T;

25
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(iii) θ(s+ t) = θ(s) ◦ θ(t), for all s, t ∈ T (semiflow property).

In this case the triple (Ω,F , (θ(t))t∈T) is called a measurable dynamical system. In
addition, if P is a probability measure on (Ω,F) and if, for all t in T, the map θ(t) preserves
the measure P (i. e. P (θ(t)−1(F )) = P (F ) for all F ∈ F), then (Ω,F , P, (θ(t))t∈T) is said
to be a metric dynamical system.

Let us observe that condition (i) implies that, for each t ∈ T, the map θ(t) : Ω 7→ Ω
is measurable. Moreover, if T is a group, from conditions (ii) and (iii) we gain that each
θ(t) is invertible, and θ(t)−1 = θ(−t).

In the sequel we will also write θt for θ(t).
Let (Ω,F , P ) be a complete probability space, i.e. a probability space such that if

F ∈ F , P (F ) = 0 and E ⊂ F , then E ∈ F .

Definition 44 A two-parameter filtration is a two-parameter family {F ts}s,t∈R,
s≤t

of sub-σ-

algebra of F , such that

(i) Fvu ⊂ F ts, for s ≤ u ≤ v ≤ t;

(ii) F t+s :=
⋂
u>tFus = F ts and F ts− :=

⋂
u<sF tu = F ts, for s ≤ t;

(iii) F ts contains all P -null sets of F , for s ≤ t.

Define
F t−∞ :=

∨
s≤t
F ts, F∞s :=

∨
t≥s
F ts.

If {F ts}s≤t∈R is a two-parameter filtration on (Ω,F , P ), a metric dynamical system θt on
(Ω,F , P ) is a filtered dynamical system if it satisfies

θ−1
u F ts = F t+us+u, for all u ∈ R. (2.1)

The definition of random dynamical system requires a modification of the semigroup
property, to make it account for the noise perturbation:

Definition 45 A random dynamical system on a measurable space (X,B), over a metric
dynamical system (Ω,F , P, (θ(t))t∈T) is a measurable mapping

ϕ : (T× Ω×X,B(T)⊗F ⊗ B)→ (X,B),

satisfying the cocycle property:

ϕ(0, ω, ·) = idX for all ω ∈ Ω (if 0 ∈ T), (2.2)

ϕ(t+ s, ω, ·) = ϕ(t, θ(s)ω, ϕ(s, ω, ·)) for all s, t ∈ T, ω ∈ Ω. (2.3)
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One can say that while a point x ∈ X is moved by the map ϕ(s, ω, ·), ω is also shifted
for a time s by θ, and θ(s)ω is the new noise acting on ϕ(s, ω, x).

The map ϕ of the definition is also called a perfect cocycle, while, if condition (2.3) is
weakened to hold for P -almost every ω, for fixed s and all t in T, then ϕ is said to be a
crude cocycle, and a very crude cocycle in case (2.3) holds for each fixed s and t.

We shall use the notation ϕ(t, ω) for the map ϕ(t, ω, ·) : X → X.

Remark 46 Given a metric dynamical system (Ω,F , P, (θ(t))t∈T), with T = R or Z, we
will sometimes consider random dynamical systems which are defined for positive times
only, being all theory extendible to this case.

Remark 47 If T is a group, by taking t = −s in (2.3) and using (2.2), we find

idX = ϕ(−s, θ(s)ω) ◦ ϕ(s, ω) for all ω, s,

while substituting −t for s and θ(t)ω for ω in (2.3) one gains

idX = ϕ(t, ω) ◦ ϕ(−t, θ(t)ω) for all ω, t.

This proves that the map ϕ(t, ω) is invertible and

ϕ(t, ω)−1 = ϕ(−t, θ(t)ω) for all ω, t.

If X is a topological space and, for each ω ∈ Ω, the mapping (t, x) 7→ ϕ(t, ω, x) is
continuous, then the random dynamical system is called continuous or topological. If X is
a finite dimensional manifold, then ϕ is a Ck random dynamical system if it is continuous
and for each (t, ω) ∈ T× Ω the map x 7→ ϕ(t, ω)x is k-times differentiable with respect to
x, and the derivatives are continuous in t and x.

Remark 48 Given a probability space (Ω,F , P ), and a P -preserving bijective map θ :
Ω → Ω, any family of continuous mappings ψ(ω) : X → X such that (ω, x) 7→ ψ(ω)x is
measurable generates a discrete random dynamical system ϕ : N × Ω × X → X, by the
formulas

ϕ(0, ω) = idX , ϕ(n, ω) = ψ(θn−1ω) ◦ · · · ◦ ψ(ω) for n ≥ 1.

In this case, the cocycle property can be rewritten as

ϕ(n+ 1, ω)x = ϕ(n, θω)ψ(ω)x.

If ψ(ω)x is invertible for all ω, and the map (ω, x) 7→ ψ(ω)−1x is measurable, then the
random dynamical system can be estended to negative times by

ϕ(n, ω) = ψ(θnω)−1 ◦ · · · ◦ ψ(θ−1ω)−1 for n ≤ −1.

Conversely, each random dynamical system ϕ over (Ω,F , P, θ) with dicrete time T = N or
T = Z is fully described by its time-one map ψ(ω) = ϕ(1, ω) : X → X.
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Suppose we are given a random dynamical system ϕ on a Polish space (X,B), over
a metric dynamical system (Ω,F , P, (θ(t))t∈T). One can consider another measurable dy-
namical system, associated to the random dynamical system ϕ:

Definition 49 The measurable map

Θ : T× Ω×X → Ω×X
(t, ω, x) 7→ (θ(t)ω, ϕ(t, ω, x)),

is called the skew product (flow) of the metric dynamical system θ and the cocycle ϕ.

The family of mappings Θt = Θ(t, ·, ·), t ∈ T, is a measurable dynamical system on
(Ω × X,F ⊗ B). The semiflow property is an easy consequence of the flow and cocycle
properties of θ and ϕ:

Θ0 = idΩ×X ,

Θt+s(ω, x) = (θ(t+ s)ω, ϕ(t+ s, ω)x)

= (θ(t) ◦ θ(s)ω, ϕ(t, θ(s)ω)ϕ(s, ω)x) = Θt ◦Θs(ω, x),

for all t, s ∈ T, ω ∈ ω and x ∈ X.
Deterministic dynamical systems are generated by ordinary differential equations; their

role is played by stochastic differential equations in the case of random dynamical systems.
An intermediate step is provided by considering random differential equations, i.e. families
of ordinary differential equations with parameter ω, which can be solved “pathwise” for
each fixed ω as a deterministic equation.

Example 50 (RDS from Random Differential Equations)
Let T = R, X = Rn, and let (Ω,F , P, (θ(t))t∈T) be a metric dynamical system. Consider

a measurable function f : Ω × Rn → Rn, and, for each fixed ω ∈ Ω, let the function
fω : R × Rn → Rn be given by fω(t, x) = f(θtω, x). Suppose that fω is continuous, and
locally Lipschitz in x. Then the solution of equation

ẋt = f(θtω, xt) (2.4)

exists globally on R for each ω ∈ Ω and is unique. The random dynamical system associated
to the random differential equation (2.4) is given by

ϕ(t, ω, x) = x+

∫ t

0
f(θsω, ϕ(s, ω, x))ds.
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To prove the cocycle property, take s, t ∈ R, and suppose that s > 0, t > 0 (the other cases
are analogous). Write

ϕ(t, θ(s)ω, ϕ(s, ω, x)) = ϕ(s, ω, x) +

∫ t

0
f(θu+sω, ϕ(u, θ(s)ω, ϕ(s, ω, x)))du

= x+

∫ s

0
f(θuω, ϕ(u, ω, x))du

+

∫ t+s

s
f(θzω, ϕ(z − s, θsω, ϕ(s, ω, x)))dz.

This proves that the function

ψ(u, ω, x) =

{
ϕ(u, ω, x) 0 ≤ u ≤ s,
ϕ(u− s, θsω, ϕ(s, ω, x)) s ≤ u ≤ s+ t,

satisfies

ψ(t+ s, ω, x) = x+

∫ t+s

0
f(θuω, ψ(u, ω, x))du,

and so by uniqueness

ϕ(t+ s, ω, x) = ψ(t+ s, ω, x) = ϕ(t, θ(s)ω, ϕ(s, ω, x)).

Definition 51 A mapping

φ : R× R× Rd × Ω −→ Rd
(s, t, x, ω) 7→ φs,t(x, ω)

is called a stochastic flow if for P -almost every ω ∈ Ω it satisfies:

(i) φs,s(ω) = IdRd for all s ∈ R;

(ii) φs,t(ω) = φu,t(ω) ◦ φs,u(ω) for all s, t, u ∈ R.

If additionally φs,t(ω) : Rd → Rd is a homeomorphism (resp. is a k-times continuously
differentiable homeomorphism) for all s, t ∈ R and P -almost every ω, then φ is called a
stochastic flow of homeomorphism (resp. of Ck-diffeomorphisms).

2.3 RDS from Stochastic Differential Equations

An important class of random dynamical systems is generated by stochastic differential
equations. A complex general result (see [3], chapter 2.3) asserts the existence of RDS
associated to any stochastic differential equation involving stochastic integrals of Kunita-
type, i.e. integrals which generalize classical Itô and Stratonovich integrals, introduced
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by Kunita in [?]. Here we state a particular case of this theorem involving classical Itô
integrals only.

Consider the space Ω = C0(R,Rn) of continuous functions ω from R to Rn, such that
ω(0) = 0. One can endow the space C(R,Rn) with the topology given by the complete
metric

d(ω, ω′) =

∞∑
k=1

1

2k
||ω − ω′||k

1 + ||ω − ω′||k
, ||ω − ω′||k = sup

−k≤t≤k
|ω(t)− ω′(t)|,

and consider the induced topology on Ω. Denote by F0 the Borel σ-algebra on Ω.
Let (ξ(t))t∈R be the coordinate process on Ω, i.e. the process given by ξ(t, ω) = ω(t)

for all ω ∈ Ω, t ∈ R.
A continuous Rn-valued process (Bt)t≥0 is a Brownian motion on Rn if B(0) = 0, for

all 0 ≤ s ≤ t the variable Bt − Bs is normally distributed with mean 0 and covariance
operator (t− s)In, and for all m-uples 0 ≤ t1 ≤ . . . ≤ tm the random variables

Bt1 , Bt2 −Bt1 , . . . , Btm −Btm−1
are independent ((Bt)t≥0 has independent increments). A natural extension of Brownian
motion to negative times is given by the following definition.

Definition 52 A two-sided Brownian motion (Wt)t∈R in Rn is a continuous process with
independent increments, such that W0 = 0 and, for each s, t ∈ R, the increment Wt −Ws

is normally distributed with mean 0 and covariance matrix |t− s|In.

