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1. Verificare che per ogni z, w ∈ C vale l’identità

w =
1

4

(
|z + w|2 + i|z + iw|2 − |z − w|2 − i|z − iw|2

)
(1)

e usarla per dimostrare che per f, g ∈ L2(0, 2π) vale

1

2π

∫ 2π

0

f(x)g(x) dx =
∑
k∈Z

f̂k ĝk,

dove f̂k ĝk sono i coefficienti di Fourier della f e della g, rispettivamente.

Dedurre la stessa uguaglianza studiando le proprietè della convoluzione tra f e g(−x).

Soluzione. L’identità si verifica con calcolo diretto, usando che |w|2 = ww. Peranto,
usando (1) e applicando quattro volte la uguaglianza di Parseval∫ 2π

0

f(x)g(x) dx =
1

4

∫ 2π

0

|f(x) + g(x)|2 + i|f(x) + ig(x)|2 − |f(x)− g(x)|2 − i|f(x)− ig(x)|2 dx

=
2π

4

∑
k∈Z

|f̂k + ĝk|2 + i|f̂k + iĝk|2 − |f̂k − ĝk|2 − i|f̂k − iĝk|2

= 2π
∑
k∈Z

f̂kĝk,

dove nell’ultimo passaggio si è usato ancora (1).

Sia h(x) = g(−x), sappiamo che f ∗ h risulta continua, dato che f, h ∈ L2(0, 2π). Inoltre la
serie di Fourier di f ∗ h risulta ∑

k∈Z

f̂kĥkeikx

e inoltre la serie risulta assolutamente convergente dato che

∑
k∈Z

|f̂kĥk| ≤

(∑
k∈Z

|f̂k|2
)1/2(∑

k∈Z

|ĥk|2
)1/2

≤ ‖f̂k‖l2‖ĝk‖l2

e quindi converge alla funzione f ∗ h. Pertanto

1

2π

∫ 2π

0

f(y)h(x− y) dy =
∑
k∈Z

f̂kĥkeikx.

Quindi osservando che ĥk = ĝk si ha

1

2π

∫ 2π

0

f(y)g(y − x) dy =
∑
k∈Z

f̂kĝkeikx.

e ponendo x = 0 si ha la tesi.



2. Sia Jp(x) =
∑∞
n=0(−1)n (x/2)2n+p

n!(p+n)! con p ≥ 0 soluzione della equazione del secondo ordine

J ′′p (x) +
1

x
J ′p(x) +

(
1− p2

x2

)
Jp(x) = 0

e siano {λn}n≥0 i suoi zeri che sono distinti e positivi. Verificare che

∫ 1

0

xJp(λmx)Jp(λnx) dx =


0 se m 6= n

1

2
[Jp+1(λn)]2 se m = n

Sugg. Per l’ortogonalità osservare che se u(x) = Jp(ax) con a > 0 allora

u′′ +
u′

x
+

(
a2 − p2

x2

)
u = 0

Per calcolare il secondo integrale ricordare l’identità J ′′p (x)− p
xJ
′
p(x) = Jp+1(x).

Soluzione Siano u = Jp(ax) e v = Jp(bx) si ha quindi

u′′ +
u′

x
+

(
a2 − p2

x2

)
u = 0 v′′ +

v′

x
+

(
b2 − p2

x2

)
v = 0.

Moltiplicando la prima equazione per u e la seconda per v e sottraendo termine a termine
si ha

d

dx
(u′v − v′u) =

1

x
(u′v − v′u) = (b2 − a2)uv

e quindi moltiplicando per x

d

dx
[x(u′v − v′u)] =

1

x
(u′v − v′u) = (b2 − a2)xuv

e poi integrando su [0, 1], se a = λm 6= λn = b

(λ2
n − λ2

m)

∫ 1

0

xJp(λmx)Jp(λnx) dx = x(J ′p(λmx)Jp(λnx)− Jp(λmx)J ′p(λnx))
∣∣∣1
0

= 0.

Nel caso λn = λm moltiplichiamo per 2x2u′ l’equazione per u ottenendo

d

dx
(x2u′2 +

d

dx
(a2x2u2)− 2a2xu2 − d

dx
(p2u2) = 0

e integrando su [0, 1]

2a2

∫ 1

0

xu2 = x2u′2 + (a2x2 − p2)u2
∣∣∣1
0
.

