
1 Notations

In this chapter we investigate infinite systems of interacting particles subject to Newtonian
dynamics. Each particle is characterized by its position an velocity

(xi (t) , vi (t)) ∈ Rd × Rd

at time t, in dimension d. The index i varies in a countable set I. We call configuration
the family, denoted generically by Φ:

Φ = (xi, vi)i∈I .

Particles, as said above, are subject to the classical dynamics

x′′i (t) = −
∑

j∈I\{i}
∇U (xi (t)− xj (t))

where U : Rd → R is the so called potential. Unless differently stated, we shall simplify
some aspect of our investigation (to concentrate on the diffi culties coming from the infinite
number of particles) and assume

U ∈ C2
c

(
Rd
)

namely twice continuously differentiable with compact support. Denote by R0 > 0 the
radius of a ball B (0, R0) such that

U = 0 outside B (0, R0) .

As usual, we reformulate the system of second-order equations as a system of first-order
ones {

x′i (t) = vi (t)
v′i (t) = −

∑
j∈I\{i}∇U (xi (t)− xj (t))

and we consider the Cauchy problem given by these equations and the initial conditions

xi|t=0 = x0
i , vi|t=0 = v0

i , i ∈ I.

1.1 Intuitions about blow-up

The interaction potential U is smooth and compact support, hence we do not have troubles
similar to those of point vortices. However, since the number of particles in infinite, we
need that the sum

∑
j∈I\{i}∇U (xi (t)− xj (t)) has only a finite number of terms, for every

i and t (otherwise the sum of vectors could even have no meaning). At time t = 0 we impose
this condition; are we sure that this local finiteness is maintained during the evolution? If
not, we speak of blow-up.
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In both the following intuitive examples consider the case when I = Zd and x0
i = i,

namely partices start uniformly distributed on the lattice.
1. Consider initial velocities which increase when |i| is larger. Assume U = 0. It is not

diffi cult to define values vi such that all particles are in B (0, 1) at a given time t0 > 0.
Similarly, we may create infinite sectors Sn ⊂ Zd that reach B (0, 1) at times tn, with
limn∞ tn = 0. We thus see not only that blow-up is possible, without any restriction on U
and velocities, but it may also happen immediately, namely a solution may not exist.

2. By the lattice Zd, the space Rd is divided in hypercubes (call them cubes) of side
one; color every second cube by red. Define the velocities vi at the corners of each red cube
in such a way that they are of intensity bounded, say |vi| ≤ 1 and point in the direction
of the interior of the red cube, and lead to a collision such that one particle gather almost
all the kinetic energy of all the others. This way, after a short time, we have much faster
particles moving from the red cubes, one for every cube. Repeating this construction in a
selfsimilar way, we may guess it is possible to produce faster and faster particles in shorter
and shorter times and thus concentrate in finite time infinitely many particles in B (0, 1).

2 Locally finite and uniform configuration spaces

The object Φ = (xi, vi)i∈I belongs to the product space
(
Rd × Rd

)I
. However, the sum∑

j∈I\{i}∇U (xi − xj) should contain only a finite number of terms, otherwise the equations
may have no meaning. Thus it is necessary to restrict configurations Φ to the smaller set
of locally finite configurations

Lf ⊂
(
Rd × Rd

)I
defined as

Lf =

{
Φ = (xi, vi)i∈I :

∑
i∈I

1{xi∈B(0,R)} <∞ for every R > 0

}
.

Remark 1 With a suitable metric, Lf is a complete separable metric space and all func-
tionals F : Lf → R of the form

F (Φ) =
∑
i∈I

f (xi, vi) Φ = (xi, vi)i∈I

are continuous, where f is continuous bounded and f (x, v) = 0 for x outside a bounded
set. We shall not use this remark below.

The space of configurations where we look for solutions will be a subspace of Lf

X ⊂ Lf ⊂
(
Rd × Rd

)I
.
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In this section we make the simplest choice, which has strong limitations for applications
but will lead to a first set of simple results.

Given Φ = (xj , 0)j∈I ∈ Lf , set

XΦ =

{
Φ ∈ Lf : sup

j∈I
(|xj − xj |+ |vj |) <∞

}
.