If (Wt)t∈R is a two-sided Brownian motion, we have in particular that the processes
(Wt)t≥0 and (W−t)t≥0 are two independent Brownian motions on Rn.

The measure P on (Ω,F) such that the coordinate process (ξ(t))t∈R is a two-sided
Brownian motion is called (two-sided) Wiener measure. The process (ξ(t))t∈R is called
standard two-sided Brownian motion. We denote by F the completion of the σ-algebra F0

with respect to P .
Define then the shift operators on Ω as

θt(ω)(s) = ω(s+ t)− ω(t), for s, t ∈ R.

The family (θt)t∈R clearly satisfies the semiflow property. The map (t, ω) 7→ θt(ω) is
continuous, and then measurable.

The measure P is invariant with respect to the dynamical system (θt)t, as follows
from the stationarity of the increments of the coordinate process: the law of the process
(ξ(t+ s)− ξ(s))t∈R equals the law of (ξ(t))t∈R, and then

P (A) = P{ω | ω· ∈ A} = P{ωt+· − ωt ∈ A} = P{θt ∈ A} for all A ∈ F0.

Let N be the family of all subsets of P -null sets of F0:

N = {A ⊂ Ω : ∃F ∈ F0 s.t. A ⊂ F, P (F ) = 0}.
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Define a two-parameter filtration {F ts}s≤t as

F ts = σ{Wu −Wv : s ≤ v ≤ u ≤ t}
∨
N , for all s ≤ t.

Proposition 53 For each s ≤ t ∈ R the following identities hold:

F t+s = F ts = F t−s := σ(∪s≤u<tFus ),

F ts− = F ts = F ts+ := σ(∪s<u≤tFus ).

Moreover, θ−1
u F ts = F t+us+u, for all u ∈ R.

Proof. Consider the processesW·−Ws, for fixed s, andWt−W·, for fixed t. The equalities
F t+s = F ts, F ts = F ts+ follow from the fact that for a d-dimensional strong Markov process
with natural filtration (Ft)t, the augmented filtration (FNt )t = (Ft∨N )t is right-continuous
([32], proposition 2.7.7). The fact that the natural filtration of a d-dimensional adapted
left-continuous process is left-continuous ([32], problem 2.7.1) implies that F t−s = F ts, and
F ts− = F ts.

For the last sentence, take u1, ..., un, v1, ..., vn ∈ R such that s ≤ vi ≤ ui ≤ t. Then for
each a ∈ R, B1, ..., Bn ∈ B(Rn), one has

θ−1
a {ω ∈ Ω | ω(u1)− ω(v1) ∈ B1, ..., ω(un)− ω(vn) ∈ Bn}
= {θ−1

a ω | ω(u1)− ω(v1) ∈ B1, ..., ω(un)− ω(vn) ∈ Bn}
= {ω | θaω(u1)− θaω(v1) ∈ B1, ..., θaω(un)− θaω(vn) ∈ Bn}
= {ω | ω(u1 + a)− ω(v1 + a) ∈ B1, ..., ω(un + a)− ω(vn + a) ∈ Bn} ∈ F t+as+a.

It is then clear that (2.1) holds.
Hence (Ω,F0, {F ts}s≤t, (θ(t))t∈R, P ) is a filtered metric dynamical system. It is referred

to as the canonical metric dynamical system describing Brownian motion.

Proposition 54 The dynamical system (Ω,F0, (θ(t))t∈R, P ) is ergodic.

Proof. It is a consequence of Kolmogorov’s zero-one law. Consider the two-parameter
filtration {F ts}s≤t defined above, and define the σ-algebra

T ∞ = ∩t∈RF∞t .

The independence of the σ-algebras Fus and Fzt for all s < u ≤ t < z allows to apply
Kolmogorov’s dichotomy and deduce that the σ-algebra T ∞ is degenerate, i.e. P (A) ∈
{0, 1} for all A ∈ T ∞. The conclusion follows by observing that every θ(t)-invariant set is
contained in T ∞.
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To give the statement of the theorem, we have to introduce some spaces of functions on
Rd. For each k ∈ Z+, and 0 ≤ δ ≤ 1, we denote by Ck,δ the space of functions f : Rd → Rd
which are k times continuously differentiable and whose k-th derivative is locally δ-Hölder
continuous. The space Ck,δ is a Fréchet space with the following seminorms: for each
compact convex subset K of Rd

||f ||k,0;K =
∑

0≤|α|≤k
sup
x∈K
|Dαf(x)|,

||f ||k,δ;K = ||f ||k,0;K +
∑
|α|=k

sup
x,y∈K,x6=y

|Dαf(x)−Dαf(y)|
|x− y|δ , 0 < δ ≤ 1.

We then define the set Ck,δb as the space of functions in Ck,δ for which the norm

||f ||k,0 = sup
x∈Rd

|f(x)|
1 + |x| +

∑
1≤|α|≤k

sup
x∈Rd

|Dαf(x)|,

||f ||k,δ = ||f ||k,0 +
∑
|α|=k

sup
x 6=y

|Dαf(x)−Dαf(y)|
|x− y|δ , 0 < δ ≤ 1

is finite.
We briefly recall the definition of Itô and backward Itô integral. Consider a continuous

process (Xu)u≥s, which is adapted to (Fus )u≥s and such that supu∈[s,t]E[|Xu|2] < ∞ for
a time t > s. For each partition σ = {s = t0 ≤ . . . ≤ tn = t} of [s, t], consider the sum
Iσ =

∑n−1
k=0 Xtk(Wtk+1 −Wtk). The limit in probability of Iσ, as |σ| = supk |tk − tk−1| → 0,

exists and is called the Itô integral
∫ t
s XudWu of (Xu)u. For the definition of backward

Itô integral, consider a continuous process (Xu)u≥s which satisfies supu∈[s,t]E[|Xu|2] <∞
for some t > s and such that the variable Xu is F tu-measurable (observe that the set F tu
decreases as u increases). Then the limit of

∑n−1
k=0 Xtk+1(Wtk+1 −Wtk) exists in probability

as |σ| → 0, and is called backward Itô integral of (Xu)u. It will be denoted by
∮ t
s XudWu.

Recall that, if f0, ..., fm are Borel measurable maps from Rd into itself, then a solution
of the stochastic differential equation

dXt = f0(Xt)dt+
m∑
j=1

fj(Xt)dW
j
t , Xs = x ∈ Rd, (2.5)

is a continuous Rd-valued adapted process (Xt)t≥s, such that P{Xs = x} = 1 and for each
t > s the equality

Xt = x+

∫ t

s
f0(Xu)du+

m∑
j=1

∫ t

s
fj(Xu)dW j

u
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holds almost surely. One says that the solution to (2.5) is unique if, given any two solutions
(Xt)t≥s, (Yt)t≥s, then P{Xt = Yt, t ≥ s} = 1.

For the following result on existence and uniqueness of solutions of stochastic differential
equations see for example [?] (theorems 3.4.1, 4.7.3 and 4.7.4):

Theorem 55 Consider a standard Brownian motion (Wt)t∈R in Rm. Let f0 ∈ Ck,δb , fj ∈
Ck+1,δ
b , j = 0, ...,m, for some k ≥ 1 and some δ > 0. Suppose that the map

f∗0 = f0 −
m∑
j=1

d∑
i=1

(fj)i
∂fj
∂xi

is in Ck,δb . Then there exists a unique solution (φs,t(x))t≥s to the stochastic differential
equation (2.5) for any s ∈ R, x ∈ Rd. Moreover, the solution can be extended to a
stochastic flow of diffeomorphisms (φs,t(ω, x))s,t∈R, such that for each s ∈ R the equality

φs,t(x) = x−
∫ s

t
f∗0 (φs,u(x))du−

m∑
j=1

∮ s

t
fj(φs,u(x))dW j

u

is satisfied for each x ∈ Rd and every t ≤ s.

The theorem on generation of random dynamical systems from Itô stochastic differential
equations is the following:

Theorem 56 Consider a standard Brownian motion (Wt)t∈R in Rm, and let f0 ∈ Ck,δb ,

f∗0 = f0 −
∑m

j=1

∑d
i=1(fj)i

∂fj
∂xi
∈ Ck,δb , fj ∈ Ck+1,δ

b , j = 0, ...,m, for some k ≥ 1 and some
δ > 0. Let (φs,t(ω, x))s,t∈R be the stochastic flow of diffeomorphisms associated to equation
(2.5) according to theorem (55). Then the map

ϕ : R× Rd × Ω −→ Rd
(t, x, ω) 7→ ϕ(t, ω, x) = φ0,t(x, ω).

is a Ck random dynamical system over the filtered dynamical system describing Brownian
motion. Moreover, ϕ has stationary independent increments, i.e. for all t0 ≤ t1 ≤ ... ≤ tn
the random variables

ϕ(t1) ◦ ϕ(t0)−1, ϕ(t2) ◦ ϕ(t1)−1, . . . , ϕ(tn) ◦ ϕ(tn−1)−1

are independent, and the law of ϕ(t+ h) ◦ ϕ(t)−1 is independent of t, for each t, h.
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2.3.1 Additive noise

We shall prove theorem (56) in a particular case, when the functions f1, ..., fm are constant.
One speaks in this case of additive noise. The stochastic equation we consider is then of
the form

Xt = x+

∫ t

s
b(Xu)du+Wt −Ws, (2.6)

with b belonging to Ck,δb for some k ≥ 1, δ > 0. We consider the stochastic flow of
diffeomorphisms (φs,t(ω, x))s,t∈R associated to this equation according to theorem (55),
and define ϕ(t, ω)x = φ0,t(x, ω) for all t ∈ R, x ∈ Rd and ω ∈ Ω. Note that in this simple
case, the existence and uniqueness of solutions of equation (2.6) can be proved also through
a classical Cauchy theorem, for each fixed ω ∈ Ω.

We show that ϕ satisfies the crude cocycle property: for each s ∈ R there exists a
P -null set Ns such that

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all t ∈ R, ω /∈ Ns. (2.7)

Observe first that (2.7) holds if and only if φ satisfies

φs,s+t(ω) = φ0,t(θsω) for all t ∈ R, ω /∈ Ns, (2.8)

thanks to flow property of the map φ. Indeed the cocycle property for ϕ rewrites as

φ0,s+t(ω) = φ0,t(θsω) ◦ φ0,s(ω).