Dato che u′(1) = aJ ′p(a) si ottiene,∫ 1

0

x[Jp(ax)]2 =
1

2
[J ′p(a)]2 +

1

2

(
1− p2

a2

)
[Jp(a)]2

3. Sia f : R → R continua e con supporto contenuto in (−1, 1). La funzione F (x1, x2) =
x2f(x1) è tale che

F (x1, 0) = 0 e
∂F

∂x2
(x1, 0) = f(x1)

e pertanto la funzione φ : R2 → R2

φ(x1, x2) =

 ∂F
∂x2

− ∂F
∂x1

 .



risulta formalmente tale che divφ = ∂φ
∂x1

+ ∂φ2

∂x2
= 0 per x2 > 0 e φ1(x1, 0) = f(x1).

Spiegare perchè risulta vero solo formalmente e studiare cosa accade con l’estensione ottenuta
tramite

F(x1, x2) = x2 (f ∗ ρx2
)(x1) = x2

∫
R

f(y)
1

x2
ρ

(
x1 − y
x2

)
dy,

dove ρ ∈ C∞0 (R) è l’usuale funzione usate per costruire i mollificatori e ρε(x) := ε−1ρ(xε−1).

4. Sia f(x) = 1
1+x2 . Calcolare la norma L2(R) di f ∗ f .

Soluzione. Usando il fatto che

F(e−|x|)(ξ) =
2

1 + ξ2

e dato che sia e−|x| che 2
1+ξ2 sono continue e di classe L1(R) possiamo applicare la formula

di inversione. Quindi si ha con un riscalamento

F
( 1

1 + x2

)
= πe−|ξ|

Osserviamo quindi che F(f ∗ f) = [F(f)]2 = π2e−2|ξ| e inoltre

‖F(f ∗ f)‖2L2 = 2π‖f ∗ f‖2L2 .

Pertanto

‖F(f ∗ f)‖2L2 = π4

∫
R

e−4|ξ|π
2

2
,

da cui

‖f ∗ f‖L2 =
π3/2

2
.

5. Risolvere il problema al contorno in due dimensioni

∆u = 0 in 1 < x2 + y2 < 4

∂u

∂n
= 0 in x2 + y2 = 4

∂u

∂n
= 8 cos3(θ) in x2 + y2 = 1,

la soluzione è unica? Cosa si può dire se il dato di Neumann sulla circonferenza interna viene
cambiato in ∂u

∂n (1, θ) = cos2(θ)?
Soluzione. Una funzione armonica in coordinate polari si scrive nella forma

u(ρ, θ) = c0 + c1 log(ρ) +
∑
n 6=0

(
anρ

n + bnρ
−n) einθ ρ 6= 0.

Andando a imporre la condizione di Neumann sul bordo esterno si ha

∂u

∂n
(2, θ) = uρ(2, θ) =

c1
ρ

+
∑
n 6=0

n
(
anρ

n−1 − bnρ−n−1
)

einθ|ρ=2

=
c1
2

+
∑
n 6=0

n
(
an2n−1 − bn2−n−1

)
einθ = 0

pertanto tutti i coefficenti devono annullarsi quindi

c1 = 0 an2n−1 − bn2−n−1 = 0 ⇐⇒ c1 = 0 an =
bn
22n

.



quindi

u(ρ, θ) = c0 +
∑
n6=0

bn

(
ρn

22n
+ ρ−n

)
einθ ρ 6= 0.

e andando a imporre la condizione sul bordo interno

∂u

∂n
(1, θ) = −uρ(1, θ) =

∑
n 6=0

nbn

(
ρn−1

22n
− ρ−n−1

)
einθ|ρ=1

=
∑
n 6=0

nbn

(
1

22n
− 1

)
einθ = ei3θ + 3eiθ + 3e−iθ + e−i3θ

da cui si ricava

b−3 =
1

1− 26
b−1 = −1 b1 = −4 b3 =

26

3(1− 26)

La soluzione non è ovviamente unica dato che se u è soluzione, anche u + c è soluzione, per ogni
c ∈ R.

Nel secondo caso il problema non è risolubile, dato che, se u è soluzione, allora, se Ω = {(ρ, θ) :
1 < ρ < 2}

0 =

∫
Ω

∆u dx =

∫
∂Ω

∂u

∂n
dS 6= 0,

dato che ∫ 2π

0

cos2(θ) dθ = π.