Elements of XΦ are not too far from Φ and have not too large velocities, uniformly in j ∈ I.
Over this set we define the distance

d∞
(

(xj , vj)j∈I ,
(
x′j , v

′
j

)
j∈I

)
= sup

j∈I

(∣∣xj − x′j∣∣ , ∣∣vj − v′j∣∣)
which makes

(
XΦ, d∞

)
a complete separable metric space.

The set XΦ is not a vector space and
(
XΦ, d∞

)
is not a Banach space, in spite of the

shape of d∞ which looks like a norm. Following [1], we shall change variables and reduce
the problem to a Banach space.

3 Change of variable

In order to have a Banach space, it is suffi cient to change variable. We set

ξj (t) = xj (t)− xj
ξ0
i = x0

j − xj
yij = xi − xj

and consider the new system{
ξ′i (t) = vi (t)
v′i (t) = −

∑
j∈I\{i}∇U

(
ξi (t)− ξj (t) + yij

)
and we consider the Cauchy problem given by these equations and the initial conditions

ξi|t=0 = ξ0
i , vi|t=0 = v0

i , i ∈ I.

Let us repeat the notations, adding the symbol Ψ for
(
ξj , vj

)
j∈I :

Ψ
(ξj ,vj)

= Φ
(xj ,vj)

− Φ
(xj ,0)

.

We call Y0 the set Lf read in the new variables:

Y0 =

{
Ψ = (ξi, vi)i∈I :

∑
i∈I

1{ξi+xi∈B(0,R)} <∞ for every R > 0

}
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and, more important, we introduce the Banach space Y :

Y =

{
Ψ = (ξi, vi)i∈I : ‖Ψ‖∞ := sup

i∈I
(|ξi| ∨ |vi|) <∞

}
.

With the norm ‖·‖∞, Y is a separabe Banach space. We have

Y + Φ = XΦ.

Then we introduce the operator

B : Y0 →
(
Rd × Rd

)I
B
((
ξj , vj

)
j∈I

)
i

=

vi,− ∑
j∈I\{i}

∇U
(
ξi − ξj + yij

)
and we recognize that our original Cauchy problem is equivalent to{

Ψ′ (t) = B (Ψ (t))
Ψ (0) = Ψ0 .

4 About the number of particles

Counting the number of particles in a set is fundamental, in this topic. For the intuition,
it is much better to use the orginal variables Φ = (xj , vj) for this purpose.

Definition 2 For a ∈ Rd, Φ = (xj , vj)j∈I ∈ Lf and r ≥ 0, we set

N (a,Φ, r) =
∑
j∈I

1{xj∈B(a,r)}

N (Φ, r) = sup
a∈Rd

N (a,Φ, r) .

In the particular case of Φ = (xj , 0)j∈I ∈ Lf , we simply write

N (r) = N
(
Φ, r

)
.

Definition 3 We say that Φ has bounded density if

N (Φ, r) <∞

for every r ≥ 0.

4



Example 4 If I = Zd and xi = i, then Φ = (xj , 0)j∈I has bounded density.

The following lemma is very useful.

Lemma 5 Given Φ,Φ′ ∈ XΦ = Y + Φ, and r ≥ ‖Φ− Φ′‖∞ for every i ∈ I we have
N (xi,Φ, r) ≤ N

(
x′i,Φ

′, r + 2
∥∥Φ− Φ′

∥∥
∞
)
.

If Φ has bounded density and Ψ ∈ Y , then also Φ = Φ + Ψ has bounded density and

N (Φ, r) ≤ N (r + 2 ‖Ψ‖∞) .

Proof. One has ∣∣x′i − x′j∣∣ ≤ |xi − xj |+
∣∣xi − x′i∣∣+

∣∣x′j − xj∣∣
≤ |xi − xj |+ 2

∥∥Φ− Φ′
∥∥
∞ .

If j ∈ I\ {i} satisfies |xi − xj | ≤ r, then it also satisfies
∣∣∣x′i − x′j∣∣∣ ≤ r + 2 ‖Φ− Φ′‖∞. This

implies the inequality between the cardinality of points. The final claim comes simply from
taking Φ′ = Φ and the inequality

N
(
xi,Φ, s

)
≤ N (s)

for every s ≥ 0 and i ∈ I.

5 Properties of B in Y

A priori, we have defined B as an operator from Y (or more generally from Y0) to(
Rd × Rd

)I
. In fact, it maps Y into Y and it is also locally Lipschitz continuous.