Compose both sides with φs,0(ω), and find φ0,s+t(ω) ◦ φs,0(ω) = φs,s+t(ω) = φ0,t(θsω), as
wanted. Conversely, if φs,s+t(ω) = φ0,t(θsω), then

ϕ(t+ s, ω) = φ0,s+t(ω) = φs,s+t(ω) ◦ φ0,s(ω) = φ0,t(θsω) ◦ φ0,s(ω),

and (2.7) holds.
Let us prove (2.8). Consider the case t > 0. For each x ∈ Rd, s ∈ R, we have

φs,s+t(x) = x+

∫ s+t

s
b(φs,u(x))du+Ws+t −Ws

= x+

∫ t

0
b(φs,s+u(x))du+Ws+t −Ws

almost surely. Moreover, for almost every ω we have

φ0,t(θsω, x) = x+

∫ t

0
b(φ0,u(θsω, x))du+ (θsω)(t)− (θsω)(0)

= x+

∫ t

0
b(φ0,u(θsω, x))du+Ws+t(ω)−Ws(ω).
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Then the uniqueness of the solution for equation (2.6), and the continuity on x, imply
the existence of a P -null set Ns depending on s such that (2.8) holds. The case t < 0
is analogous. Moreover, there exists a perfect cocycle which is indistinguishable from ϕ,
according to a general result (theorem 1.3.2 of [3]).

The system (Ω,F , (θt)t∈R, P, ϕ) is called the random dynamical system associated to
equation (2.6).

Observe that ϕ(t)◦ϕ(s)−1 equals φ0,t◦φ−1
0,s = φ0,t◦φs,0 = φs,t, which is a F ts-measurable

random variable. Moreover, it follows by (2.8) that φt,t+h = φ0,h ◦ θt almost surely for each
t, h, and then the law of ϕ(t + h) ◦ ϕ(t)−1 does not depend on t, and ϕ is an RDS with
stationary independent increments.

Example 57 (One-dimensional Ornstein-Uhlenbeck process) Consider the equation on R

dXt = −αXtdt+ σdWt, Xt0 = x0 ∈ R. (2.9)

Its solution, given by the Ornstein-Uhlenbeck process (see appendix ??)

Xt = e−α(t−t0)x0 +

∫ t

t0

e−α(t−s)σdWs,

can be rewritten, through an integration by parts formula (proposition 3.12 in [?]), for every
ω ∈ Ω, as

Xt(ω) = e−α(t−t0)x0 + σω(t)−
∫ t

t0

αe−α(t−s)σω(s)ds.

Therefore the random dynamical system associated to (2.9) is

ϕ(t, ω)x = e−αtx+ σω(t)−
∫ t

0
αe−α(t−s)σω(s)ds.

2.3.2 A finite dimensional model

We consider a finite dimensional model which covers many important examples, for instance
the finite dimensional approximation of the Navier-Stokes equations (see paragraph 2.5).
We consider the stochastic equation in Rn

dXt + (AXt +B(Xt, Xt))dt = fdt+
√
QdWt, t ≥ t0, (2.10)

where A is an n × n symmetric matrix satisfyng 〈Ax, x〉 ≥ λ|x|2 for each x ∈ Rn, B is a
bilinear continuous mapping with the property

〈B(y, x), x〉 = 0 ∀x, y ∈ Rn, (2.11)
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Q is a positive semidefinite symmetric matrix, andWt is a two-sided Brownian motion over
the canonical metric dynamical system (Ω,F , {F ts}s≤t, (θ(t))t∈R, P ). We shall consider Ft0-
random variables as initial conditions. The equation in integral form is then

Xt = η −
∫ t

t0

(AXs +B(Xs, Xs)− f)ds+
√
QWt −

√
QWt0 . (2.12)

To define the random dynamical system associated to (2.10), one could solve, for each
fixed ω, a system of ordinary differential equation. We choose instead a probabilistic
approach for the following existence and uniqueness result:

Proposition 58 For every Ft0-measurable random variable η, equation (2.12) admits a
unique solution (Xt)t, which is continuous and adapted to (Ft)t.

Proof. For uniqueness, suppose (X1
t )t, (X1

t )t are two solutions of equation (2.10), and let
CB be a constant such that B(x, y) ≤ CB|x||y|. Then the difference Vt = X1

t −X2
t satisfies

dVt
dt

= −AVt −B(X1
t , Vt)−B(Vt, X

2
t ).

Taking the scalar product with Vt, and using property (2.11) we find

〈dVt
dt
, Vt〉 = −〈AVt, Vt〉 − 〈B(Vt, X

2
t ), Vt〉,

and consequently, by the inequality on A we have

d|Vt|2
dt

≤ CB|Vt|2|X2
t |.

The Gronwall lemma gives then

|Vt|2 ≤ |Vt0 |2e
CB

∫ t
t0
|X2

s |ds. (2.13)

Uniqueness of the solution follows.
Existence of a solution can be proved by a truncation procedure as follows.
Observe first that the initial condition η can be supposed to be bounded. This can be

seen by defining for eachm ∈ N the set Am = {ω ∈ Ω : |η(ω)|2 ≤ n}, and a random variable
ηm as equal to η on Am, and equal to 0 on AC

m, and considering for each m the unique
solution (Y m

t )t≥0 of equation (2.10) with initial condition ηm. The process Y∞ defined as
Y∞t = Y m

t on Am is then the unique solution of equation (2.12).
Fix a T > t0, and a constant C such that |η| ≤ C. For each m ≥ C, consider a Lipschitz

continuous function Bm on such that Bm(x) = B(x, x) for every x ∈ Rn with |x| ≤ m.
Then the equation

dXt = (−AXt −Bm(Xt, Xt) + f)dt+
√
QdWt,
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with initial condition η, has a unique adapted solution (Xm
t )t, as a consequence of theorem

(55). For each m > C, define the stopping time

τm = inf{t0 ≤ t ≤ T : |Xm
t | = m} ∧ T.

On the stochastic interval [t0, τm], Xm
t is a solution of the original equation, as

Xm
t∧τm = η +

∫ t∧τm

0
(−AXm

s −Bm(Xm
s ) + f)ds+

√
QWt∧τm −

√
QWt0 (2.14)

= η +

∫ t∧τm

0
(−AXm

s −B(Xm
s , X

m
s ) + f)ds+

√
QWt∧τm −

√
QWt0 .

Moreover, if k is greater than m, then the processes Xk
t and X

m
t are equal on [t0, τm] with

probability 1. A process X∞ is then defined on [t0, supm>C τm] by X∞ = Xm
t on [t0, τm],

for every m > C. To estimate supm>C τm, apply Itô formula to (2.14), use the fact that
〈B(y, x), x〉 = 0, and find

|Xm
t∧τm |

2 + 2

∫ t∧τm

0
〈AXm

s , X
m
s 〉ds =|η|2 + 2

∫ t∧τm

0
〈Xm

s , f〉ds

+ 2

∫ t∧τm

0
〈Xm

s ,
√
QdWs〉+ TrQ(t ∧ τm).

The coercivity of A and the inequality 〈Xm
s , f〉 ≤ |Xm

s ||f | imply that

|Xm
t∧τm |

2 ≤ |η|2 + 2m(t ∧ τm)|f |+ 2

∫ t∧τm

0
〈Xm

s ,
√
QdWs〉+ TrQ(t ∧ τm).

Then

E

[
sup

t∈[t0,T ]
|Xm

t∧τm |
2

]
≤ E[|η|2] + 2mT |f |+ TTrQ,

and in particular
E
[
I{τm<T}|X

m
T∧τm |

2
]
≤Mm

for some constant M > 0. As Xm
T∧τm = m if τm < T , we find

P{τm < T} ≤ M

m
,

and as a concequence P{supm>C τm < T} = 0. Therefore (X∞t )t is a solution on the inter-
val [t0, T − ε], for each ε > 0, and the existence of a global solution follows by arbitrariness
of T .

We write Xt0,x
t for the solution of (2.10) starting from x at time t0. The random

dynamical system associated to the stochastic equation is ϕ(t, ω)x = X0,x
t (ω). The cocycle

property can be verified as in paragraph (2.3.1).
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Example 59 A simplified GOY model (Gledzer, Ohkitani, Yamada model) A system
which is included in the described setting is the following. Consider, for each N ∈ N,
by the finite dimensional stochastic system

u−1 = u0 = uN = uN+1 = 0,

dun + νk2
nundt =kn

(
1

4
un−1un+1 − un+1un+2 +

1

8
un−1un−2

)
dt

+ σndW
n
t for n = 1, ..., N,

where kn = 2n, ν > 0, and (Wn
t )t∈R are independent two-sided Brownian motions, for

0 ≤ n ≤ N .
It is a stochastic version of a simplification of the GOY model, a system belonging to

the class of shell models, which are designed to capture many aspects of fluid dynamics, and
are structured as simplified versions of the Navier-Stokes equations, by considering some
variants of their Fourier approssimation.

Observe that the velocity on each single cell depends directly only by velocities in the
nearest and next-nearest neighbour shells, and that the energy (

∑
n |un|2) is preserved when

ν = σn = 0 (namely without viscosity and external force).

2.3.3 n-point motion

It is sometimes useful, for the study of the evolution of a dynamical system, to consider the
analysis of n copies of the system, starting at different points, for example when focusing
on sensitiveness of the system to initial conditions. In the stochastic settings described so
far, we are interested in the study of the evolution of a random dynamical system for each
fixed realization ω of the noise. Denote by ϕ the random dynamical system generated by
the SDE (2.5) or (2.10). For each n-uple x1, ..., xn ∈ Rd, we call the (Rd)n-valued process

(t, ω) 7→ (ϕ(t, ω)x1, ..., ϕ(t, ω)xn) (2.15)

the n-point motion associated to the considered equation. For example, if ϕ is the random
dynamical system associated to the stochastic equation (2.6), then the n-point motion rises
from the system of stochastic equations

Xt = x1 +
∫ t
s b(Xu)du+Wt −Ws

Xt = x2 +
∫ t
s b(Xu)du+Wt −Ws

. . .

Xt = xn +
∫ t
s b(Xu)du+Wt −Ws;

in particular, the same noise acts on all components.
The n-point motion (2.15) is a Markov process (for the definition see appendix ??).

For the proof we will need the following lemma:
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Lemma 60 Let (Ω,A, P ) be a probability space, and F , G be two independent sub-σ-fields
of A. Let X be a G-measurable random variable with values on a measurable space (E, E),
and let ψ : E × Ω → R be measurable with respect to E ⊗ F , and such that the map
ω 7→ ψ(X(ω), ω) is integrable. Define Ψ(x) := E[ψ(x, ·)]. Then

E[ψ(X, ·)|G] = Ψ ◦X.

Proof. Take ψ of the form ψ(x, ω) = h(x)f(ω), where f is F-measurable. Then

E[ψ(X, ·)|G] = E[h(X)f(·)|G] = h(X)E[f ] = Ψ ◦X.

Conclusion follows by a classical monotone class argument.

