1 Notations

In this chapter we investigate infinite systems of interacting particles subject to Newtonian dynamics. Each particle is characterized by its position an velocity

$$
\left(x_{i}(t), v_{i}(t)\right) \in \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ :

$$
\Phi=\left(x_{i}, v_{i}\right)_{i \in I}
$$

Particles, as said above, are subject to the classical dynamics

$$
x_{i}^{\prime \prime}(t)=-\sum_{j \in I \backslash\{i\}} \nabla U\left(x_{i}(t)-x_{j}(t)\right)
$$

where $U: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is the so called potential. Unless differently stated, we shall simplify some aspect of our investigation (to concentrate on the difficulties coming from the infinite number of particles) and assume

$$
U \in C_{c}^{2}\left(\mathbb{R}^{d}\right)
$$

namely twice continuously differentiable with compact support. Denote by $R_{0}>0$ the radius of a ball $B\left(0, R_{0}\right)$ such that

$$
U=0 \text { outside } B\left(0, R_{0}\right) .
$$

As usual, we reformulate the system of second-order equations as a system of first-order ones

$$
\left\{\begin{aligned}
x_{i}^{\prime}(t) & =v_{i}(t) \\
v_{i}^{\prime}(t) & =-\quad \sum_{j \in I \backslash\{i\}} \nabla U\left(x_{i}(t)-x_{j}(t)\right)
\end{aligned}\right.
$$

and we consider the Cauchy problem given by these equations and the initial conditions

$$
\left.x_{i}\right|_{t=0}=x_{i}^{0},\left.\quad v_{i}\right|_{t=0}=v_{i}^{0}, \quad i \in I .
$$

1.1 Intuitions about blow-up

The interaction potential U is smooth and compact support, hence we do not have troubles similar to those of point vortices. However, since the number of particles in infinite, we need that the sum $\sum_{j \in I \backslash\{i\}} \nabla U\left(x_{i}(t)-x_{j}(t)\right)$ has only a finite number of terms, for every i and t (otherwise the sum of vectors could even have no meaning). At time $t=0$ we impose this condition; are we sure that this local finiteness is maintained during the evolution? If not, we speak of blow-up.

In both the following intuitive examples consider the case when $I=\mathbb{Z}^{d}$ and $x_{i}^{0}=i$, namely partices start uniformly distributed on the lattice.

1. Consider initial velocities which increase when $|i|$ is larger. Assume $U=0$. It is not difficult to define values v_{i} such that all particles are in $B(0,1)$ at a given time $t_{0}>0$. Similarly, we may create infinite sectors $S_{n} \subset \mathbb{Z}^{d}$ that reach $B(0,1)$ at times t_{n}, with $\lim _{n \infty} t_{n}=0$. We thus see not only that blow-up is possible, without any restriction on U and velocities, but it may also happen immediately, namely a solution may not exist.
2. By the lattice \mathbb{Z}^{d}, the space \mathbb{R}^{d} is divided in hypercubes (call them cubes) of side one; color every second cube by red. Define the velocities v_{i} at the corners of each red cube in such a way that they are of intensity bounded, say $\left|v_{i}\right| \leq 1$ and point in the direction of the interior of the red cube, and lead to a collision such that one particle gather almost all the kinetic energy of all the others. This way, after a short time, we have much faster particles moving from the red cubes, one for every cube. Repeating this construction in a selfsimilar way, we may guess it is possible to produce faster and faster particles in shorter and shorter times and thus concentrate in finite time infinitely many particles in $B(0,1)$.

2 Locally finite and uniform configuration spaces

The object $\Phi=\left(x_{i}, v_{i}\right)_{i \in I}$ belongs to the product space $\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)^{I}$. However, the sum $\sum_{j \in I \backslash\{i\}} \nabla U\left(x_{i}-x_{j}\right)$ should contain only a finite number of terms, otherwise the equations may have no meaning. Thus it is necessary to restrict configurations Φ to the smaller set of locally finite configurations

$$
\mathcal{L}_{f} \subset\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)^{I}
$$

defined as

$$
\mathcal{L}_{f}=\left\{\Phi=\left(x_{i}, v_{i}\right)_{i \in I}: \sum_{i \in I} 1_{\left\{x_{i} \in B(0, R)\right\}}<\infty \text { for every } R>0\right\}
$$

Remark 1 With a suitable metric, \mathcal{L}_{f} is a complete separable metric space and all functionals $F: \mathcal{L}_{f} \rightarrow \mathbb{R}$ of the form

$$
F(\Phi)=\sum_{i \in I} f\left(x_{i}, v_{i}\right) \quad \Phi=\left(x_{i}, v_{i}\right)_{i \in I}
$$

are continuous, where f is continuous bounded and $f(x, v)=0$ for x outside a bounded set. We shall not use this remark below.

The space of configurations where we look for solutions will be a subspace of \mathcal{L}_{f}

$$
X \subset \mathcal{L}_{f} \subset\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)^{I}
$$

In this section we make the simplest choice, which has strong limitations for applications but will lead to a first set of simple results.

Given $\bar{\Phi}=\left(\bar{x}_{j}, 0\right)_{j \in I} \in \mathcal{L}_{f}$, set

$$
X_{\bar{\Phi}}=\left\{\Phi \in \mathcal{L}_{f}: \sup _{j \in I}\left(\left|x_{j}-\bar{x}_{j}\right|+\left|v_{j}\right|\right)<\infty\right\}
$$

Elements of $X_{\bar{\Phi}}$ are not too far from $\bar{\Phi}$ and have not too large velocities, uniformly in $j \in I$. Over this set we define the distance

$$
d_{\infty}\left(\left(x_{j}, v_{j}\right)_{j \in I},\left(x_{j}^{\prime}, v_{j}^{\prime}\right)_{j \in I}\right)=\sup _{j \in I}\left(\left|x_{j}-x_{j}^{\prime}\right|,\left|v_{j}-v_{j}^{\prime}\right|\right)
$$

which makes $\left(X_{\bar{\Phi}}, d_{\infty}\right)$ a complete separable metric space.
The set $X_{\bar{\Phi}}$ is not a vector space and $\left(X_{\bar{\Phi}}, d_{\infty}\right)$ is not a Banach space, in spite of the shape of d_{∞} which looks like a norm. Following [1], we shall change variables and reduce the problem to a Banach space.