Lemma 6 Assume that Φ has bounded density. Then, for every Ψ,Ψ′ ∈ Y we have

‖B (Ψ)‖∞ ≤ ‖Ψ‖∞ ∨ ‖∇U‖∞N (R0 + 2 ‖Ψ‖∞)∥∥B (Ψ)−B
(
Ψ′
)∥∥
∞ ≤

∥∥Ψ−Ψ′
∥∥
∞
(
1 ∨ 2

∥∥D2U
∥∥
∞
(
N (R0 + 2 ‖Ψ‖∞) +N

(
R0 + 2

∥∥Ψ′
∥∥
∞
)))

.

Proof.

‖B (Ψ)‖∞ ≤ ‖Ψ‖∞ ∨ sup
i∈I

∣∣∣∣∣∣
∑

j∈I\{i}
∇U

(
ξi − ξj + yij

)∣∣∣∣∣∣
≤ ‖Ψ‖∞ ∨ ‖∇U‖∞ sup

i∈I

∑
j∈I\{i}

1{|ξi−ξj+yij|≤R0}

= ‖Ψ‖∞ ∨ ‖∇U‖∞ sup
i∈I

∑
j∈I\{i}

1{|xi−xj |≤R0}

≤ ‖Ψ‖∞ ∨ ‖∇U‖∞ sup
i∈I

N (xi,Φ, R0)

≤ ‖Ψ‖∞ ∨ ‖∇U‖∞N (R0 + 2 ‖Ψ‖∞)
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∥∥B (Ψ)−B
(
Ψ′
)∥∥
∞ ≤

∥∥Ψ−Ψ′
∥∥
∞ ∨ sup

i∈I

∣∣∣∣∣∣
∑

j∈I\{i}

[
∇U

(
ξi − ξj + yij

)
−∇U

(
ξ′i − ξ′j + yij

)]∣∣∣∣∣∣
≤

∥∥Ψ−Ψ′
∥∥
∞ ∨

∥∥D2U
∥∥
∞ sup

i∈I

∑
j∈I\{i}

(∣∣ξi − ξ′i∣∣+
∣∣ξj − ξ′j∣∣) (1{|ξi−ξj+yij|≤R0} + 1{|ξ′i−ξ′j+yij|≤R0}

)
≤

∥∥Ψ−Ψ′
∥∥
∞ ∨ 2

∥∥D2U
∥∥
∞
∥∥Ψ−Ψ′

∥∥
∞ sup

i∈I

∑
j∈I\{i}

(
1{|ξi−ξj+yij|≤R0} + 1{|ξ′i−ξ′j+yij|≤R0}

)
=

∥∥Ψ−Ψ′
∥∥
∞ ∨ 2

∥∥D2U
∥∥
∞
∥∥Ψ−Ψ′

∥∥
∞ sup

i∈I

∑
j∈I\{i}

(
1{|xi−xj |≤R0} + 1{|x′i−x′j|≤R0}

)
≤

∥∥Ψ−Ψ′
∥∥
∞ ∨ 2

∥∥D2U
∥∥
∞
∥∥Ψ−Ψ′

∥∥
∞ sup

i∈I

(
N (xi,Φ, R0) +N

(
x′i,Φ

′, R0

))
≤

∥∥Ψ−Ψ′
∥∥
∞ ∨ 2

∥∥D2U
∥∥
∞
∥∥Ψ−Ψ′

∥∥
∞
(
N (R0 + 2 ‖Ψ‖∞) +N

(
R0 + 2

∥∥Ψ′
∥∥
∞
))
.

6 Local well posedness and global results in XΦ

In the space of bounded displacements ξi and bounded velocities vi we may prove local
well posedness. The differential system, under the change of variables, in integral form is

Ψ (t) = Ψ0 +

∫ t

0
B (Ψ (s)) ds

that we investigate in the space C ([0, T ] ;Y ).

Theorem 7 Assume that Φ has bounded density. Given Ψ0 ∈ Y (or equivalently given
Φ0 ∈ XΦ), there exists T0 > 0 and a unique solution Ψ (·) ∈ C ([0, T ] ;Y ) (equivalently
Φ (·) ∈ C

(
[0, T ] ;XΦ

)
). Given r0 > 0, one can choose T0 > 0 depending on r0 such that

the previous result is true for all Ψ0 ∈ Y with
∥∥Ψ0

∥∥
∞ ≤ r0.

