Corso di Laurea in Matematica Prova di Analisi Matematica 3

15 febbraio 2017

1. Studiare la convergenza della serie trigonometrica

$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{2^n}$$

e calcolarne poi la somma per $x = \pi/3$.

2. Sia $f \in L^1(\mathbb{R})$, dimostrare che

$$\int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} f\left(x - \frac{1}{x}\right) dx$$

Sugg. Iniziare con la sostituzione $y = x^{-1}$

3. Si consideri l'equazione delle onde con condizioni di Neumann omogenee e dove tutti i dati sono a media nulla su $[0,\pi]$

$$\begin{cases} u_{tt} - u_{xx} = 0 & (t, x) \in \mathbb{R} \times (0, \pi) \\ u_x(t, 0) = u_x(t, \pi) = 0 & t \in \mathbb{R} \\ u(0, x) = u_0(x) & x \in (0, \pi) \\ u_t(0, x) = u_1(x) & x \in (0, \pi) \end{cases}$$

e si scriva la soluzione in termini di u_0 e u_1 tali che

$$\int_0^\pi |u_0'(x)|^2 dx = ||u_0||_V^2 < \infty \qquad \int_0^\pi |u_1(x)|^2 dx = ||u_1||_H^2 < \infty.$$

Definita $E_0 := \frac{1}{2} \left(\|u_0\|_V^2 + \|u_1\|_H^2 \right) = \frac{1}{2} \left(\int_0^{\pi} \|u_x(0,x)\|^2 + \int_0^{\pi} \|u_t(0,x)\|^2 \right)$ si mostri che se $T \ge 2\pi$ esistono $c_1, c_2 > 0$ tali che

$$c_1 E_0 \le \int_0^T |u_t(s,0)|^2 ds \le c_2 E_0.$$

4. Si trovino, se esistono, condizioni necessarie e sufficienti sulla funzione f regolare, affinchè si possa trovare una funzione armonica $u:]0, L[^2 \to \mathbb{R}$ tale che

$$u_x(0,y) = u_x(L,y) = u_y(x,0) = 0$$
 $u_y(x,L) = f(x)$.

5. Sia per $\alpha>0$ dato l'operatore $A=I-\alpha^2\Delta$ con dominio le funzioni regolari $u:]-\pi,\pi[^3\to\mathbb{C}$ che sono 2π -periodiche rispetto alle direzioni coordinate e sono a media nulla. Sia poi $G=A^{-1}$ e si definisca, per $N\in\mathbb{N}$

$$D_N = \sum_{n=0}^{N} (I - G)^n$$

Scrivere in termini delle variabili di Fourier sia A che D_N e dimostrare che per ogni $N \in \mathbb{N}$, l'operatore D_N è lineare e continuo da $L^2(]-\pi,\pi[^3)$ in se stesso.

Calcolare la norma operatoriale $\|D_N\|$ e caratterizzare, se possibile, il limite di D_N per $N \to +\infty$