3 Change of variable

In order to have a Banach space, it is sufficient to change variable. We set

$$
\begin{aligned}
\xi_{j}(t) & =x_{j}(t)-\bar{x}_{j} \\
\xi_{i}^{0} & =x_{j}^{0}-\bar{x}_{j} \\
\bar{y}_{i j} & =\bar{x}_{i}-\bar{x}_{j}
\end{aligned}
$$

and consider the new system

$$
\left\{\begin{aligned}
\xi_{i}^{\prime}(t) & =v_{i}(t) \\
v_{i}^{\prime}(t) & =-\quad \sum_{j \in I \backslash\{i\}} \nabla U\left(\xi_{i}(t)-\xi_{j}(t)+\bar{y}_{i j}\right)
\end{aligned}\right.
$$

and we consider the Cauchy problem given by these equations and the initial conditions

$$
\left.\xi_{i}\right|_{t=0}=\xi_{i}^{0},\left.\quad v_{i}\right|_{t=0}=v_{i}^{0}, \quad i \in I .
$$

Let us repeat the notations, adding the symbol Ψ for $\left(\xi_{j}, v_{j}\right)_{j \in I}$:

$$
\underset{\left(\xi_{j}, v_{j}\right)}{\Psi}=\underset{\left(x_{j}, v_{j}\right)}{\Phi}-\underset{\left(\bar{x}_{j}, 0\right)}{\bar{\Phi}} .
$$

We call Y_{0} the set \mathcal{L}_{f} read in the new variables:

$$
Y_{0}=\left\{\Psi=\left(\xi_{i}, v_{i}\right)_{i \in I}: \sum_{i \in I} 1_{\left\{\xi_{i}+\bar{x}_{i} \in B(0, R)\right\}}<\infty \text { for every } R>0\right\}
$$

and, more important, we introduce the Banach space Y :

$$
Y=\left\{\Psi=\left(\xi_{i}, v_{i}\right)_{i \in I}:\|\Psi\|_{\infty}:=\sup _{i \in I}\left(\left|\xi_{i}\right| \vee\left|v_{i}\right|\right)<\infty\right\}
$$

With the norm $\|\cdot\|_{\infty}, Y$ is a separabe Banach space. We have

$$
Y+\bar{\Phi}=X_{\bar{\Phi}}
$$

Then we introduce the operator

$$
\begin{aligned}
B & : Y_{0} \rightarrow\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)^{I} \\
B\left(\left(\xi_{j}, v_{j}\right)_{j \in I}\right)_{i} & =\left(v_{i},-\sum_{j \in I \backslash\{i\}} \nabla U\left(\xi_{i}-\xi_{j}+\bar{y}_{i j}\right)\right)
\end{aligned}
$$

and we recognize that our original Cauchy problem is equivalent to

$$
\left\{\begin{array}{ccc}
\Psi^{\prime}(t) & =B(\Psi(t)) \\
\Psi(0) & =\Psi^{0}
\end{array}\right.
$$

4 About the number of particles

Counting the number of particles in a set is fundamental, in this topic. For the intuition, it is much better to use the orginal variables $\Phi=\left(x_{j}, v_{j}\right)$ for this purpose.

Definition 2 For $a \in \mathbb{R}^{d}, \Phi=\left(x_{j}, v_{j}\right)_{j \in I} \in \mathcal{L}_{f}$ and $r \geq 0$, we set

$$
\begin{aligned}
& N(a, \Phi, r)=\sum_{j \in I} 1_{\left\{x_{j} \in B(a, r)\right\}} \\
& N(\Phi, r)=\sup _{a \in \mathbb{R}^{d}} N(a, \Phi, r)
\end{aligned}
$$

In the particular case of $\bar{\Phi}=\left(\bar{x}_{j}, 0\right)_{j \in I} \in \mathcal{L}_{f}$, we simply write

$$
\bar{N}(r)=N(\bar{\Phi}, r)
$$

Definition 3 We say that Φ has bounded density if

$$
N(\Phi, r)<\infty
$$

for every $r \geq 0$.

Example 4 If $I=\mathbb{Z}^{d}$ and $\bar{x}_{i}=i$, then $\bar{\Phi}=\left(\bar{x}_{j}, 0\right)_{j \in I}$ has bounded density.
The following lemma is very useful.
Lemma 5 Given $\Phi, \Phi^{\prime} \in X_{\bar{\Phi}}=Y+\bar{\Phi}$, and $r \geq\left\|\Phi-\Phi^{\prime}\right\|_{\infty}$ for every $i \in I$ we have

$$
N\left(x_{i}, \Phi, r\right) \leq N\left(x_{i}^{\prime}, \Phi^{\prime}, r+2\left\|\Phi-\Phi^{\prime}\right\|_{\infty}\right) .
$$

If $\bar{\Phi}$ has bounded density and $\Psi \in Y$, then also $\Phi=\bar{\Phi}+\Psi$ has bounded density and

$$
N(\Phi, r) \leq \bar{N}\left(r+2\|\Psi\|_{\infty}\right)
$$

Proof. One has

$$
\begin{aligned}
\left|x_{i}^{\prime}-x_{j}^{\prime}\right| & \leq\left|x_{i}-x_{j}\right|+\left|x_{i}-x_{i}^{\prime}\right|+\left|x_{j}^{\prime}-x_{j}\right| \\
& \leq\left|x_{i}-x_{j}\right|+2\left\|\Phi-\Phi^{\prime}\right\|_{\infty} .
\end{aligned}
$$

If $j \in I \backslash\{i\}$ satisfies $\left|x_{i}-x_{j}\right| \leq r$, then it also satisfies $\left|x_{i}^{\prime}-x_{j}^{\prime}\right| \leq r+2\left\|\Phi-\Phi^{\prime}\right\|_{\infty}$. This implies the inequality between the cardinality of points. The final claim comes simply from taking $\Phi^{\prime}=\bar{\Phi}$ and the inequality

$$
N\left(\bar{x}_{i}, \bar{\Phi}, s\right) \leq \bar{N}(s)
$$

for every $s \geq 0$ and $i \in I$.