Proposition 61 The n-point motion associated to equations (2.5) or (2.10) is a Markov
process with respect to the filtration (F t0)t≥0, with transition probabilities given by

P
(n)
t ((x1, ...xn), B) = P{ω ∈ Ω : (ϕ(t, ω)x1, ..., ϕ(t, ω)xn) ∈ B},

for t ∈ R+, B ∈ B(Rnd).

Proof. Take B ∈ B(Rnd), and define ψ : Rnd × Ω→ R by

ψ(x, ω) = IB((ϕ(t, θsω)x1, ..., ϕ(t, θsω)xn)).

Then

E[IB(ϕ(s+ t, ω)x1, ..., ϕ(s+ t, ω)xn)|Fs0 ] = E[ψ((ϕ(s, ·)x1, ..., ϕ(s, ·)xn), ·)|Fs0 ];

moreover ϕ(s, ·)x is Fs0 -measurable, and ψ is B(Rnd)⊗Fs+ts -measurable. As Fs+ts and Fs0
are independent, we can apply lemma (60) and obtain

E[IB(ϕ(s+ t, ω)x1, ..., ϕ(s+ t, ω)xn)|Fs0 ] = Ψ ◦ (ϕ(s, ·)x1, ..., ϕ(s, ·)xn),

where Ψ(x) = E[IB(ϕ(t, ω)x1, ..., ϕ(t, ω)xn)] = P
(n)
t (x,B), i.e. (2.15) is a Markov process

associated to the transition functions (P
(n)
t )t∈R+ .

We still denote by (P
(n)
t )t∈R+ the Markov semigroup of operators on Bb(Rnd) associated

to the transition function P (n)
t defined above: for each f ∈ Bb(Rnd), x = (x1, ..., xn) ∈ Rnd,

we have

P
(n)
t f(x) =

∫
X
f(y)P

(n)
t (x, dy) =

∫
Ω
f((ϕ(t, ω)x1, ..., ϕ(t, ω)xn))P (dω).

As a consequence of continuity on initial data, the Markov semigroup (P
(n)
t )t∈R+ is Feller.
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2.4 RDS as products of i.i.d. random mappings

We saw in remark 48 that a discrete random dynamical system can be generated by com-
positions of mappings of the form ψ(θn·). The RDS for which these random variables are
independent and identically distributed have been deeply studied, for example by Kifer
[33]. They are also referred to as RDS with independent increments. Here we want to
briefly describe how they are related to Markov chains, while in chapter ?? we will show
why they are interesting, together with RDS generated by SDE, from the point of view of
random invariant measures.

The proof of this result follows very closely that of proposition 61:

Proposition 62 Let ϕ be a discrete dynamical system over a metric dynamical system
(Ω,F , P, θ), given by the composition ϕ(n, ω) = ψn(ω) ◦ ψn−1(ω) ◦ · · · ◦ ψ0(ω) of i.i.d.
random mappings ψn = ψ ◦ θn. Then for each n-uple x1, ..., xn the n-point motion

(k, ω) 7→ (ϕ(k, ω)x1, ..., ϕ(k, ω)xn)

is a homogeneous Markov chain with transition probability

P (n)((x1, ..., xn), B) = P{ω ∈ Ω : (ψ(ω)x1, ..., ψ(ω)xn) ∈ B}. (2.16)

Moreover, if the random dynamical system is continuous, the Markov chain is Feller.

2.5 An example in infinite dimensions:
the stochastic Navier-Stokes equations

We consider the Navier-Stokes equations for a viscous incompressible fluid in two-space
dimensions. We are given an open bounded subset Ω of R2, with boudary Γ. The equations
for the velocity vector u and the pressure p, for a fluid with constant density equal to 1,
are {

∂u
∂t + (u · ∇)u− ν∆u+∇p = f
divu = 0,

(2.17)

where ν > 0 represents the viscosity of the fluid, and f is the density of force applied to
the fluid. The first equation expresses the momentum conservation, the second expresses
the mass conservation.

Two kinds of boundary conditions, as well as an initial condition u(x, 0) = u0(x), are
usually considered. The first one

u|Γ=0

corresponds to the boundary Γ being a solid at rest. The second has no physical interpre-
tation, but presents some more affordable aspects. It can be considered in case the domain
Ω1 is a square, say Ω1 = (0, l)× (0, l), and consists in imposing

u(x+ lei, t) = u(x, t) ∀x ∈ R2, ∀t > 0.
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In this case one imposes also that the integral of the velocity u over Ω equals zero. For
this to be verified, it is suffi cient that u0 and f have zero-integral over Ω, as follows by
integrating the equations on Ω and using the periodicity property.

Before giving the stochastic version of these equations, we describe how they can be
formulated in a abstract form. We give a brief sketching of the whole problem, and we
refer to [?], [?] for a complete description of the setting and details.

We denote by Hm(Ω) the Sobolev spaces of functions in L2(Ω), whose derivatives of
order less or equal to m are in L2(Ω). Hm(Ω) is a Hilbert space with scalar product

(u, v)m =
∑
|α|≤m

(Dαu,Dαv),

where (Dαu,Dαv) =
∫

ΩD
αu(x)Dαv(x)dx.

We write Hm
per(Ω1) for the space of restrictions on Ω1 of Ω1-periodic functions in

Hm(Rn), which belong to Hm(S) for each bounded open set S.
If X is a space of functions defined on Ω, we denote with X the space X2 with the

product structure, with Ẋ the set of the functions u ∈ X such that
∫

Ω udx = 0, and with
X0 the functions in X which are zero on Γ.

The following spaces are useful for establishing the mathematical setting of the equa-
tions:

V = {u ∈ H1
0(Ω),divu = 0}, H = {u ∈ H0

0(Ω),divu = 0}

for the case of still boundary, and

V = {u ∈ Ḣ1
per(Ω), divu = 0}, H = {u ∈ Ḣ0

per(Ω), divu = 0}

for the case of boundary periodic functions. On both cases V is a Hilbert space with scalar
product ((u, v)) =

∑
|α|=1(Dαu,Dαv) and norm ||u|| = ((u, u))1/2. Consider the bilinear

form

a(u, v) =

2∑
i,j=1

(
∂ui
∂xj

,
∂vi
∂xj

)
,

and the trilinear form b given by

b(u, v, w) =
n∑
i,j

∫
Ω
ui
∂vj
∂xi

wjdx.

A weak form of the Navier-Stokes equations (2.17) can be given by taking the scalar product
of the equations with a function v ∈ V . The pressure disappears and one finds

d

dt
(u, v) + νa(u, v) + b(u, u, v) = (f, v), (2.18)
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The continuity of a and b guarantees the existence of a linear operator A and a bilinear
operator B on V ×V such that (Au, v) = a(u, v), (B(u, v), w) = b(u, v, w) for all u, v, w ∈ V .
Equation (2.18) can then be written as an equation in V ′:

du

dt
+ νAu+B(u, u) = f. (2.19)

This equation admits a unique solution u in C([0, T ];H) ∩ L2(0, T ;V ) for each given f
and u0 in H, for each T > 0. Moreover, one can prove that the mapping u0 7→ u(t)
is continuous from H into D(A), and u belongs to C([0, T ];V ) ∩ L2(0, T ;D(A)) if u0 is
taken in V . This result on existence and continuity of solutions allows the definition of a
semigroup of continuous operators

S(t) : u0 7→ u(t), t ≥ 0

which define the dynamical system associated to Navier-Stokes equations.
A stochastic version of equations (2.19), with additive noise, is given by the equation

du+ (νAu+B(u, u))dt = fdt+

m∑
j=1

φjdWj(t), (2.20)

where φ1, . . . , φm are functions in H and W1, ...,Wm are independent two-sided Brownian
motions. To show how a random dynamical system can be associated to (2.20), consider
the solution z of the Orstein-Uhlenbeck equation

dz = Azdt+

m∑
j=1

φjdWj(t).

Then, if u is a solution of (2.20), the process v(t) = u(t)− z(t) satisfies formally

dv + (Av +B(v, v) +B(v, z) +B(z, v) +B(z, z))dt = fdt.

In this form, the equation can be solved pathwise for almost every ω. As can be done
for equation (2.19), one can show that for each initial condition v0 ∈ H and for each
T > 0 there exists a unique solution vu0(·, ω) ∈ C([0, T ];H) ∩ L2(0, T ;V ), and belonging
to C([0, T ];V )∩L2(0, T ;D(A)) if v0 is in V . Moreover the map v0 7→ v(t, ω) is continuous
for all t > 0. Then one can consider the map

R+ × Ω×H −→ H
(t, ω, u0) 7→ ϕ(t, ω)u0 = vu0(t, ω) + z(t, ω).

As in paragraph (2.3.1), one can show that the well-posedness of equation (2.20) implies
the cocycle property, and then ϕ is a random dynamical system, defined fot t ≥ 0, over the
canonical two-sided metric dynamical system describing Brownian motion.
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2.6 Multiplicative ergodic theorem and Lyapunov exponents

An important result of the theory of random dynamical systems is the so-called Multi-
plicative Ergodic Theorem, which allows the definition of Lyapunov exponents for RDS.
Its full statements and the proof of all its variants can be found in [3], Part II. We give
the statement first for the case of a linear cocycle Φ on Rd, i.e. an RDS over a metric
dynamical system (Ω,F , P, (θt)t∈T), such that Φ(t, ω) is linear for each t ∈ T, ω ∈ Ω.

Theorem 63 Suppose that Φ satisfies

sup
0≤t≤1

log+ ||Φ(t, ·)|| ∈ L1, sup
0≤t≤1

log+ ||Φ(t, ·)−1|| ∈ L1.

Then there exists an invariant set Ω̃ such that P (Ω̃) = 1 and for each ω ∈ Ω̃ the limit
Ψ(ω) = limt→∞ (Φ(t, ω)∗Φ(t, ω))1/2t exists. Call eλp(ω)(ω) < · · · < eλ1(ω) the different
eigenvalues of Ψ(ω), and Up(ω)(ω), . . . , U1(ω) the corresponding eigenspaces, with di(ω) =
dimUi(ω). Then the functions ω 7→ p(ω), ω 7→ λi(ω), ω 7→ Ui(ω) and ω 7→ di(ω) are
measurable, and they satisfy

p(θ(t)ω) = p(ω) for all t ∈ T,

λi(θ(t)ω) = λi(ω), di(θ(t)ω) = di(ω), ∀t, 1 ≤ i ≤ p(ω).