Proof. Step 1. For every T0 > 0, denote by ‖Ψ (·)‖∞ the supremum norm supt∈[0,T0] ‖Ψ (t)‖∞,
whch makes C ([0, T0] ;Y ) a Banach space; we hope there is no danger of confusion due to
the use of the same symbol for different objects.

Consider the map Γ : C ([0, T0] ;Y )→ C ([0, T0] ;Y ) defined as

Γ (Ψ (·)) (t) = Ψ0 +

∫ t

0
B (Ψ (s)) ds.

It is easy to check, based on Lemma 6 that Γ really maps C ([0, T0] ;Y ) into itself, for every
choice of T0 > 0.
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Given r0 > 0, denote by YT0,2r0 the closed ball or center zero and radius 2r0 in
C ([0, T0] ;Y ): the set of all Ψ (·) ∈ C ([0, T0] ;Y ) such that

sup
t∈[0,T0]

‖Ψ (t)‖∞ ≤ 2r0.

Let us check that, for T0 small enough depending only on r0, this ball is invariant by Γ.
We have, from Lemma 6,

‖Γ (Ψ (·)) (t)‖∞ ≤
∥∥Ψ0

∥∥
∞ +

∫ t

0
‖B (Ψ (s))‖∞ ds

≤
∥∥Ψ0

∥∥
∞ +

∫ t

0
‖Ψ (s)‖∞ ∨ ‖∇U‖∞N (R0 + 2 ‖Ψ (s)‖∞) ds

≤ r0 +
[
2r0 ∨ ‖∇U‖∞N (R0 + 4r0)

]
T0

hence ≤ 2r0 for every T0 ≤ T ∗0 with T ∗0 satisfying[
2r0 ∨ ‖∇U‖∞N (R0 + 4r0)

]
T ∗0 = r0.

Step 2. For every T0 ≤ T ∗0 , for every Ψ (·) ,Ψ′ (·) ∈ YT0,2r0 , from Lemma 6 we have∥∥Γ (Ψ (·)) (t)− Γ
(
Ψ′ (·)

)
(t)
∥∥
∞

≤
∫ t

0

∥∥B (Ψ (s))−B
(
Ψ′ (s)

)∥∥
∞ ds

≤
∫ t

0

∥∥Ψ (s)−Ψ′ (s)
∥∥
∞
(
1 ∨ 2

∥∥D2U
∥∥
∞
(
N (R0 + 2 ‖Ψ (s)‖∞) +N

(
R0 + 2

∥∥Ψ′ (s)
∥∥
∞
)))

ds

≤
(
1 ∨ 4

∥∥D2U
∥∥
∞N (R0 + 4r0)

) ∫ t

0

∥∥Ψ (s)−Ψ′ (s)
∥∥
∞ ds

≤
(
1 ∨ 4

∥∥D2U
∥∥
∞N (R0 + 4r0)

)
T0

∥∥Ψ (·)−Ψ′ (·)
∥∥
∞ .

Hence for any T0 ≤ T ∗0 such that(
1 ∨ 4

∥∥D2U
∥∥
∞N (R0 + 4r0)

)
T0 < 1

the map Γ is a contraction, in the complete metric space YT0,2r0 . Hence it has a fixed point,
that is the unique solution claimed by the theorem.

6.1 Criteria for global solutions

Proposition 8 Assume that Φ has bounded density. Given Φ0 ∈ XΦ, assume there exists
C > 0 such that, for every continuous-in-XΦ solution Φ (·) on some interval [0, T0] we have
‖Ψ (·)‖∞ ≤ C, namely

sup
s∈[0,T0]

d∞
(
Φ (s) ,Φ

)
≤ C.
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Then the unique solution provided by Theorem 7 is global. Moreover, each one of the
following conditions is siffi cient:

sup
s∈[0,T0]

sup
i∈I

N (xi,Φ (s) , R0) ≤ C

sup
s∈[0,T0]

sup
i∈I
|xi (s)− xi| ≤ C

sup
s∈[0,T0]

sup
i∈I
|vi (s)| ≤ C.