5 Properties of B in Y

A priori, we have defined B as an operator from Y (or more generally from Y_{0}) to $\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)^{I}$. In fact, it maps Y into Y and it is also locally Lipschitz continuous.
Lemma 6 Assume that $\bar{\Phi}$ has bounded density. Then, for every $\Psi, \Psi^{\prime} \in Y$ we have

$$
\begin{gathered}
\|B(\Psi)\|_{\infty} \leq\|\Psi\|_{\infty} \vee\|\nabla U\|_{\infty} \bar{N}\left(R_{0}+2\|\Psi\|_{\infty}\right) \\
\left\|B(\Psi)-B\left(\Psi^{\prime}\right)\right\|_{\infty} \leq\left\|\Psi-\Psi^{\prime}\right\|_{\infty}\left(1 \vee 2\left\|D^{2} U\right\|_{\infty}\left(\bar{N}\left(R_{0}+2\|\Psi\|_{\infty}\right)+\bar{N}\left(R_{0}+2\left\|\Psi^{\prime}\right\|_{\infty}\right)\right)\right) .
\end{gathered}
$$

Proof.

$$
\begin{aligned}
\|B(\Psi)\|_{\infty} & \leq\|\Psi\|_{\infty} \vee \sup _{i \in I}\left|\sum_{j \in I \backslash\{i\}} \nabla U\left(\xi_{i}-\xi_{j}+\bar{y}_{i j}\right)\right| \\
& \leq\|\Psi\|_{\infty} \vee\|\nabla U\|_{\infty} \sup _{i \in I} \sum_{j \in I \backslash\{i\}} 1_{\left\{\left|\xi_{i}-\xi_{j}+\bar{y}_{i j}\right| \leq R_{0}\right\}} \\
& =\|\Psi\|_{\infty} \vee\|\nabla U\|_{\infty} \sup _{i \in I} \sum_{j \in I \backslash\{i\}} 1_{\left\{\left|x_{i}-x_{j}\right| \leq R_{0}\right\}} \\
& \leq\|\Psi\|_{\infty} \vee\|\nabla U\|_{\infty} \sup _{i \in I} N\left(x_{i}, \Phi, R_{0}\right) \\
& \leq\|\Psi\|_{\infty} \vee\|\nabla U\|_{\infty} \bar{N}\left(R_{0}+2\|\Psi\|_{\infty}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left\|B(\Psi)-B\left(\Psi^{\prime}\right)\right\|_{\infty} & \leq\left\|\Psi-\Psi^{\prime}\right\|_{\infty} \vee \sup _{i \in I}\left|\sum_{j \in I \backslash\{i\}}\left[\nabla U\left(\xi_{i}-\xi_{j}+\bar{y}_{i j}\right)-\nabla U\left(\xi_{i}^{\prime}-\xi_{j}^{\prime}+\bar{y}_{i j}\right)\right]\right| \\
& \leq\left\|\Psi-\Psi^{\prime}\right\|_{\infty} \vee\left\|D^{2} U\right\|_{\infty} \sup _{i \in I} \sum_{j \in I \backslash\{i\}}\left(\left|\xi_{i}-\xi_{i}^{\prime}\right|+\left|\xi_{j}-\xi_{j}^{\prime}\right|\right)\left(1_{\left\{\left|\xi_{i}-\xi_{j}+\bar{y}_{i j}\right| \leq R_{0}\right\}}+1_{\left\{\mid \xi_{i}^{\prime}-\xi_{j}^{\prime}\right.}\right. \\
& \leq\left\|\Psi-\Psi^{\prime}\right\|_{\infty} \vee 2\left\|D^{2} U\right\|_{\infty}\left\|\Psi-\Psi^{\prime}\right\|_{\infty} \sup _{i \in I} \sum_{j \in I \backslash\{i\}}\left(1_{\left\{\left|\xi_{i}-\xi_{j}+\bar{y}_{i j}\right| \leq R_{0}\right\}}+1_{\left\{\left|\xi_{i}^{\prime}-\xi_{j}^{\prime}+\bar{y}_{i j}\right| \leq R_{0}\right.}\right. \\
& =\left\|\Psi-\Psi^{\prime}\right\|_{\infty} \vee 2\left\|D^{2} U\right\|_{\infty}\left\|\Psi-\Psi^{\prime}\right\|_{\infty} \sup _{i \in I} \sum_{j \in I \backslash\{i\}}\left(1_{\left\{\left|x_{i}-x_{j}\right| \leq R_{0}\right\}}+1_{\left\{\left|x_{i}^{\prime}-x_{j}^{\prime}\right| \leq R_{0}\right\}}\right) \\
& \leq\left\|\Psi-\Psi^{\prime}\right\|_{\infty} \vee 2\left\|D^{2} U\right\|_{\infty}\left\|\Psi-\Psi^{\prime}\right\|_{\infty} \sup _{i \in I}\left(N\left(x_{i}, \Phi, R_{0}\right)+N\left(x_{i}^{\prime}, \Phi^{\prime}, R_{0}\right)\right) \\
& \leq\left\|\Psi-\Psi^{\prime}\right\|_{\infty} \vee 2\left\|D^{2} U\right\|_{\infty}\left\|\Psi-\Psi^{\prime}\right\|_{\infty}\left(\bar{N}\left(R_{0}+2\|\Psi\|_{\infty}\right)+\bar{N}\left(R_{0}+2\left\|\Psi^{\prime}\right\|_{\infty}\right)\right) .
\end{aligned}
$$

6 Local well posedness and global results in $X_{\bar{\Phi}}$

In the space of bounded displacements ξ_{i} and bounded velocities v_{i} we may prove local well posedness. The differential system, under the change of variables, in integral form is

$$
\Psi(t)=\Psi^{0}+\int_{0}^{t} B(\Psi(s)) d s
$$

that we investigate in the space $C([0, T] ; Y)$.
Theorem 7 Assume that $\bar{\Phi}$ has bounded density. Given $\Psi^{0} \in Y$ (or equivalently given $\left.\Phi^{0} \in X_{\bar{\Phi}}\right)$, there exists $T_{0}>0$ and a unique solution $\Psi(\cdot) \in C([0, T] ; Y)$ (equivalently $\left.\Phi(\cdot) \in C\left([0, T] ; X_{\bar{\Phi}}\right)\right)$. Given $r_{0}>0$, one can choose $T_{0}>0$ depending on r_{0} such that the previous result is true for all $\Psi^{0} \in Y$ with $\left\|\Psi^{0}\right\|_{\infty} \leq r_{0}$.

Proof. Step 1. For every $T_{0}>0$, denote by $\|\Psi(\cdot)\|_{\infty}$ the supremum norm $\sup _{t \in\left[0, T_{0}\right]}\|\Psi(t)\|_{\infty}$, whch makes $C\left(\left[0, T_{0}\right] ; Y\right)$ a Banach space; we hope there is no danger of confusion due to the use of the same symbol for different objects.