For each x ∈ Rd \ {0}, the limit

λ(ω, x) = lim
t→∞

1

t
log ||Φ(t, ω)x||

exists and is called a Lyapunov exponent for Φ. Moreover λ(ω, x) = λi(ω) if and only if
x ∈ Vi(ω) \ Vi+1(ω), where

Vi(ω) = Up(ω) ⊕ · · · ⊕ Ui(ω) for 1 ≤ i ≤ p(ω), Vp(ω)+1 = {0},

and λ(θ(t)ω,Φ(t, ω)x) = λ(ω, x), for all x ∈ Rd \ {0}, Φ(t, ω)Vi(ω) = Vi(θ(t)ω) for all
1 ≤ i ≤ p(ω).

For each ω ∈ Ω̃, Rd splits as

Rd =

p(ω)⊕
k=1

Ek(ω),

where the Ek are random subspaces with dimension dk, given by Ek = Vi ∪ V −p(ω)+k−1,

where V −i , 1 ≤ i ≤ p−(ω) = p(ω) is the family of subspaces associated to Φ(t, ω).
In case (Ω,F , P, (θt)t∈T) is ergodic, then the map ω 7→ p(ω) is constant on Ω̃, and λi,

di are constant on {ω ∈ Ω̃ : p(ω) ≥ 1}, for i = 1, ..., d.



44 CHAPTER 2. GENERALITIES ON RDS

We will now give the statement of the theorem for manifolds. Consider a C1 RDS ϕ
on a d-dimensional Riemannian manifold M , over the metric DS (Ω,F , P, (θt)t∈T), with
associated skew product (Θ(t))t∈T, and let ρ be an invariant measure for the one-point
motion. Denote by TM the fiber boundle over M . By differentiating the identity ϕ(t +
s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω), one finds that the differential

Tϕ(t, ω) :TM → TM

(x, v) 7→ (ϕ(t, ω)x,Dϕ(t, ω, x)v)

is a continuous cocycle over (θt)t∈T.

Theorem 64 Assume that Tϕ satisfies

sup
0≤t≤1

log+ ||Tϕ(t, ω, x)||x,ϕ(t,ω)x ∈ L1(P ), (2.21)

sup
0≤t≤1

log+ ||Tϕ(t, ω, x)−1||ϕ(t,ω)x,x ∈ L1(P ), (2.22)

where ||·||x,ϕ(t,ω)xis the norm of the differential as a linear mapping from TxM to Tϕ(t,ω)xM .
Then there exist Θ-invariant random variables p, di, λi which satisfy

1 ≤ p(ω, x) ≤ d, λ1(ω, x) > · · · > λp(ω,x)(ω, x) > −∞,
p(ω,x)∑
i=1

di(ω, x) = d,

for (ω, x) in a Θ-invariant set A ⊂ Ω×M of full measure, and such that the tangent space
TxM decomposes as

TxM =

p(ω,x)⊕
k=i

Ek(ω, x)

for each (ω, x) ∈ A, where Ek are random subspaces of dimension di satisfying

Tϕ(t, ω, x)Ek(ω, x) = Ek(Θ(t)(ω, x)),

and

lim
t→±∞

1

t
log ||Tϕ(t, ω, x)v||ϕ(t,ω)x = λi(ω, x) if and only if v ∈ Ei(ω, x) \ {0}.

The λi are called Lyapunov exponents of ϕ under P × ρ. If ρ is ergodic, then p, di and λi
are constant.



Chapter 3

Random Attractors and Random
Invariant Measures

3.1 Attractors for random dynamical systems

In Chapter 1 we have already investigated attractors for non-autonomous systems in a quite
satisfactory manner. The results move directly to RDS, working ω-wise. The only issue
which is really new from NADS to RDS is the concept of invariance but we have proved
that the attractor constructed for NADS satistifes also the cocycle invariance property.
However, we think it is pedagogically useful to warm-up with the typical computations
of RDS re-stating and re-proving from scratch some elements of the theory of random
attractors in the new language. This is the reason for some repetitions.

We are given a random dynamical system ϕ over a metric dynamical system (Ω,F , P, (θt)t∈T)
on a Polish space, X, or more specifically on a complete separable metric space (X, d).

In the random setting, the analogous of the ω-limit set is defined for a random set K
as the random set

ΩK(ω) =
⋂
s≥0

⋃
t≥s

ϕ(t, θ−tω)K(θ−tω).

For every ω ∈ Ω, ΩK(ω) is the set of points y ∈ X such that there exist a sequence
tn → ∞ and a sequence xn in K(θ−tnω) such that ϕ(tn, θ−tnω)xn → y as n → ∞. With
this observation, it is easy to verify that ΩK is forward invariant for the RDS ϕ, in the
sense of the definition given in paragraph 3.3.1. Let y be in ΩK(ω), and let (tn)n and
(xn)n ⊂ K(θ−tnω) be such that ϕ(tn, θ−tnω)xn → y. Then we find, by the cocycle property

ϕ(t, ω)y = lim
n→∞

ϕ(t, ω)ϕ(tn, θ−tnω)xn = lim
n→∞

ϕ(t, θtnθ−tnω)ϕ(tn, θ−tnω)xn

= lim
n→∞

ϕ(t+ tn, θ−tnω)xn = lim
n→∞

ϕ(t+ tn, θ−tn−tθtω)xn

= lim
n→∞

ϕ(sn, θ−snθtω)xn,

45
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with sn = t+ tn. As xn is in K(θ−tn) = K(θ−snθtω), one gains ϕ(t, ω)y ∈ ΩK(θtω).
There are several ways to generalize the notion of attraction when taking into account

noise perturbations. The following one is the most classical.

Definition 65 A random set A attracts another random set B if

d(ϕ(t, θ−tω)B(θ−tω), A(ω))→ 0 as t→∞ (3.1)

for P -almost every ω ∈ Ω.

The kind of attraction presented in the definition is sometimes referred to as pullback
attraction. A weaker form of convergence is attraction in probability, according to which
convergence (3.1) takes place in probability, i. e. for every ε > 0

P{d(ϕ(t, θ−tω)B(θ−tω), A(ω)) > ε} → 0 as t→∞.

In many situations, the pullback approach turns out to be more appropriate then the
notion of forward attraction, according to which a random set A attracts another random
set B if convergence

d(ϕ(t, ω)B(ω), A(θtω))→ 0

takes place for P -almost every ω as t→∞.
The following example shows that the two kinds of convergence are different.

Example 66 Consider a metric dynamical system (Ω,F , P, θ), a random variable f : Ω→
R+ and a constant α, with 0 ≤ α ≤ 1. The map ψ : Ω× R→ R given by

ψ(ω, x) = α
f(θω)

f(ω)
x

defines a discrete random dynamical system ϕ as described in remark 48. By an induction
argument one sees that

ϕ(n, ω)x = αn
f(θnω)

f(ω)
x.

Consider a random set B and take A(ω) = {0}. We want to see under which condition the
set A is forward or pullback attracting for B. For this purpose, we will use the result of the
proposition below, which can be found in [3] (proposition 4.1.3): The proposition implies
that the quantity

1

n
log

(
αn
f(θnω)

f(ω)
|B(ω)|

)
= logα+

log f(θnω)

n
+

1

n
log
|B(ω)|
f(ω)

converges to logα < 0 or to ∞ as n → ∞, and A is forward attracting if and only if
1
n log f(θnω) converges to zero. As for pullback attraction, one can consider

1

n
log

(
αn

f(ω)

f(θ−nω)
|B(θ−nω)|

)
= logα+

log f(ω)

n
+

1

n
log
|B(θ−nω)|
f(θ−nω)

,

and A is pullback attracting if and only if 1
n log |B(θ−nω)|

f(θ−nω)
converges to zero.
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Proposition 67 Let (Ω,F , P, (θt)t∈T) be a metric dynamical system and let g : Ω→ R be
a random variable. Then

lim sup
t→∞

1

t
g(θtω) ∈ {0,∞} for P -almost every ω.

If one considers convergence in probability instead of almost sure convergence, then the
two definitions coincide, thanks to the θ-invariance of P , which implies

P{d(ϕ(t, θ−tω)B(θ−tω), A(ω)) > ε} = P{d(ϕ(t, ω)B(ω), A(θtω)) > ε}.

Definition 68 A random compact set A is a random attractor for a random set B if

(i) A is invariant;

(ii) A attracts B.

The definition of absorbing set in random context is given for the pullback point of
view.

Definition 69 A random set K absorbs a random set B, if for P -almost every ω ∈ Ω
there exists a time t0 (which may depend on ω) such that

ϕ(t, θ−tω)B(θ−tω) ⊂ K(ω) for all t ≥ t0.

The following result is the analogous of theorem ??.

Theorem 70 Suppose that there exists a compact random set K which absorbs a random
set B. Then the Ω-limit A of B is an attractor for B.

Proof. Let t0 be such that ϕ(t, θ−tω)B(θ−tω) ⊂ K(ω) for all t ≥ t0. Then

ΩB(ω) ⊂
⋃
s≥t0

⋂
t≥s

ϕ(t, θ−tω)B(θ−tω) ⊂ K(ω),

which implies that ΩB(ω) is compact. To prove invariance, it is suffi cient to show that
ΩB(θtω) ⊂ ϕ(t, ω)ΩB(ω). Take x ∈ ΩB(θtω), then

x = lim
n→∞

ϕ(tn, θ−tnθtω)xn = lim
n→∞

ϕ(t, ω)ϕ(tn − t, θ−tn+tω)xn,

for some sequence tn → ∞ and (xn) ⊂ B(θ−tn+tω). The sequence ϕ(tn − t, θ−tn+tω)xn
is eventually contained in K(ω), and then it admits a subsequence converging to a point
y ∈ ΩB(ω). By continuity of ϕ(t, ω) we find x = ϕ(t, ω)y ∈ ϕ(t, ω)ΩB(ω). Suppose
now that A does not attract B. Then there exist a δ > 0, a sequence tn → ∞ and
a sequence xn ∈ B(θ−tnω) such that d(ϕ(tn, θ−tnω)xn,ΩB(ω)) ≥ δ for all n. For n
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suffi ciently big we have (ϕ(tn, θ−tnω)xn) ⊂ K(ω), and then it possesses a convergent
subsequence (ϕ(tnk , θ−tnkω)xnk)k. The limit point belongs to ΩB(ω), thus contradicting
d(ϕ(tnk , θ−tnkω)xnk ,ΩB(ω)) ≥ δ.

The notion of global attractor for random dynamical systems is more delicate that
the deterministic one. Following the paper by Crauel and Flandoli ([?]), we say that an
invariant random compact set is a global or universal attractor if it attracts all bounded
deterministic sets in X. The following result could be found in the same paper.

Theorem 71 Suppose that there exists a compact random set K which absorbs every
bounded deterministic set B ⊂ X. Then there exists a global attractor A for ϕ, given
by the F−-measurable random set

A(ω) =
⋃
B⊂X

ΩB(ω).