Proof. A unique local solution exists on an interval T0 satisfying (to preserve YT0,2C)[
2C ∨ ‖∇U‖∞N (R0 + 4C)

]
T0 ≤ C

and (to be a contraction) (
1 ∨ 4

∥∥D2U
∥∥
∞N (R0 + 4C)

)
T0 < 1.

The value Φ (T0), however, satisfies the same condition d∞
(
Φ (T0) ,Φ

)
≤ C, by assumption,

hence we may solve the equation on the interval [T0, 2T0] with the same value of T0 found
above. In a finite number of steps we cover any pre-defined interval of time. We leave the
reader to check that the other conditions are suffi cient.

6.2 Global solution in d = 1

Lemma 9 There exists Cd > 0 with the following property. If Φ has bounded density, then

N (Φ, r) ≤ CdN (Φ, 1)
(

1 + rd
)
.

Proof. It is suffi cient to prove it for r ≥ 1. Cover B (a, r) by Cdrd balls of the form
B (a′, 1), with suitable centers a′. Then

N (a,Φ, r) ≤
∑
a′

N
(
a′,Φ, 1

)
≤ N (Φ, 1)Cdr

d.

Changing Cd if becessary, we get the result.

Theorem 10 In d = 1, assume Φ has bounded density. The the local solutions of Theorem
7 are global.

Proof. By the previous lemma we have

N (r) ≤ C (1 + r)
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for a suitable constant C > 0. If Φ (·) is a solution on any time interval [0, T0], then, using
the bound of Lemma 6, we have

‖Ψ (t)‖∞ ≤
∥∥Ψ0

∥∥
∞ +

∫ t

0
‖Ψ (s)‖∞ ∨ ‖∇U‖∞N (R0 + 2 ‖Ψ (s)‖∞) ds

≤
∥∥Ψ0

∥∥
∞ +

∫ t

0
‖Ψ (s)‖∞ + ‖∇U‖∞C (1 +R0 + 2 ‖Ψ (s)‖∞) ds

≤
∥∥Ψ0

∥∥
∞ +

∫ t

0
C ‖∇U‖∞ (1 +R0) ds+

∫ t

0

(
1 + 2C ‖∇U‖∞

)
‖Ψ (s)‖∞ ds

and thus, by Gronwall lemma,

‖Ψ (t)‖∞ ≤ e(
1+2C‖∇U‖∞)t

(∥∥Ψ0
∥∥
∞ +

∫ t

0
C ‖∇U‖∞ (1 +R0) ds

)
.

On any time interval [0, T ] the assumption of Proposition 8 is satisfied, hence the solution
is global in [0, T ], hence on [0,∞).

Remark 11 In generic dimension d, let us say that Φ has strongly decaying density if

N (r) ≤ C (1 + r)

for a suitable constant C > 0. In this case the proof of the previous theorem works and
global existence holds. Of course the initial conditions Φ0 allowd have also strongly decay-
ing density, namely N

(
Φ0, r

)
has at most linear growth, and this is very restrictive, in

dimension d > 1.

7 Translation invariant measures

Except in dimension d = 1, we are not able to prove a global-in-time result in the class
Y . However, similarly to the case of point vortices, it could be true that singularities are
avoided for a.e. initial condition, with respect to a suitable measure. Let us start the
investigation of this topic.

The most obvious idea would be to use a (potentially) invariant measure However,
the natural ones for this purpose, the Gibbs measures, having a Maxwell distribution of
velocities, is not supported on Y ; more precisely Y has measure zero. This is a main reason
to investigate larger spaces than Y ; however, let us insist on Y becuase of its simplicity and
replace the concept of invariant measure with the concept of translation-invariant measure.
These new objects are not as powerful as the previous ones but may lead to interesting
results.

Consider the Polish space
(
XΦ, d∞

)
defined above, with the Borel σ-algebra B. A

probability measure µ on
(
XΦ,B

)
is called translation invariant if

τaµ = µ
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for every a ∈ Rd, where τaµ is the push-forward of µ under τa and τa will be now defined.
On Rd, τa is the map defined as

τa (x) = x+ a.

It induces a map, still denoted by τa, on
(
Rd × Rd

)I
:

τa (xi, vi)i∈I = (xi + a, vi)i∈I .

Restrictred to XΦ, we see that τa
(
XΦ

)
= XΦ. This map is measurable, hence the push-

forward of a measure on
(
XΦ, d∞

)
is well defined.