Consider the map $\Gamma: C\left(\left[0, T_{0}\right] ; Y\right) \rightarrow C\left(\left[0, T_{0}\right] ; Y\right)$ defined as

$$
\Gamma(\Psi(\cdot))(t)=\Psi^{0}+\int_{0}^{t} B(\Psi(s)) d s
$$

It is easy to check, based on Lemma 6 that Γ really maps $C\left(\left[0, T_{0}\right] ; Y\right)$ into itself, for every choice of $T_{0}>0$.

Given $r_{0}>0$, denote by $\mathcal{Y}_{T_{0}, 2 r_{0}}$ the closed ball or center zero and radius $2 r_{0}$ in $C\left(\left[0, T_{0}\right] ; Y\right)$: the set of all $\Psi(\cdot) \in C\left(\left[0, T_{0}\right] ; Y\right)$ such that

$$
\sup _{t \in\left[0, T_{0}\right]}\|\Psi(t)\|_{\infty} \leq 2 r_{0}
$$

Let us check that, for T_{0} small enough depending only on r_{0}, this ball is invariant by Γ. We have, from Lemma 6,

$$
\begin{aligned}
\|\Gamma(\Psi(\cdot))(t)\|_{\infty} & \leq\left\|\Psi^{0}\right\|_{\infty}+\int_{0}^{t}\|B(\Psi(s))\|_{\infty} d s \\
& \leq\left\|\Psi^{0}\right\|_{\infty}+\int_{0}^{t}\|\Psi(s)\|_{\infty} \vee\|\nabla U\|_{\infty} \bar{N}\left(R_{0}+2\|\Psi(s)\|_{\infty}\right) d s \\
& \leq r_{0}+\left[2 r_{0} \vee\|\nabla U\|_{\infty} \bar{N}\left(R_{0}+4 r_{0}\right)\right] T_{0}
\end{aligned}
$$

hence $\leq 2 r_{0}$ for every $T_{0} \leq T_{0}^{*}$ with T_{0}^{*} satisfying

$$
\left[2 r_{0} \vee\|\nabla U\|_{\infty} \bar{N}\left(R_{0}+4 r_{0}\right)\right] T_{0}^{*}=r_{0} .
$$

Step 2. For every $T_{0} \leq T_{0}^{*}$, for every $\Psi(\cdot), \Psi^{\prime}(\cdot) \in \mathcal{Y}_{T_{0}, 2 r_{0}}$, from Lemma 6 we have

$$
\begin{aligned}
& \left\|\Gamma(\Psi(\cdot))(t)-\Gamma\left(\Psi^{\prime}(\cdot)\right)(t)\right\|_{\infty} \\
\leq & \int_{0}^{t}\left\|B(\Psi(s))-B\left(\Psi^{\prime}(s)\right)\right\|_{\infty} d s \\
\leq & \int_{0}^{t}\left\|\Psi(s)-\Psi^{\prime}(s)\right\|_{\infty}\left(1 \vee 2\left\|D^{2} U\right\|_{\infty}\left(\bar{N}\left(R_{0}+2\|\Psi(s)\|_{\infty}\right)+\bar{N}\left(R_{0}+2\left\|\Psi^{\prime}(s)\right\|_{\infty}\right)\right)\right) d s \\
\leq & \left(1 \vee 4\left\|D^{2} U\right\|_{\infty} \bar{N}\left(R_{0}+4 r_{0}\right)\right) \int_{0}^{t}\left\|\Psi(s)-\Psi^{\prime}(s)\right\|_{\infty} d s \\
\leq & \left(1 \vee 4\left\|D^{2} U\right\|_{\infty} \bar{N}\left(R_{0}+4 r_{0}\right)\right) T_{0}\left\|\Psi(\cdot)-\Psi^{\prime}(\cdot)\right\|_{\infty}
\end{aligned}
$$

Hence for any $T_{0} \leq T_{0}^{*}$ such that

$$
\left(1 \vee 4\left\|D^{2} U\right\|_{\infty} \bar{N}\left(R_{0}+4 r_{0}\right)\right) T_{0}<1
$$

the map Γ is a contraction, in the complete metric space $\mathcal{Y}_{T_{0}, 2 r_{0}}$. Hence it has a fixed point, that is the unique solution claimed by the theorem.

6.1 Criteria for global solutions

Proposition 8 Assume that $\bar{\Phi}$ has bounded density. Given $\Phi^{0} \in X_{\bar{\Phi}}$, assume there exists $C>0$ such that, for every continuous-in- X_{Φ} solution $\Phi(\cdot)$ on some interval $\left[0, T_{0}\right]$ we have $\|\Psi(\cdot)\|_{\infty} \leq C$, namely

$$
\sup _{s \in\left[0, T_{0}\right]} d_{\infty}(\Phi(s), \bar{\Phi}) \leq C .
$$

Then the unique solution provided by Theorem 7 is global. Moreover, each one of the following conditions is sifficient:

$$
\begin{gathered}
\sup _{s \in\left[0, T_{0}\right]} \sup _{i \in I} N\left(x_{i}, \Phi(s), R_{0}\right) \leq C \\
\sup _{s \in\left[0, T_{0}\right]} \sup _{i \in I}\left|x_{i}(s)-\bar{x}_{i}\right| \leq C \\
\sup _{s \in\left[0, T_{0}\right]} \sup _{i \in I}\left|v_{i}(s)\right| \leq C .
\end{gathered}
$$

Proof. A unique local solution exists on an interval T_{0} satisfying (to preserve $\mathcal{Y}_{T_{0}, 2 C}$)

$$
\left[2 C \vee\|\nabla U\|_{\infty} \bar{N}\left(R_{0}+4 C\right)\right] T_{0} \leq C
$$

and (to be a contraction)

$$
\left(1 \vee 4\left\|D^{2} U\right\|_{\infty} \bar{N}\left(R_{0}+4 C\right)\right) T_{0}<1 .
$$

The value $\Phi\left(T_{0}\right)$, however, satisfies the same condition $d_{\infty}\left(\Phi\left(T_{0}\right), \bar{\Phi}\right) \leq C$, by assumption, hence we may solve the equation on the interval $\left[T_{0}, 2 T_{0}\right]$ with the same value of T_{0} found above. In a finite number of steps we cover any pre-defined interval of time. We leave the reader to check that the other conditions are sufficient.