3.1.1 Attractor for the finite dimensional approximation of SNSE

We give the proof of existence of an attractor for equation (2.10), following the proof for
the stochastic Navier-Stokes equations, due to Crauel and Flandoli ([?]). This finite dimen-
sional version exemplifies all the techniques which are involved in the infinite-dimensional
case, for the proof of dissipativity. The instruments combine those of the determinist case,
such as the estimate of energy through continuity inequalities and Gronwall lemma, and
some others typical of the stochastic case, for instance the pullback approach and the aux-
iliary Ornstein-Uhlenbeck process. The aspect of compactness needs a further effort for
the full Navier-Stokes equations; nevertheless, the procedure strictly follows that of the
deterministic case, for whom we refer to [?].

We want to show that there exists a bounded random set which attracts all bounded
deterministic sets, i.e. for P -almost every ω there exists a random ball B(0, r(ω)) such
that for each bounded subset B of Rn, there exists a time T such that

ϕ(t, θ−tω)B ⊂ B(0, r(ω)), for all t ≥ T.

As ϕ(t, θ−tω)x = X−t,x0 (ω), we have to estimate the modulus of X−t,x0 (ω).
On this purpose, consider an auxiliary stochastic differential equation

dZt + (AZt + αZt)dt =
√
QdWt,

where α is a positive constant, which will be specified later. As recalled in appendix ??, a
stationary solution of this equation is given by the Ornstein-Uhlenbeck process

Zt =

∫ t

−∞
e−(A+α)(t−s)√QdWs.
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If we write shortly Xt for the solution of equation (2.10), the process given by the difference
Yt = Xt − Zt satisfies the random equation

dYt
dt

+AYt +B(Yt + Zt, Yt + Zt) = −αZt + f.

Taking the scalar product with Yt, one finds

1

2

d|Yt|2
dt

= −〈AYt, Yt〉 − 〈B(Yt + Zt, Yt + Zt), Yt〉 − 〈αZt, Yt〉+ 〈f, Yt〉.

Using the property of A and B one gains the inequality

1

2

d|Yt|2
dt

+ λ|Yt|2 ≤ −〈B(Yt + Zt, Zt), Yt〉 − 〈αZt, Yt〉+ 〈f, Yt〉

≤ C|Yt|2|Zt|+ C|Yt||Zt|2 + α|Yt||Zt|+ |f ||Yt|.

Apply now the inequality ab ≤ 1
2a

2 + 1
2b

2, with a =
√

2ε|Yt|, b = C√
2ε

(|Zt|2 + α|Zt| + |f |),
where 0 < ε < λ, and find

1

2

d|Yt|2
dt

+ λ|Yt|2 ≤ C|Yt|2|Zt|+ ε|Yt|2 +
C

ε
(|Zt|2 + α|Zt|+ |f |)2,

which implies
d|Yt|2
dt

+ (λ1 − C1|Zt|)|Yt|2 ≤ C1(|Zt|2 + α|Zt|+ |f |)2,

for some constants λ1 and C1. Using a differential version of the Gronwall lemma, proved

by differentiating |Yt|2 exp
(∫ t

t0
(λ1 − C1|Zs|)ds

)
, one finds

|Y t0,x
t |2 ≤ |x|2e−

∫ t
t0

(λ1−C1|Zs|)ds +

∫ t

t0

e−
∫ t
s (λ1−C1|Zu|)duC1(|Zs|2 + α|Zs|+ |f |)2ds

and the inequality for Y −t,x0

|Y −t,x0 |2 ≤ |x|2e−
∫ 0
−t(λ1−C1|Zs|)ds

+

∫ 0

−t
e−

∫ 0
s (λ1−C1|Zu|)duC1(|Zs|2 + α|Zs|+ |f |)2ds. (3.2)

Recall now that the law of large numbers for stationary processes (theorem (??)) implies
that

lim
t→−∞

1

−t

∫ 0

t
|Zs|ds = E[Z0].
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Then if α is such that C1E[Z0] ≤ λ1
2 , then we have −λ1 + C1E[Z0] ≤ −λ1

2 , and

lim
t→−∞

1

t

∫ 0

t
(λ1 − C1|Zs|)ds = −λ1 + C1E[Z0] ≤ −λ1

2
.

This implies that

lim
t→∞

e−
∫ 0
−t(λ1−C1|Zs|)ds = 0,

which, together with the fact that

lim
t→−∞

(|Zt|2 + αZt + |f |)2

tβ
= 0

for almost every ω, for β suffi ciently big, gives∫ 0

−∞
e−

∫ 0
s (λ1−C1|Zu|)duC1(|Zs|2 + α|Zs|+ |f |)2ds <∞.

The application of the above estimates to (3.2) gives the existence, for almost every ω, of
a constant C(ω) such that, for each bounded set B,

sup
x∈B
|Y −t,x0 (ω)|2 ≤ C(ω)

for t suffi ciently big. Then, for almost every ω, there exists an R(ω) such that, for each
bounded set B there exists a tB such that

sup
x∈B
|X−t,x0 (ω)|2 ≤ sup

x∈B
C(|Y −t,x+Z0(ω)

0 (ω)|2 + |Z0(ω)|2) ≤ D(ω)

for t ≥ tB, as wanted.

3.2 Random Measures

Let (Ω,F , P ) be a probability space, and (X, d) be a Polish space, i.e. a complete separable
metric space, with Borel σ-algebra B. Denote by Bb(X) (resp. Cb(X)) the space of real
bounded measurable (resp. continuous) functions on X. In this setting a random measure
is a map

µ : B × Ω → [0, 1]
(B,ω) 7→ µω(B),

such that

(i) for P -almost every ω ∈ Ω, B 7→ µω(B) is a probability measure;

(ii) for each B ∈ B, the map ω 7→ µω(B) is measurable.
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The random measure µ will also be indicated as µ = (µω)ω∈Ω, and considered as a
family of measures on (X,B), indexed on Ω. Imposing condition (ii) to the family (µω)ω∈Ω

is equivalent to asking that, given any function f ∈ Cb(X), the map

ω 7→ µω(f) =

∫
X
f(x)µω(x)

is a random variable (see appendix ??). Such families of measures are also called Markov
kernels or transition probabilities. One of the reasons for referring to them with a different
name is the necessity, in RDS theory, of emphasizing the asymmetric roles of the spaces Ω
and X, the first representing the possible noises and the second supporting the dynamic.

See [14] for a complete overview of random measures on Polish spaces.

3.3 Random measures and random dynamical systems

Let ϕ be a random dynamical system on a Polish space (X,B), over a metric dynamical
system (Ω,F , P, (θ(t))t∈T), and let µ be a random measure on X × Ω.

Definition 72 The random measure µ = (µω)ω∈Ω is said to be invariant for the random
dynamical system ϕ if, for all t ∈ T, one has

E[ϕ(t, ·)µ·(A)|θ(t)−1F ] = µθ(t)·(A), for all A ∈ B. (3.3)

If θ is measurably invertible (for example if T is a group), then θ(t)−1F = F and µ is
invariant if and only if for all t ∈ T

ϕ(t, ω)µω = µθ(t)ω for P -almost every ω ∈ Ω. (3.4)

Example 73 Suppose there exists a random variable x0 : Ω→ X such that

ϕ(t, ω)x0(ω) = x0(θtω) for P -almost every ω ∈ Ω. (3.5)

Then the random measure µω = δx0(ω) is invariant. It is called a random Dirac measure.
See example 39.

Consider the probability measure λ on (Ω×X,F ⊗ B), given by

λ(A) =

∫
Ω
P (dω)

∫
X
µω(dx)IA(ω, x), for each A ∈ F ⊗ B. (3.6)

We have the following proposition.

Proposition 74 The random measure µ = (µω)ω∈Ω is invariant for the RDS ϕ if and
only if the measure λ on (Ω ×X,F ⊗ B) given by (3.6) is invariant for the skew product
associated to ϕ.
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Proof. Observe that, for each F ∈ F , B ∈ B,

(Θtλ)(F ×B) = λ{Θt ∈ F ×B}

=

∫
Ω
P (dω)

∫
X
µω(dx)I{Θt∈F×B}(ω, x)

=

∫
Ω
P (dω)

∫
X
µω(dx)I{θt∈F,ϕ(t,·)·∈B}(ω, x)

=

∫
θ(t)−1F

P (dω)

∫
X
µω(dx)I{ϕ(t,·)·∈B}

=

∫
θ(t)−1F

P (dω)

∫
X
µω{x|ϕ(t, ω)x ∈ B}

=

∫
θ(t)−1F

P (dω)

∫
X

(ϕ(t, ω)µω)(B), (3.7)

and

λ(F ×B) =

∫
Ω
P (dω)IF (ω)µω(B) =

∫
Ω
P (dω)IF (θ(t)ω)µω(B)

=

∫
θ(t)−1F

P (dω)µθ(t)ω(B). (3.8)

Suppose then that (3.3) holds: then clearly (3.7) equals (3.8), and Θtλ = λ. Conversely,
suppose that λ is invariant under Θt, then for each B ∈ B and t ∈ T, the function
ω 7→ µθ(t)ω(B) is a version of the conditional expectation of the function ω 7→ ϕ(t, ω)µω(B),
with respect to θ(t)−1F . Since B is countably generated, one can find an exceptional set
which fits all B ∈ B, and (3.3) holds.

We write PP (Ω×X) for the set of probability measures λ on (Ω×X,F⊗B) of the form
(3.6) for some random measure µ. Observe that Θt maps PP (Ω×X) into itself. For each
λ ∈ PP (Ω × X), the random measure µ such that (3.6) holds is P -almost surely unique
([3], proposition 1.4.3). It is called the factorization of λ.

We call IP (ϕ) the subset of PP (Ω×X) of measures λ for which the associated random
measure µ is invariant.

Define the space L1
P (Ω, Cb(X)) of functions f : Ω→ Cb(X) such that the map (ω, x) 7→

f(ω)(x) is measurable, and the integral
∫

Ω supx∈X |f(ω)(x)|dP is finite. One can endow
the space PP (Ω × X) with the topology of weak convergence, i.e. the smallest topology
such that the maps µ 7→ µ(f) =

∫
Ω×X fdµ are continuous for each f ∈ L1

P (Ω, Cb(X)),
µ ∈ PP (Ω×X).