Equivalent is to ask that∫
XΦ

F (τaΦ)µ (dΦ) =

∫
XΦ

F (Φ)µ (dΦ)

for every point a ∈ Rd and bounded measurable functions F : XΦ → R. As a particular
case of F let us consider

F (Φ) =
∑
i∈I

f (xi, vi)

with f bounded measurable on Rd ×Rd, equal to zero for |x| > R for some R > 0. We get∫
XΦ

∑
i∈I

f (xi + a, vi)µ (dΦ) =

∫
XΦ

∑
i∈I

f (xi, vi)µ (dΦ) .

If µ is a Borel measure on XΦ, a Borel measure on Y = XΦ −Φ is naturally defined as
the push forward under the map Φ 7→ Ψ := Φ− Φ. Let us call µY such measure. We may
reformulate the theory of translation invariant measures µ on XΦ by means of measures
on Y with a suitable property:

Lemma 12 The measure µ on XΦ is translation invariant if an only if the measure µY
on Y satisfies ∫

Y
G (Ψ)µY (dΨ) =

∫
Y
G
(
τaΨ + τaΦ− Φ

)
µY (dΨ)

or equivalently ∫
Y
G (τaΨ)µY (dΨ) =

∫
Y
G
(
Ψ + Ψa

)
µY (dΨ)

where Ψa = Φ− τaΦ, for every bounded measurable functions G : Y → R.
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Proof. Denoting the function Φ 7→ G
(
Φ− Φ

)
by F (Φ),∫

Y
G (Ψ)µY (dΨ) =

∫
XΦ

G
(
Φ− Φ

)
µ (dΦ) =

∫
XΦ

F (Φ)µ (dΦ)

=

∫
XΦ

F (τaΦ)µ (dΦ) =

∫
XΦ

G
(
τaΦ− Φ

)
µ (dΦ)

=

∫
XΦ

G
(
τa
(
Φ− Φ

)
+ τaΦ− Φ

)
µ (dΦ)

=

∫
Y
G
(
τaΨ + τaΦ− Φ

)
µY (dΨ) .

Remark 13 However, the intuition is better on XΦ, hence we leave the translation for
investigations which profit from the Banach space property.

Remark 14 The v-component plays an auxiliary role in this framework. A general way to
construct translation invariant measure on

(
XΦ, d∞

)
is to construct them with such a prop-

erty on the purely spatial component, and then take product measure on the v-component,
for instance independent identically distributed velocities to all particles; with bounded dis-
tribution, to be included in XΦ. If we denote the spatial component of XΦ by X

x
Φ
, that of

Φ by Φx and the projection of µ on the spatial component by µx, we have∫
Xx

Φ

∑
i∈I

f (xi + a)µx (dΦx) =

∫
Xx

Φ

∑
i∈I

f (xi)µ
x (dΦx)

for every bounded measurable compact support function f on Rd.

Remark 15 Let I = Zd, Φ be given by xi = i, for every i ∈ Zd. An example of translation
invariant measure on the spatial component of

(
XΦ, d∞

)
is given by the convex combination

µ (dx) =

∫
[− 1

2
, 1
2 ]
d
δx+q (dx) dq

where I = Zd, x = (xi)i∈I , x = (xi)i∈I , x + q = (xi + q)i∈I , q ∈ Rd. For this measure we
have∫
Xx

Φ

∑
i∈I

f (xi + a)µx (dΦx) =

∫
[− 1

2
, 1
2 ]
d

∫
Xx

Φ

∑
i∈I

f (xi + a) δx+q (dx) dq

=

∫
[− 1

2
, 1
2 ]
d

∑
i∈I

f (i+ q + a) dq =
∑
i∈I

∫
[− 1

2
, 1
2 ]
d
f (i+ q + a) dq

=

∫
Rd
f (x+ a) dx =

∫
Rd
f (x) dx

independently of a ∈ Rd.
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8 Evolution of translation invariant measures

Recall from the proof of Theorem 7 that T0 can be taken the same for all Φ0 having the
same distance from Φ. Thus, if a translation invariant measure µ0 is supported on a ball
BXΦ

(
Φ, r0

)
in XΦ of center Φ and radius r0, its time evolution is well defined for t ∈ [0, T0],

where T0 is a value defined by Theorem 7 with respect to r0. If we denote by Φ
(
t; Φ0

)
, for

t ∈ [0, T0], the unique solution starting from Φ0 ∈ BXΦ

(
Φ, r0

)
, call µt the push-forward of

µ0 under the map Φ0 7→ Φ
(
t; Φ0

)
.