6.2 Global solution in $d=1$

Lemma 9 There exists $C_{d}>0$ with the following property. If Φ has bounded density, then

$$
N(\Phi, r) \leq C_{d} N(\Phi, 1)\left(1+r^{d}\right) .
$$

Proof. It is sufficient to prove it for $r \geq 1$. Cover $B(a, r)$ by $C_{d} r^{d}$ balls of the form $B\left(a^{\prime}, 1\right)$, with suitable centers a^{\prime}. Then

$$
N(a, \Phi, r) \leq \sum_{a^{\prime}} N\left(a^{\prime}, \Phi, 1\right) \leq N(\Phi, 1) C_{d} r^{d} .
$$

Changing C_{d} if becessary, we get the result.
Theorem 10 In $d=1$, assume $\bar{\Phi}$ has bounded density. The the local solutions of Theorem 7 are global.

Proof. By the previous lemma we have

$$
\bar{N}(r) \leq \bar{C}(1+r)
$$

for a suitable constant $\bar{C}>0$. If $\Phi(\cdot)$ is a solution on any time interval $\left[0, T_{0}\right]$, then, using the bound of Lemma 6, we have

$$
\begin{aligned}
\|\Psi(t)\|_{\infty} & \leq\left\|\Psi^{0}\right\|_{\infty}+\int_{0}^{t}\|\Psi(s)\|_{\infty} \vee\|\nabla U\|_{\infty} \bar{N}\left(R_{0}+2\|\Psi(s)\|_{\infty}\right) d s \\
& \leq\left\|\Psi^{0}\right\|_{\infty}+\int_{0}^{t}\|\Psi(s)\|_{\infty}+\|\nabla U\|_{\infty} \bar{C}\left(1+R_{0}+2\|\Psi(s)\|_{\infty}\right) d s \\
& \leq\left\|\Psi^{0}\right\|_{\infty}+\int_{0}^{t} \bar{C}\|\nabla U\|_{\infty}\left(1+R_{0}\right) d s+\int_{0}^{t}\left(1+2 \bar{C}\|\nabla U\|_{\infty}\right)\|\Psi(s)\|_{\infty} d s
\end{aligned}
$$

and thus, by Gronwall lemma,

$$
\|\Psi(t)\|_{\infty} \leq e^{\left(1+2 \bar{C}\|\nabla U\|_{\infty}\right) t}\left(\left\|\Psi^{0}\right\|_{\infty}+\int_{0}^{t} \bar{C}\|\nabla U\|_{\infty}\left(1+R_{0}\right) d s\right)
$$

On any time interval $[0, T]$ the assumption of Proposition 8 is satisfied, hence the solution is global in $[0, T]$, hence on $[0, \infty)$.

Remark 11 In generic dimension d, let us say that $\bar{\Phi}$ has strongly decaying density if

$$
\bar{N}(r) \leq \bar{C}(1+r)
$$

for a suitable constant $\bar{C}>0$. In this case the proof of the previous theorem works and global existence holds. Of course the initial conditions Φ^{0} allowd have also strongly decaying density, namely $N\left(\Phi^{0}, r\right)$ has at most linear growth, and this is very restrictive, in dimension $d>1$.

7 Translation invariant measures

Except in dimension $d=1$, we are not able to prove a global-in-time result in the class Y. However, similarly to the case of point vortices, it could be true that singularities are avoided for a.e. initial condition, with respect to a suitable measure. Let us start the investigation of this topic.

The most obvious idea would be to use a (potentially) invariant measure However, the natural ones for this purpose, the Gibbs measures, having a Maxwell distribution of velocities, is not supported on Y; more precisely Y has measure zero. This is a main reason to investigate larger spaces than Y; however, let us insist on Y becuase of its simplicity and replace the concept of invariant measure with the concept of translation-invariant measure. These new objects are not as powerful as the previous ones but may lead to interesting results.

Consider the Polish space $\left(X_{\bar{\Phi}}, d_{\infty}\right)$ defined above, with the Borel σ-algebra \mathcal{B}. A probability measure μ on $\left(X_{\bar{\Phi}}, \mathcal{B}\right)$ is called translation invariant if

$$
\tau_{a} \mu=\mu
$$

for every $a \in \mathbb{R}^{d}$, where $\tau_{a} \mu$ is the push-forward of μ under τ_{a} and τ_{a} will be now defined.
On \mathbb{R}^{d}, τ_{a} is the map defined as

$$
\tau_{a}(x)=x+a
$$

It induces a map, still denoted by τ_{a}, on $\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)^{I}$:

$$
\tau_{a}\left(x_{i}, v_{i}\right)_{i \in I}=\left(x_{i}+a, v_{i}\right)_{i \in I}
$$

Restrictred to $X_{\bar{\Phi}}$, we see that $\tau_{a}\left(X_{\bar{\Phi}}\right)=X_{\bar{\Phi}}$. This map is measurable, hence the pushforward of a measure on $\left(X_{\bar{\Phi}}, d_{\infty}\right)$ is well defined.

Equivalent is to ask that

$$
\int_{X_{\bar{\Phi}}} F\left(\tau_{a} \Phi\right) \mu(d \Phi)=\int_{X_{\bar{\Phi}}} F(\Phi) \mu(d \Phi)
$$

for every point $a \in \mathbb{R}^{d}$ and bounded measurable functions $F: X_{\bar{\Phi}} \rightarrow \mathbb{R}$. As a particular case of F let us consider

$$
F(\Phi)=\sum_{i \in I} f\left(x_{i}, v_{i}\right)
$$

with f bounded measurable on $\mathbb{R}^{d} \times \mathbb{R}^{d}$, equal to zero for $|x|>R$ for some $R>0$. We get

$$
\int_{X_{\bar{\Phi}}} \sum_{i \in I} f\left(x_{i}+a, v_{i}\right) \mu(d \Phi)=\int_{X_{\bar{\Phi}}} \sum_{i \in I} f\left(x_{i}, v_{i}\right) \mu(d \Phi) .
$$

If μ is a Borel measure on $X_{\bar{\Phi}}$, a Borel measure on $Y=X_{\bar{\Phi}}-\bar{\Phi}$ is naturally defined as the push forward under the map $\Phi \mapsto \Psi:=\Phi-\bar{\Phi}$. Let us call μ_{Y} such measure. We may reformulate the theory of translation invariant measures μ on X_{Φ} by means of measures on Y with a suitable property:

Lemma 12 The measure μ on $X_{\bar{\Phi}}$ is translation invariant if an only if the measure μ_{Y} on Y satisfies

$$
\int_{Y} G(\Psi) \mu_{Y}(d \Psi)=\int_{Y} G\left(\tau_{a} \Psi+\tau_{a} \bar{\Phi}-\bar{\Phi}\right) \mu_{Y}(d \Psi)
$$

or equivalently

$$
\int_{Y} G\left(\tau_{a} \Psi\right) \mu_{Y}(d \Psi)=\int_{Y} G\left(\Psi+\bar{\Psi}_{a}\right) \mu_{Y}(d \Psi)
$$

where $\bar{\Psi}_{a}=\bar{\Phi}-\tau_{a} \bar{\Phi}$, for every bounded measurable functions $G: Y \rightarrow \mathbb{R}$.