Consider the action of the skew product (Θt)t of ϕ on functions f belonging to L1
P (Ω, Cb(X))

given by Θtf = f ◦ Θt. Observe that Θtf belongs to L1
P (Ω, Cb(X)) whenever f is in

L1
P (Ω, Cb(X)): for each t, the map (ω, x) 7→ f(θtω)(ϕ(t, ω)x) is measurable, continuous in
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x for each fixed ω and∫
Ω

sup
x∈X
|(Θtf)(ω)(x)|dP =

∫
Ω

sup
x∈X
|f(θtω)(ϕ(t, ω)x)|dP (3.9)

≤
∫

Ω
sup
x∈X
|f(θtω)(x)|dP <∞. (3.10)

Proposition 75 If ϕ is a continuous random dynamical system on a Polish space X, the
map µ 7→ Θtµ on PP (Ω × X) is affi ne and continuous, and the set IP (ϕ) is convex and
closed.

Proof. The first property is obvious. For the second, suppose (µα) is a net converging to
µ, i.e., for each f ∈ L1

P (Ω, Cb(X)), µα(f) converges to µ(f). Then (Θtµ
α)(f) = µα(Θtf)→

µ(Θtf) = (Θtµ)(f), as Θtf belongs to L1
P (Ω, Cb(X)).

The second part follows from proposition (74), as the set IP (ϕ) concides with the set
of fixed points of the map µ 7→ Θtµ on PP (Ω×X).

Existence of measures in IP (ϕ) can sometimes be proved through a Krylov-Bogolyubov
argument, as described in the following proposition:

Proposition 76 Let ϕ be a continuous random dynamical system on a Polish space X,
with continuous time T, and let ν be in PP (Ω×X). For each T ∈ T, T > 0, consider the
measure µT defined by the means

µT (A) =
1

T

∫ T

0
(Θtν)(A), ∀A ∈ F ⊗ B. (3.11)

Then every limit point of (µT )T for T → ∞, in the topology of weak convergence, is in
IP (ϕ).

Proof. Let (Tk)k be a sequence such that Tk → ∞ and µTk → µ weakly. For each t > 0,
we show that (Θtµ)(f) = µ(f) for all f ∈ L1

P (Ω, Cb(X)). The equality Θtµ = µ then follows
by the fact that all functions of the form IA×B, with A ∈ F and B closed belonging to B,
can be approximated by decreasing sequences in L1

P (Ω, Cb(X)).
Observe that, if f is in L1

P (Ω, Cb(X)), then µT f = 1
T

∫ T
0 ν(Θtf)dt. For each t > 0, we

have then that

|(ΘtµTk)(f)− µTk(f)| = 1

Tk

∣∣∣∣∫ Tk

0
ν(Θt+sf)ds−

∫ Tk

0
ν(Θsf)ds

∣∣∣∣
=

1

Tk

∣∣∣∣∫ Tk+t

t
ν(Θsf)ds−

∫ Tk

0
ν(Θsf)ds

∣∣∣∣
=

1

Tk

∣∣∣∣∫ Tk+t

Tk

ν(Θsf)ds−
∫ t

0
ν(Θsf)ds

∣∣∣∣
≤ 2t

Tk
||f ||L1P (Ω,Cb(X)) → 0 as k →∞.
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This convergence, together with the continuity of the map µ 7→ Θtµ, imply that Θtµ = µ,
for each t > 0. If t is in T and t < 0, then the invariance of Θt follows by the equality
Θtµ = ΘtΘ−tµ.

The existence of limit points for the sequence (3.11), and then of random invariant
measures for ϕ, can be established through an anologous of Prohorov theorem for random
measures.

Definition 77 A set of measures Γ ⊂ PP (Ω×X) is said to be tight if for every ε > 0 there
exists a compact set Cε ⊂ X such that, for each λ ∈ Γ, λ(Ω× Cε) ≥ 1− ε, or equivalently∫

Ω P (dω)µω(Cε) ≥ 1− ε, if µω is the factorization of λ.

The following theorem is due to Crauel ([14], theorem 4.4):

Theorem 78 If Γ ⊂ PP (Ω × X) is tight, then every sequence (µn)n∈N ⊂ Γ admits a
convergent subsequence.

If ϕ is a continuous random dynamical system on a compact metric space X, ran-
dom invariant measures always exist. Denote by L∞P (Ω,M(X)) the set of P -essentially
bounded measurable functions with values on the set of signed measuresM(X) on (X,B)
of finite total variation. The set of random measures on X, which is a closed subset of
L∞P (Ω,M(X)), is compact by the Banach-Alaoglu’s theorem. The set PP (Ω×X) can be
identified with the set of random measures, through the uniqueness of the factorization.
We know by proposition (75) that the maps (Θt)t are a family of commuting affi ne maps
on PP (Ω × X), and the existence of random invariant measures can be then proved by
recurring to the

Theorem 79 (Markov-Kakutani fixed point theorem) Let S be a nonempty compact and
convex subset of a normed linear space X. If H is a commuting family of affi ne maps on
S, then there exists an x ∈ S such that x = f(x) for all f ∈ H.

3.3.1 Support of a random measure

We denote by supp(σ) the support of a measure σ on (X,B).

Definition 80 Consider a random measure µ on X × Ω. Denote by Nµ the P -null set
outside of which µω is a probability measure. The support C of µ is the map on Ω with
values on the subsets of X, given by

ω 7→ Cω =

{
supp(µω) if ω ∈ N c

µ,

X if ω ∈ Nµ,
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A map
A : Ω → P(X)

ω 7→ Aω,

is called a random closed (open, compact) set if Aω is closed (open, compact) for each
ω ∈ Ω, and the map ω 7→ d(x,Aω) is measurable for each x ∈ X.

Proposition 81 The support of a random measure is a closed random set.

Proof. It is suffi cient to prove that for each δ > 0 the set {ω ∈ Ω | d(ω,Cω) < δ} belongs
to F . One has

{ω ∈ Ω | d(ω,Cω) < δ} = {ω ∈ Ω | Cω ∩B(x, δ) 6= ∅}
= Nµ ∪ {ω ∈ N c

µ : supp(µω) ∩B(x, δ) 6= ∅}
= Nµ ∪ {ω ∈ N c

µ : µω(B(x, δ)) > 0},

which belongs to F by definition of random measure.
Consider now a continuous RDS ϕ over a metric DS (Ω,F , P, (θ(t))t∈T). We say that a

random set C is forward (resp. backward) invariant for the RDS ϕ if for each t > 0 (resp.
t < 0)

ϕ(t, x)Cω ⊂ Cθ(t)ω for P -almost every ω ∈ Ω.

C is called invariant if for each t ∈ T

ϕ(t, ω)Cω = Cθ(t)ω for P -almost every ω ∈ Ω.

Proposition 82 If µ is a random invariant measure for the continuous RDS ϕ, then the
support C of µ is forward invariant if θ is invertible, and invariant if time is two-sided.

Proof. We have that

ϕ(t, ω)Cω ⊂ supp(ϕ(t, ω)µω) = supp(µθ(t)ω) = Cθ(t)ω,

with equality if time is two-sided.
Denote by PP (C) the set of measures on Ω×X supported on a random set C. Observe

that C is (forward) invariant for ϕ if and only if C ⊂ Θ−1
t C (C = Θ−1

t C) for t > 0, where
Θt is the skew product associated to ϕ. This implies that if K is an invariant compact
random set, the set PP (K) is invariant for Θt. If X is compact, then PP (K) is convex
and compact and one can apply the Markov-Kakutani fixed point theorem to prove the
existence of random invariant measures supported by K. If X is not compact, the existence
of a random invariant measures supported on K still holds, with a more delicate proof,
which can be found in [14] (corollary 6.13).



56CHAPTER 3. RANDOM ATTRACTORS AND RANDOM INVARIANT MEASURES

3.3.2 Markov measures

Let ϕ be a random dynamical system with times R+, over a metric dynamical system
(Ω,F , P, (θ(t))t∈R), and we suppose that the one point motion associated to ϕ is a Markov
process with transition probabilities (Pt)t∈R+ .

Markov measures are random measures with particular measurability properties, which
are useful for establishing a corrispondence between random invariant measures for a ran-
dom dynamical system ϕ and invariant measures for the associated Markov semigroup.

Define the σ-algebras

F+ = σ{ω 7→ ϕ(t, θsω, x) : x ∈ X, t, s ≥ 0},

F− = σ{ω 7→ ϕ(t, θ−sω, x) : x ∈ X, 0 ≤ t ≤ s}

representing respectively the future and the past of the RDS ϕ.
Random measures which are measurable with respect to F−, are calledMarkov random

measures. Next theorem gives a motivation for this definition.

Proposition 83 Let µ = (µω)ω∈Ω be a Markov random invariant measure for the random
dynamical system ϕ, and suppose that F+ and F− are independent. Then ρ = Pµ is an
invariant measure for the Markov semigroup Pt associated to ϕ.

Proof. Take f ∈ Bb(X) and t ∈ T. Then

(ρPt)[f ] = ρ[Pt(f)] =

∫
X
ρ(dx)

∫
X
Pt(x, dy)f(y)

=

∫
X
Pµ(dx)

∫
Ω
P (dω)f(ϕ(t, ω, x)).

Apply the last part of proposition (??) in appendix ??, with G = F+, and h = f(ϕ(t, ·, ·)),
and find

(ρPt)[f ] =

∫
Ω
P (dω)

∫
X
µω(dy)f(ϕ(t, ω, y)).

Using the invariance of µ with respect to ϕ, and that of P with respect to θ, we can
conclude

(ρPt)[f ] =

∫
Ω
P (dω)

∫
X
µθ(t)ω(dy)f(y)

=

∫
Ω
P (dω)

∫
X
µω(dy)f(y) = ρ[f ].

Existence of invariant Markov measures supported by invariant random compact set is
established by the following theorem, which can be found in [14]:
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Theorem 84 If K is a forward invariant random compact set which is measurable with
respect to F−, then there exists an invariant Markov measure supported by K.

Observe for istance that, in the setting of example 73, if x0 is F−-measurable, then µ
is a Markov random invariant measure, supported on {x0(ω)|ω ∈ Ω}.

3.4 From invariant measures to invariant random measures

In this paragraph we consider a continuous RDS ϕ generated by a stochastic differential
equation as in Chapter 1, over the canonical metric dynamical system (Ω,F , {F ts}s≤t, (θ(t))t∈R, P ).
We want to present a result on convergence of random measures which leads to the con-
struction of a random invariant measure for ϕ, starting from an invariant measure for the
one-point motion Pt. The same theorem holds for a discrete random dynamical system
on a Polish space (X,B), given by the product of i.i.d. random mappings. The result has
been studied in several versions for istance by Le Jan [35], Kunita [?] and Baxendale [5].

Suppose ρ is an invariant measure for the Markov semigroup associated to the one-point
motion of ϕ, i.e. ∫

X
ρ(dx)Pt(x,B) = ρ(B) ∀x ∈ X,B ∈ B, t ∈ R

or more compactly
ρPt = ρ for each t ∈ R,

with Pt(x,B) = P{ω ∈ Ω : ϕ(t, ω)x ∈ B} for each x ∈ X, B ∈ B, t ∈ R.
Define, for each t ∈ R+, a random measure µ(t) = (µ

(t)
ω )ω∈Ω on X, by

µ(t)
ω = ϕ(t, θ(−t)ω, ·)ρ.