Lemma 16 µt is translation invariant.

Proof. Using the property τaΦ
(
t; Φ0

)
= Φ

(
t; τaΦ

0
)
(easy to check) and the invariance of

µ0: ∫
XΦ

F (τaΦ)µt (dΦ) =

∫
XΦ

F
(
τaΦ

(
t; Φ0

))
µ0

(
dΦ0

)
=

∫
XΦ

F
(
Φ
(
t; τaΦ

0
))
µ0

(
dΦ0

)
=

∫
XΦ

F
(
Φ
(
t; Φ0

))
µ0

(
dΦ0

)
=

∫
XΦ

F (Φ)µt (dΦ) .

9 Specific energy

By energy of particle i in configuration Φ we mean

e (i,Φ) =
1

2

|vi|2 +
∑

j∈I\{i}
U (xi − xj)

 .

By energy of configuration Φ in the Borel set B of Rd we mean

e (Φ, B) =
∑
i∈I

e (i,Φ) 1{xi∈B}.

Given a translation invariant measure µ, by specific energy we mean

e (µ) =

∫
XΦ

e (Φ,W1)µ (dΦ)

12



where W1 =
[
−1

2 ,
1
2

]d
. More generally we may define the average energy in B ⊂ Rd as

e (µ,B) =

∫
XΦ

e (Φ, B)µ (dΦ) .

The set-function B 7→ e (µ,B) is additive.

Lemma 17 e (µ,B) = e (µ,B + a) for every a ∈ Rd.

Proof.∫
XΦ

e (Φ, B + a)µ (dΦ) =
1

2

∑
i∈I

∫
XΦ

|vi|2 +
∑

j∈I\{i}
U (xi − xj)

 1{xi∈B+a}µ (dΦ)

=
1

2

∑
i∈I

∫
XΦ

|vi|2 +
∑

j∈I\{i}
U (xi − a− (xj − a))

 1{xi−a∈B}µ (dΦ)

=
1

2

∑
i∈I

∫
XΦ

|vi|2 +
∑

j∈I\{i}
U (xi − xj)

 1{xi∈B}µ (dΦ)

=

∫
XΦ

e (Φ, B)µ (dΦ) .

The name specific energy can now be understood:

Lemma 18
e (µ) = lim

N→∞

1

(2N + 1)d
e (µ,WN )

where WN =
[
−N − 1

2 , N + 1
2

]d
.

Proof. Decompose WN in (2N + 1)d disjoint hypercubes and apply additivity of B 7→
e (µ,B) along with the previous lemma.

Now, let µ0 be a translation invariant measure supported on the ball BXΦ

(
Φ, r0

)
and

let µt be its time-evolution, defined for t ∈ [0, T0], also translation invariant by the lemma
above. Define the specific energy at time t as

et := e (µt) .

Lemma 19 Assume that µ0 is translation invariant and supported on the ball BXΦ

(
Φ, r0

)
.

Then the function t 7→ et is constant.

13



Proof. Step 1. By the previous lemma

et = lim
N→∞

1

(2N + 1)d
e (µt,WN )

= lim
N→∞

1

(2N + 1)d

∫
XΦ

e (Φ,WN )µt (dΦ)

= lim
N→∞

1

(2N + 1)d

∫
XΦ

e
(
Φ
(
t; Φ0

)
,WN

)
µ0

(
dΦ0

)
.

Heuristically, e
(
Φ
(
t; Φ0

)
,Rd

)
= e

(
Φ0,Rd

)
(but both are infinite!), namely e

(
Φ
(
t; Φ0

)
,WN

)
∼

e
(
Φ0,WN

)
for large N , hence

1

(2N + 1)d

∫
XΦ

e
(
Φ
(
t; Φ0

)
,WN

)
µ0

(
dΦ0

)
∼ 1

(2N + 1)d

∫
XΦ

e
(
Φ0,WN

)
µ0

(
dΦ0

)
∼ e0.

The rigorous proof requires a control of the error. We have

e
(
Φ
(
t; Φ0

)
,WN

)
=

1

2

∑
i∈I

|vi (t)|2 +
∑

j∈I\{i}
U (xi (t)− xj (t))

 1{xi(t)∈WN}.