Proof. Denoting the function $\Phi \mapsto G(\Phi-\bar{\Phi})$ by $F(\Phi)$,

$$
\begin{aligned}
\int_{Y} G(\Psi) \mu_{Y}(d \Psi) & =\int_{X_{\bar{\Phi}}} G(\Phi-\bar{\Phi}) \mu(d \Phi)=\int_{X_{\bar{\Phi}}} F(\Phi) \mu(d \Phi) \\
& =\int_{X_{\bar{\Phi}}} F\left(\tau_{a} \Phi\right) \mu(d \Phi)=\int_{X_{\bar{\Phi}}} G\left(\tau_{a} \Phi-\bar{\Phi}\right) \mu(d \Phi) \\
& =\int_{X_{\bar{\Phi}}} G\left(\tau_{a}(\Phi-\bar{\Phi})+\tau_{a} \bar{\Phi}-\bar{\Phi}\right) \mu(d \Phi) \\
& =\int_{Y} G\left(\tau_{a} \Psi+\tau_{a} \bar{\Phi}-\bar{\Phi}\right) \mu_{Y}(d \Psi)
\end{aligned}
$$

Remark 13 However, the intuition is better on $X_{\bar{\Phi}}$, hence we leave the translation for investigations which profit from the Banach space property.

Remark 14 The v-component plays an auxiliary role in this framework. A general way to construct translation invariant measure on $\left(X_{\bar{\Phi}}, d_{\infty}\right)$ is to construct them with such a property on the purely spatial component, and then take product measure on the v-component, for instance independent identically distributed velocities to all particles; with bounded distribution, to be included in $X_{\bar{\Phi}}$. If we denote the spatial component of $X_{\bar{\Phi}}$ by $X_{\bar{\Phi}}^{x}$, that of Φ by Φ^{x} and the projection of μ on the spatial component by μ^{x}, we have

$$
\int_{X_{\bar{\Phi}}^{x}} \sum_{i \in I} f\left(x_{i}+a\right) \mu^{x}\left(d \Phi^{x}\right)=\int_{X_{\bar{\Phi}}^{x}} \sum_{i \in I} f\left(x_{i}\right) \mu^{x}\left(d \Phi^{x}\right)
$$

for every bounded measurable compact support function f on \mathbb{R}^{d}.
Remark 15 Let $I=\mathbb{Z}^{d}, \bar{\Phi}$ be given by $\bar{x}_{i}=i$, for every $i \in \mathbb{Z}^{d}$. An example of translation invariant measure on the spatial component of $\left(X_{\bar{\Phi}}, d_{\infty}\right)$ is given by the convex combination

$$
\mu(d x)=\int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}} \delta_{\bar{x}+q}(d x) d q
$$

where $I=\mathbb{Z}^{d}, x=\left(x_{i}\right)_{i \in I}, \bar{x}=\left(\bar{x}_{i}\right)_{i \in I}, \bar{x}+q=\left(\bar{x}_{i}+q\right)_{i \in I}, q \in \mathbb{R}^{d}$. For this measure we have

$$
\begin{aligned}
\int_{X_{\bar{\Phi}}^{x}} \sum_{i \in I} f\left(x_{i}+a\right) \mu^{x}\left(d \Phi^{x}\right) & =\int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}} \int_{X_{\bar{\Phi}}^{x}} \sum_{i \in I} f\left(x_{i}+a\right) \delta_{\bar{x}+q}(d x) d q \\
& =\int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}} \sum_{i \in I} f(i+q+a) d q=\sum_{i \in I} \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}} f(i+q+a) d q \\
& =\int_{\mathbb{R}^{d}} f(x+a) d x=\int_{\mathbb{R}^{d}} f(x) d x
\end{aligned}
$$

independently of $a \in \mathbb{R}^{d}$.

8 Evolution of translation invariant measures

Recall from the proof of Theorem 7 that T_{0} can be taken the same for all Φ^{0} having the same distance from $\bar{\Phi}$. Thus, if a translation invariant measure μ_{0} is supported on a ball $B_{X_{\bar{\Phi}}}\left(\Phi, r_{0}\right)$ in $X_{\bar{\Phi}}$ of center $\bar{\Phi}$ and radius r_{0}, its time evolution is well defined for $t \in\left[0, T_{0}\right]$, where T_{0} is a value defined by Theorem 7 with respect to r_{0}. If we denote by $\Phi\left(t ; \Phi^{0}\right)$, for $t \in\left[0, T_{0}\right]$, the unique solution starting from $\Phi^{0} \in B_{X_{\bar{\Phi}}}\left(\bar{\Phi}, r_{0}\right)$, call μ_{t} the push-forward of μ_{0} under the map $\Phi^{0} \mapsto \Phi\left(t ; \Phi^{0}\right)$.

Lemma $16 \mu_{t}$ is translation invariant.
Proof. Using the property $\tau_{a} \Phi\left(t ; \Phi^{0}\right)=\Phi\left(t ; \tau_{a} \Phi^{0}\right)$ (easy to check) and the invariance of μ_{0} :

$$
\begin{aligned}
\int_{X_{\bar{\Phi}}} F\left(\tau_{a} \Phi\right) \mu_{t}(d \Phi) & =\int_{X_{\bar{\Phi}}} F\left(\tau_{a} \Phi\left(t ; \Phi^{0}\right)\right) \mu_{0}\left(d \Phi^{0}\right) \\
& =\int_{X_{\bar{\Phi}}} F\left(\Phi\left(t ; \tau_{a} \Phi^{0}\right)\right) \mu_{0}\left(d \Phi^{0}\right) \\
& =\int_{X_{\bar{\Phi}}} F\left(\Phi\left(t ; \Phi^{0}\right)\right) \mu_{0}\left(d \Phi^{0}\right) \\
& =\int_{X_{\bar{\Phi}}} F(\Phi) \mu_{t}(d \Phi) .
\end{aligned}
$$