This is a kind of pullback of the measure ρ. For each function f in Cb(X), the process
(µ(t)(f))t∈R+ is adapted to (F0

−t)t∈R+ . Moreover, each random variable µ(t)(f) is in L1(Ω).

Proposition 85 For each function f in Cb(X), the process (µ(t)(f))t∈R+ is a martingale
with respect to the filtration {F0

−t}0≤t<∞.

Proof. Given s, t ∈ R+, recalling the definition of a RDS we can write

µ(t+s)f(ω) =

∫
X
f(ϕ(t+ s, θ(−t− s)ω, x))ρ(dx)

=

∫
X
f(ϕ(t, θ(−t)ω, ·) ◦ ϕ(s, θ(−t− s)ω, x))ρ(dx)

=

∫
X
f(ϕ(t, θ(−t)ω, x))[ϕ(s, θ(−t− s)ω, ·)ρ](dx)

=

∫
X
f(ϕ(t, θ(−t)ω, x))λω(dx),
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where λ = (ϕ(s, θ(−t − s)ω, ·)ρ)ω∈Ω. The map ω 7→ f(ϕ(t, θ(−t)ω, x)) is F0
−t-measurable,

while ω 7→ ϕ(s, θ(−t − s)ω, x) is F0
−t-independent. Then we can apply part (ii) of propo-

sition (??) to find

E[µ(t+s)f |F0
−t] =

∫
X
Pλ(dx)f(ϕ(t, θ(−t)·, x)).

One observes that, if A ∈ B, then

Pλ(A) =

∫
Ω
P (dω)[ϕ(s, θ(−t− s)ω, ·)ρ](A)

=

∫
Ω
P (dω)

∫
X
ρ(dx)IA(ϕ(s, θ(−t− s)ω, x))

=

∫
X
ρ(dx)

∫
Ω
P (dω)IA(ϕ(s, ω, x))

=

∫
X
ρ(dx)Ps(x,A) = (ρPs)(A),

and proves the equality Pλ = ρPs, which gives, by invariance of ρ

E[µ(t+s)f |F0
−t] =

∫
X
f(ϕ(t, θ(−t)·, x))(ρPs)(dx)

=

∫
X
f(ϕ(t, θ(−t)·, x))ρ(dx) = µ(t)f.

Observe that, if M is the martingale of the theorem, for each p ≥ 1, we have

E[|Mt|p] = E[|µ(t)(f)|p] = E

[∣∣∣∣∫
X
f(ϕ(t, θ(−t)·, x))ρ(dx)

∣∣∣∣p] ≤ ||f ||p∞,
in particular M is uniformly integrable. We can then apply this theorem on convergence
of right-continuous martingales (see [32], theorem 3.15, for the proof):

Theorem 86 On a probability space (Ω,F , (Ft)0≤t<∞, P ), let (Xt)0≤t<∞ be a right-continuous
submartingale such that supt≥0E[X+

t ] <∞. Then the limit X∞(ω) = limt→∞Xt(ω) exists
for almost every ω ∈ Ω, and X∞ is in L1.

One can conclude that

µ(t)(f) converges a.s. for all f ∈ Cb(X). (3.12)

Next question is whether this kind of convergence implies the existence of a random
measure (µω)ω∈Ω such that
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µ(t)
ω converges to µω weakly for almost all ω ∈ Ω. (3.13)

Such a random measure µ is called the statistical equilibrium of the random dynamical
system.

Condition (3.13), being clearly necessary for condition (3.12), has been shown to be
suffi cient if the space X is Radon, in a recent paper by Berti, Pratelli and Rigo [?]. A
metric space is said to be Radon if every Borel probability measure on X is tight, i.e.,
taken any probability measure µ on (X,B), for each ε > 0 there exists a compact subset
Cµ,ε ⊂ X such that µ(Cµ,ε) ≥ 1− ε.

Since every Polish space is Radon (see [8], theorem 1.4), we can conclude that there
exists a random measure µ such that (3.13) is satisfied.

Remark 87 More generally, Berti, Pratelli and Rigo proved that for conditions (3.12) and
(3.13) to be equivalent it is suffi cient that the family of measures (λ(t))t≥0 defined by

λ(t)(A) =

∫
Ω
P (dω)

∫
X
µ(t)
ω (dx)IA(ω, x) = P [µ(t)IA], for each A ∈ F ⊗ B

is tight (definition (77)). This condition is also easy to verify in our case: observe that,
for each f ∈ Cb(X), the expected value of µ(t)f is given by:

P [µ(t)f ] =

∫
Ω
P (dω)

∫
X
ρ(dx)f(ϕ(t, θ(−t)ω, x)) (3.14)

=

∫
X
ρ(dx)

∫
Ω
P (dω)f(ϕ(t, θ(−t)ω, x))

=

∫
X
ρ(dx)

∫
Ω
P (dω)f(ϕ(t, ω, x))

=

∫
X
ρ(dx)Ptf(x) = ρ[f ].

Given any ε > 0, take a compact set C ⊂ X such that ρ(C) ≥ 1 − ε, and use (3.14) with
f = IC , finding Pµ(t)(C) = ρ(C) ≥ 1− ε.

For completeness, we give also the original proof of Kunita for the existence of a random
measure µ such that (3.13) holds, in case X = Rn. The martingale µ(t)f converges almost
surely for each f in Cb(Rn). In order to find an exceptional null set which fits every
f ∈ Cb(Rn), consider a countable dense subset D of Cb(Rn). Then there exists a subset Ω

of Ω of full measure such that µ(t)
ω f converges for all ω ∈ Ω and f ∈ D. For each ω ∈ Ω,

define a positive linear functional µ∞ on the linear subspace D of Cb(Rn) generated by D,
as

µ∞ω f := lim
t→∞

µ(t)
ω f, for all f ∈ D.
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We have |µ∞ω | ≤ ||f ||Cb(Rn) for all f ∈ D. Then we can apply the Hahn-Banach theorem
and extend µ∞ω to a positive linear functional on Cb(Rn), such that |µ∞ω | ≤ ||f ||Cb(Rn) for
all f ∈ Cb(Rn). For each ω ∈ Ω, the Riesz theorem now gives a measure µω satisfying
µωf = µ∞ω f . The convergence µ

(t)
ω (Ω) → µω(Ω) implies that µω is a probability measure.

To see that µ = (µω)ω∈Ω is a random measure, observe that, for each f ∈ Cb(X), µ(f) is
pointwise limit of F0

−∞-measurable functions; ω 7→ µω(f) is then measurable with respect
to F0

−∞, and µ is a Markovian random measure.
We can now prove convergence (3.13). Let f be in Cb(Rn), and let (fm)m∈N be a

sequence in D such that ||fm − f ||Cb(Rn) → 0 as m→∞. Then we have:∣∣∣∣∫
X
fdµ(t)

ω −
∫
X
fdµω

∣∣∣∣ ≤ ∣∣∣∣∫
X
fdµ(t)

ω −
∫
X
fmdµ

(t)
ω

∣∣∣∣
+

∣∣∣∣∫
X
fmdµ

(t)
ω −

∫
X
fmdµω

∣∣∣∣+

∣∣∣∣∫
X
fmdµω −

∫
X
fdµω

∣∣∣∣
≤
∣∣∣∣∫
X
fmdµ

(t)
ω −

∫
X
fmdµω

∣∣∣∣+ 2||fm − f ||Cb(Rn).

For each ε > 0, takem0 such that ||fm0−f ||Cb(Rn) < ε/4, and and t0 such that for each t ≥ t0∣∣∣∫X fm0dµ
(t)
ω −

∫
X fm0dµω

∣∣∣ < ε/2. Then for each t ≥ t0 we have
∣∣∣∫X fdµ(t)

ω −
∫
X fdµω

∣∣∣ < ε

as wanted.
To prove invariance of µ, observe that ϕ(t, ω)µω is the limit of

ϕ(t, ω)ϕ(s, θ(−s)ω)ρ = ϕ(s+ t, θ(−s)ω)ρ

for s→∞; by taking u = s+ t one sees that this limit equals

lim
u→∞

ϕ(u, θ(t− u)ω)ρ = lim
u→∞

ϕ(u, θ(−u)θ(t)ω)ρ = µθ(t)ω,

as desired.
From (3.14) it follows in particular that Pµ = ρ.

Example 88 Consider again the random dynamical system ϕ of examples 57 and 39.
Observe that, for each t ≥ 0, x ∈ R and almost every ω ∈ Ω

ϕ(t, θ−tω)x = e−αtx− σω(−t)−
∫ t

0
αe−α(t−s)σ(ω(s− t)− ω(−t))ds

= e−αtx− σω(−t)−
∫ t

0
αe−α(t−s)σω(s− t)ds+ σω(−t)(1− e−αt)

= e−αtx− σω(−t)e−αt −
∫ 0

−t
αeαsσω(s)ds,
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which converges to −
∫ 0
−∞ αe

αsσω(s)ds = x0(ω) for almost every ω. Consequently, for each
probability measure λ on (R,B(R)), the pullbacks ϕ(t, θ−tω)λ converge to δx0(ω) as t→∞,
for almost every ω. In particular this holds for the unique invariant measure of the Markov
semigroup associated to ϕ (see appendix ??), and (δx0(ω))ω∈Ω is the statistical equilibrium
of the system.

The results of Section 3.3.1 imply that the set of invariant random measures supported
on the attractor is non-void.

Remark 89 In the setting of this paragraph, if a global attractor A exists, then the statis-
tical equilibrium (µω)ω∈Ω is supported on A.

Proof. Let ω be such that ϕ(t, θ−tω)ρ converges weakly to µω. For each n ≥ 1, consider
the closed set Un = {x ∈ X : d(x,A(ω)) ≤ 1

n}. Given any ε > 0, let Bε ⊂ X be a
compact set such that ρ(Bε) ≥ 1 − ε. For every n ≥ 1, if t is suffi ciently big, we have
ϕ(t, θ−tω)Bε ⊂ Un, by the definition of attractor. Then, for every n ≥ 1

µω(Un) ≥ lim sup
t→∞

(ϕ(t, θ−tω)ρ)(Un) = lim sup
t→∞

ρ{x ∈ X|ϕ(t, θ−tω)x ∈ Un}

≥ ρ(Bε) ≥ 1− ε,

and consequently µω(Un) = 1 for all n. Since Un ↓ A(ω), we have µω(A(ω)) = limn→∞ µω(Un) =
1.
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