Since

1

2

d

dt

|vi (t)|2 +
∑

j∈I\{i}
U (xi (t)− xj (t))

 = gi (t)

where

gi (t) : = −vi (t) ·
∑

j∈I\{i}
∇U (xi (t)− xj (t)) +

1

2

∑
j∈I\{i}

∇U (xi (t)− xj (t)) · (vi (t)− vj (t))

= −1

2

∑
j∈I\{i}

∇U (xi (t)− xj (t)) · (vi (t) + vj (t))

we have

e
(
Φ
(
t; Φ0

)
,WN

)
=

1

2

∑
i∈I

|vi (t)|2 +
∑

j∈I\{i}
U (xi (t)− xj (t))

(1{xi(t)∈WN} − 1{x0
i∈WN}

)
1

2

∑
i∈I

∣∣v0
i

∣∣2 +
∑

j∈I\{i}
U
(
x0
i − x0

j

) 1{x0
i∈WN} +

∑
i∈I

gi (t) 1{x0
i∈WN}

= e
(
Φ0,WN

)
+AN

(
Φ0
)

+BN
(
Φ0
)
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where

AN
(
Φ0
)

=
1

2

∑
i∈I

|vi (t)|2 +
∑

j∈I\{i}
U (xi (t)− xj (t))

(1{xi(t)∈WN} − 1{x0
i∈WN}

)
BN

(
Φ0
)

=
∑
i∈I

gi (t) 1{x0
i∈WN}.

Thus

et = e0 + lim
N→∞

∫
XΦ

AN
(
Φ0
)

+BN
(
Φ0
)

(2N + 1)d
µ0

(
dΦ0

)
.

We have to prove that this limit is equal to zero.
Step 2. We give only the idea of the computation. We have∣∣AN (Φ0

)∣∣ ≤ 1

2

∑
i∈I

(
r2

0 + ‖U‖∞N
(
i,Φ

(
t; Φ0

)
, R0

)) ∣∣∣1{xi(t)∈WN} − 1{x0
i∈WN}

∣∣∣ .
Since d∞

(
Φ0,Φ

)
≤ r0, for t ∈ [0, T0] we have d∞

(
Φ
(
t; Φ0

)
,Φ
)
≤ R for a certain chosen

R > r0, hence N
(
i,Φ

(
t; Φ0

)
, R0

)
≤ N (R0 + 2R), and thus, denoting by C > 0 a constant

independent of N and Φ0, we get∣∣AN (Φ0
)∣∣ ≤ C∑

i∈I

∣∣∣1{xi(t)∈WN} − 1{x0
i∈WN}

∣∣∣ .
Since |vi (s)| ≤ R,

∣∣xi (t)− x0
i

∣∣ ≤ RT0, hence only indexes i such that either x0
i ∈WN\WN−RT0

or xi (t) ∈WN\WN−RT0 may contribute to the sum; the volume ofWN\WN−RT0 is of order
(2N + 1)d−1 and thanks to the assumption on N (r) the numebr of i’s with the previous
properties is also of order equal or less than (2N + 1)d−1. It follows that∣∣AN (Φ0

)∣∣
(2N + 1)d

≤ C

2N + 1
.

Step 3. One has

BN
(
Φ0
)

= −1

2

∑
i∈I

∑
j∈I\{i}

∇U (xi (t)− xj (t)) · (vi (t) + vj (t)) 1{x0
i∈WN}

=
1

2

∑
i,j∈I;i 6=j

∇U (xi (t)− xj (t)) · vi (t)
(

1{x0
j∈WN} − 1{x0

i∈WN}
)

hence ∣∣BN (Φ0
)∣∣ ≤ 1

2
‖∇U‖∞ r0

∑
i,j∈I;i 6=j

∣∣∣1{x0
j∈WN} − 1{x0

i∈WN}
∣∣∣ 1{|xi(t)−xj(t)|≤R0}.
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With arguments similar to those of Step 2 we deduce that
∣∣BN (Φ0

)∣∣ is at most of order
(2N + 1)d−1 and that ∣∣BN (Φ0

)∣∣
(2N + 1)d

≤ C

2N + 1
.

The results of Steps 2 and 3 prove the final claim of Step 1.
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