$9 \quad$ Specific energy

By energy of particle i in configuration Φ we mean

$$
e(i, \Phi)=\frac{1}{2}\left(\left|v_{i}\right|^{2}+\sum_{j \in I \backslash\{i\}} U\left(x_{i}-x_{j}\right)\right) .
$$

By energy of configuration Φ in the Borel set B of \mathbb{R}^{d} we mean

$$
e(\Phi, B)=\sum_{i \in I} e(i, \Phi) 1_{\left\{x_{i} \in B\right\}} .
$$

Given a translation invariant measure μ, by specific energy we mean

$$
\bar{e}(\mu)=\int_{X_{\bar{\Phi}}} e\left(\Phi, W_{1}\right) \mu(d \Phi)
$$

where $W_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}$. More generally we may define the average energy in $B \subset \mathbb{R}^{d}$ as

$$
\bar{e}(\mu, B)=\int_{X_{\bar{\Phi}}} e(\Phi, B) \mu(d \Phi) .
$$

The set-function $B \mapsto \bar{e}(\mu, B)$ is additive.
Lemma $17 \bar{e}(\mu, B)=\bar{e}(\mu, B+a)$ for every $a \in \mathbb{R}^{d}$.
Proof.

$$
\begin{aligned}
\int_{X_{\bar{\Phi}}} e(\Phi, B+a) \mu(d \Phi) & =\frac{1}{2} \sum_{i \in I} \int_{X_{\bar{\Phi}}}\left(\left|v_{i}\right|^{2}+\sum_{j \in I \backslash\{i\}} U\left(x_{i}-x_{j}\right)\right) 1_{\left\{x_{i} \in B+a\right\}} \mu(d \Phi) \\
& =\frac{1}{2} \sum_{i \in I} \int_{X_{\bar{\Phi}}}\left(\left|v_{i}\right|^{2}+\sum_{j \in I \backslash\{i\}} U\left(x_{i}-a-\left(x_{j}-a\right)\right)\right) 1_{\left\{x_{i}-a \in B\right\}} \mu(d \Phi) \\
& =\frac{1}{2} \sum_{i \in I} \int_{X_{\bar{\Phi}}}\left(\left|v_{i}\right|^{2}+\sum_{j \in I \backslash\{i\}} U\left(x_{i}-x_{j}\right)\right) 1_{\left\{x_{i} \in B\right\}} \mu(d \Phi) \\
& =\int_{X_{\bar{\Phi}}} e(\Phi, B) \mu(d \Phi) .
\end{aligned}
$$

The name specific energy can now be understood:
Lemma 18

$$
\bar{e}(\mu)=\lim _{N \rightarrow \infty} \frac{1}{(2 N+1)^{d}} \bar{e}\left(\mu, W_{N}\right)
$$

where $W_{N}=\left[-N-\frac{1}{2}, N+\frac{1}{2}\right]^{d}$.
Proof. Decompose W_{N} in $(2 N+1)^{d}$ disjoint hypercubes and apply additivity of $B \mapsto$ $\bar{e}(\mu, B)$ along with the previous lemma.

Now, let μ_{0} be a translation invariant measure supported on the ball $B_{X_{\bar{\Phi}}}\left(\bar{\Phi}, r_{0}\right)$ and let μ_{t} be its time-evolution, defined for $t \in\left[0, T_{0}\right]$, also translation invariant by the lemma above. Define the specific energy at time t as

$$
\bar{e}_{t}:=\bar{e}\left(\mu_{t}\right)
$$

Lemma 19 Assume that μ_{0} is translation invariant and supported on the ball $B_{X_{\bar{\Phi}}}\left(\bar{\Phi}, r_{0}\right)$. Then the function $t \mapsto \bar{e}_{t}$ is constant.

Proof. Step 1. By the previous lemma

$$
\begin{aligned}
\bar{e}_{t} & =\lim _{N \rightarrow \infty} \frac{1}{(2 N+1)^{d}} \bar{e}\left(\mu_{t}, W_{N}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{(2 N+1)^{d}} \int_{X_{\bar{\Phi}}} e\left(\Phi, W_{N}\right) \mu_{t}(d \Phi) \\
& =\lim _{N \rightarrow \infty} \frac{1}{(2 N+1)^{d}} \int_{X_{\bar{\Phi}}} e\left(\Phi\left(t ; \Phi^{0}\right), W_{N}\right) \mu_{0}\left(d \Phi^{0}\right) .
\end{aligned}
$$

Heuristically, $e\left(\Phi\left(t ; \Phi^{0}\right), \mathbb{R}^{d}\right)=e\left(\Phi^{0}, \mathbb{R}^{d}\right)$ (but both are infinite!), namely $e\left(\Phi\left(t ; \Phi^{0}\right), W_{N}\right) \sim$ $e\left(\Phi^{0}, W_{N}\right)$ for large N, hence

$$
\begin{aligned}
\frac{1}{(2 N+1)^{d}} \int_{X_{\bar{\Phi}}} e\left(\Phi\left(t ; \Phi^{0}\right), W_{N}\right) \mu_{0}\left(d \Phi^{0}\right) & \sim \frac{1}{(2 N+1)^{d}} \int_{X_{\bar{\Phi}}} e\left(\Phi^{0}, W_{N}\right) \mu_{0}\left(d \Phi^{0}\right) \\
& \sim \bar{e}_{0} .
\end{aligned}
$$

The rigorous proof requires a control of the error. We have

$$
e\left(\Phi\left(t ; \Phi^{0}\right), W_{N}\right)=\frac{1}{2} \sum_{i \in I}\left(\left|v_{i}(t)\right|^{2}+\sum_{j \in I \backslash\{i\}} U\left(x_{i}(t)-x_{j}(t)\right)\right) 1_{\left\{x_{i}(t) \in W_{N}\right\}}
$$

Since

$$
\frac{1}{2} \frac{d}{d t}\left(\left|v_{i}(t)\right|^{2}+\sum_{j \in I \backslash\{i\}} U\left(x_{i}(t)-x_{j}(t)\right)\right)=g_{i}(t)
$$

where

$$
\begin{aligned}
g_{i}(t) & :=-v_{i}(t) \cdot \sum_{j \in I \backslash\{i\}} \nabla U\left(x_{i}(t)-x_{j}(t)\right)+\frac{1}{2} \sum_{j \in I \backslash\{i\}} \nabla U\left(x_{i}(t)-x_{j}(t)\right) \cdot\left(v_{i}(t)-v_{j}(t)\right) \\
& =-\frac{1}{2} \sum_{j \in I \backslash\{i\}} \nabla U\left(x_{i}(t)-x_{j}(t)\right) \cdot\left(v_{i}(t)+v_{j}(t)\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
e\left(\Phi\left(t ; \Phi^{0}\right), W_{N}\right)= & \frac{1}{2} \sum_{i \in I}\left(\left|v_{i}(t)\right|^{2}+\sum_{j \in I \backslash\{i\}} U\left(x_{i}(t)-x_{j}(t)\right)\right)\left(1_{\left\{x_{i}(t) \in W_{N}\right\}}-1_{\left\{x_{i}^{0} \in W_{N}\right\}}\right) \\
& \frac{1}{2} \sum_{i \in I}\left(\left|v_{i}^{0}\right|^{2}+\sum_{j \in I \backslash\{i\}} U\left(x_{i}^{0}-x_{j}^{0}\right)\right) 1_{\left\{x_{i}^{0} \in W_{N}\right\}}+\sum_{i \in I} g_{i}(t) 1_{\left\{x_{i}^{0} \in W_{N}\right\}} \\
= & e\left(\Phi^{0}, W_{N}\right)+A_{N}\left(\Phi^{0}\right)+B_{N}\left(\Phi^{0}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{N}\left(\Phi^{0}\right)=\frac{1}{2} \sum_{i \in I}\left(\left|v_{i}(t)\right|^{2}+\sum_{j \in I \backslash\{i\}} U\left(x_{i}(t)-x_{j}(t)\right)\right)\left(1_{\left\{x_{i}(t) \in W_{N}\right\}}-1_{\left\{x_{i}^{0} \in W_{N}\right\}}\right) \\
& B_{N}\left(\Phi^{0}\right)=\sum_{i \in I} g_{i}(t) 1_{\left\{x_{i}^{0} \in W_{N}\right\}} .
\end{aligned}
$$

Thus

$$
\bar{e}_{t}=\bar{e}_{0}+\lim _{N \rightarrow \infty} \int_{X_{\bar{\Phi}}} \frac{A_{N}\left(\Phi^{0}\right)+B_{N}\left(\Phi^{0}\right)}{(2 N+1)^{d}} \mu_{0}\left(d \Phi^{0}\right) .
$$

We have to prove that this limit is equal to zero.
Step 2. We give only the idea of the computation. We have

$$
\left|A_{N}\left(\Phi^{0}\right)\right| \leq \frac{1}{2} \sum_{i \in I}\left(r_{0}^{2}+\|U\|_{\infty} N\left(i, \Phi\left(t ; \Phi^{0}\right), R_{0}\right)\right)\left|1_{\left\{x_{i}(t) \in W_{N}\right\}}-1_{\left\{x_{i}^{0} \in W_{N}\right\}}\right|
$$

Since $d_{\infty}\left(\Phi^{0}, \bar{\Phi}\right) \leq r_{0}$, for $t \in\left[0, T_{0}\right]$ we have $d_{\infty}\left(\Phi\left(t ; \Phi^{0}\right), \bar{\Phi}\right) \leq R$ for a certain chosen $R>r_{0}$, hence $N\left(i, \Phi\left(t ; \Phi^{0}\right), R_{0}\right) \leq \bar{N}\left(R_{0}+2 R\right)$, and thus, denoting by $C>0$ a constant independent of N and Φ^{0}, we get

$$
\left|A_{N}\left(\Phi^{0}\right)\right| \leq C \sum_{i \in I}\left|1_{\left\{x_{i}(t) \in W_{N}\right\}}-1_{\left\{x_{i}^{0} \in W_{N}\right\}}\right| .
$$

Since $\left|v_{i}(s)\right| \leq R,\left|x_{i}(t)-x_{i}^{0}\right| \leq R T_{0}$, hence only indexes i such that either $x_{i}^{0} \in W_{N} \backslash W_{N-R T_{0}}$ or $x_{i}(t) \in W_{N} \backslash W_{N-R T_{0}}$ may contribute to the sum; the volume of $W_{N} \backslash W_{N-R T_{0}}$ is of order $(2 N+1)^{d-1}$ and thanks to the assumption on $\bar{N}(r)$ the numebr of i 's with the previous properties is also of order equal or less than $(2 N+1)^{d-1}$. It follows that

$$
\frac{\left|A_{N}\left(\Phi^{0}\right)\right|}{(2 N+1)^{d}} \leq \frac{C}{2 N+1}
$$

Step 3. One has

$$
\begin{aligned}
B_{N}\left(\Phi^{0}\right) & =-\frac{1}{2} \sum_{i \in I} \sum_{j \in I \backslash\{i\}} \nabla U\left(x_{i}(t)-x_{j}(t)\right) \cdot\left(v_{i}(t)+v_{j}(t)\right) 1_{\left\{x_{i}^{0} \in W_{N}\right\}} \\
& =\frac{1}{2} \sum_{i, j \in I ; i \neq j} \nabla U\left(x_{i}(t)-x_{j}(t)\right) \cdot v_{i}(t)\left(1_{\left\{x_{j}^{0} \in W_{N}\right\}}-1_{\left\{x_{i}^{0} \in W_{N}\right\}}\right)
\end{aligned}
$$

hence

$$
\left|B_{N}\left(\Phi^{0}\right)\right| \leq \frac{1}{2}\|\nabla U\|_{\infty} r_{0} \sum_{i, j \in I ; i \neq j}\left|1_{\left\{x_{j}^{0} \in W_{N}\right\}}-1_{\left\{x_{i}^{0} \in W_{N}\right\}}\right| 1_{\left\{\left|x_{i}(t)-x_{j}(t)\right| \leq R_{0}\right\}} .
$$

With arguments similar to those of Step 2 we deduce that $\left|B_{N}\left(\Phi^{0}\right)\right|$ is at most of order $(2 N+1)^{d-1}$ and that

$$
\frac{\left|B_{N}\left(\Phi^{0}\right)\right|}{(2 N+1)^{d}} \leq \frac{C}{2 N+1} .
$$

The results of Steps 2 and 3 prove the final claim of Step 1.

References

[1] O. E. Lanford III, The classical mechanics of one-dimensional systems of infinitely many particles, Comm. Math. Phys. 9 (1968), 169-191.

